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Classify g : Z≥0 → R

Is there a streaming (1± ε)-approximation for
∑

i g(fi )
using only poly(1ε log nm) bits?

Previous works

g(x) = 1(x 6= 0): [FM85],[KNW10]

g(x) = xp: [F85],[AMS96],[IW05],[I06]

g(x) = x log x : [CDM06],[CCM07],[HNO08]

monotonic g : [BO10],[BC15]

ε = Ω( 1
polylog(n))

m = poly(n)
g(0) = 0
g(x) > 0, ∀x > 0



Recursive Subsampling [Indyk & Woodruff 2005]

An α-heavy hitter is any item i∗ such that g(fi∗) ≥ α
∑

i g(fi ).

Theorem (Braverman & Ostrovsky 2010)

ε2

log3 n
-heavy hitters ⇒ (1± ε)-approximation to

∑
i

g(fi ).

Heavy hitters by CountSketch[Charikar, Chen & Farach-Colton 2002]

Find i∗ such that f 2i∗ ≥ α
∑

i f
2
i

Estimate fi∗

O(α−1 log2 n) bits.
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Three properties are sufficient and almost necessary for Õ(1) bits

g(x)

x



Slow-jumping

g(x)

x
x y

g(x)

g(y)

g(y)

g(x)
.
(y
x

)2

YES: g(x) = x2 log x NO: g(x) = x3



Slow-dropping
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Predictable
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g(y) = (1± ε)g(x) or g(y − x) & g(x)

YES: g(x) = (2 + sin x)1(x > 0) NO: g(x) = (2 + sin x)x2
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Three properties are sufficient and almost necessary for Õ(1) bits

slow-jumping g(y)
g(x) .

( y
x

)2
,

slow-dropping g(y) & g(x), and

predictable whenever 0 < y − x � x
g(y) = (1± ε)g(x) or g(y − x) & g(x).

g(x) lower bound fails

x3 Ω(n1/3) slow-jumping

1/x Ω(n) slow-dropping

g(x) = (2 + sin x)x2 Ω(n) predictability



Almost necessary?

2−i(x)
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i(x) = max{j ∈ N : 2j divides x}


