Streaming space complexity of nearly all functions of one variable

Vladimir Braverman, Stephen Chestnut, David P. Woodruff, Lin F. Yang

January 7, 2016

$$f = \begin{bmatrix} 0\\0\\0\\0\end{bmatrix}$$
$$\sum f_i^2 = 0$$

$$\begin{array}{rcl} & 4, & 2, & 3, & 2, & 4, & 2, & 2 \\ f = & \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \\ \sum f_i^2 = & 1 \end{array}$$

$$f = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$
$$\sum f_i^2 = 2$$

How much storage for a streaming $(1 \pm \epsilon)$ -approximation to $\sum_i f_i^2$?

Classify $g: \mathbb{Z}_{\geq 0} \to \mathbb{R}$

Is there a streaming $(1 \pm \epsilon)$ -approximation for $\sum_{i} g(f_i)$ using only poly $(\frac{1}{\epsilon} \log nm)$ bits?

Previous works

•
$$g(x) = \mathbf{1}(x \neq 0)$$
: [FM85],[KNW10]

- $g(x) = x^{p}$: [F85],[AMS96],[IW05],[I06]
- $g(x) = x \log x$: [CDM06],[CCM07],[HN008]
- monotonic g: [BO10],[BC15]

$$\begin{aligned} \epsilon &= \Omega(\frac{1}{\mathsf{polylog}(n)}) \\ m &= \mathsf{poly}(n) \\ g(0) &= 0 \\ g(x) &> 0, \ \forall x > 0 \end{aligned}$$

Recursive Subsampling [Indyk & Woodruff 2005]

An α -heavy hitter is any item i^* such that $g(f_{i^*}) \ge \alpha \sum_i g(f_i)$.

Recursive Subsampling [Indyk & Woodruff 2005]

An α -heavy hitter is any item i^* such that $g(f_{i^*}) \ge \alpha \sum_i g(f_i)$.

Theorem (Braverman & Ostrovsky 2010)

$$\frac{\epsilon^2}{\log^3 n} -heavy \ hitters \quad \Rightarrow \quad (1 \pm \epsilon) -approximation \ to \ \sum_i g(f_i).$$

Heavy hitters by CountSketch[Charikar, Chen & Farach-Colton 2002]

- Find i^* such that $f_{i^*}^2 \ge \alpha \sum_i f_i^2$
- Estimate f_{i*}
- $O(\alpha^{-1}\log^2 n)$ bits.

Three properties are sufficient and almost necessary for $\tilde{O}(1)$ bits

Slow-jumping

YES: $g(x) = x^2 \log x$ NO: $g(x) = x^3$

Slow-dropping

YES:
$$g(x) = \Theta(\frac{1}{\log x})$$
 NO: $g(x) = \Theta(\frac{1}{x})$

Predictable

YES:
$$g(x) = (2 + \sin x)\mathbf{1}(x > 0)$$
 NO: $g(x) = (2 + \sin x)x^2$

Predictable

YES:
$$g(x) = (2 + \sin x)\mathbf{1}(x > 0)$$
 NO: $g(x) = (2 + \sin x)x^2$

Three properties are sufficient and almost necessary for O(1) bits

slow-jumping $\frac{g(y)}{g(x)} \lesssim (\frac{y}{x})^2$, slow-dropping $g(y) \gtrsim g(x)$, and predictable whenever $0 < y - x \ll x$ $g(y) = (1 \pm \epsilon)g(x)$ or $g(y - x) \gtrsim g(x)$.

$\mathbf{g}(x)$	lower bound	fails
x ³	$\Omega(n^{1/3})$	slow-jumping
1/x	$\Omega(n)$	slow-dropping
$g(x) = (2 + \sin x)x^2$	$\Omega(n)$	predictability

Almost necessary?

$$i(x) = \max\{j \in \mathbb{N} : 2^j ext{ divides } x\}$$