Streaming space complexity of nearly all functions of one variable

Vladimir Braverman, Stephen Chestnut, David P. Woodruff, Lin F. Yang

January 7, 2016

A stream of $m=7$ items from $[n]=[4]$
$4,2,3,2,4,2,2$

$$
\begin{gathered}
f=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
\sum f_{i}^{2}=0
\end{gathered}
$$

A stream of $m=7$ items from $[n]=[4]$

$$
4,2,3,2,4,2,2
$$

$$
\begin{gathered}
f=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \\
\sum f_{i}^{2}=1
\end{gathered}
$$

A stream of $m=7$ items from $[n]=[4]$

$$
2,3,2,4,2,2
$$

$$
\begin{gathered}
f= \\
{\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]} \\
\sum f_{i}^{2}= \\
2
\end{gathered}
$$

A stream of $m=7$ items from $[n]=[4]$

$$
\begin{gathered}
3,2,4,2,2 \\
f= \\
\sum f_{i}^{2}=\quad\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right] \\
3
\end{gathered}
$$

A stream of $m=7$ items from $[n]=[4]$

$$
\begin{array}{cc}
2,4,2,2 \\
f= & {\left[\begin{array}{l}
0 \\
2 \\
1 \\
1
\end{array}\right]} \\
\sum f_{i}^{2}= & 6
\end{array}
$$

A stream of $m=7$ items from $[n]=[4]$

$$
4,2, \quad 2
$$

$$
\sum f_{i}^{2}=
$$

$$
9
$$

A stream of $m=7$ items from $[n]=[4]$

$$
\begin{array}{cc}
2,2 \\
f= & {\left[\begin{array}{l}
0 \\
3 \\
1 \\
2
\end{array}\right]} \\
\sum f_{i}^{2}= & 14
\end{array}
$$

A stream of $m=7$ items from $[n]=[4]$

$$
f=
$$

$\left[\begin{array}{l}0 \\ 4 \\ 1 \\ 2\end{array}\right]$

$$
\sum f_{i}^{2}=
$$

A stream of $m=7$ items from $[n]=[4]$

$$
\begin{array}{cc}
f= & {\left[\begin{array}{l}
0 \\
4 \\
1 \\
2
\end{array}\right]} \\
\sum f_{i}^{2}= & 21
\end{array}
$$

How much storage for a streaming (1 $1 \pm \epsilon$)-approximation to $\sum_{i} f_{i}^{2}$?

Classify $g: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{R}$

Is there a streaming $(1 \pm \epsilon)$-approximation for $\sum_{i} g\left(f_{i}\right)$ using only poly $\left(\frac{1}{\epsilon} \log n m\right)$ bits?

Previous works

- $g(x)=\mathbf{1}(x \neq 0):$ [FM85],[KNW10]
- $g(x)=x^{p}:[F 85],[A M S 96],[1 W 05],[106]$
- $g(x)=x \log x:$ [CDM06],[CCM07],[HNO08]
- monotonic g : [BO10],[BC15]

$$
\begin{aligned}
\epsilon & =\Omega\left(\frac{1}{\operatorname{polylog}(n)}\right) \\
m & =\operatorname{poly}(n) \\
g(0) & =0 \\
g(x) & >0, \forall x>0
\end{aligned}
$$

Recursive Subsampling [Indyk \& Woodruff 2005]

An α-heavy hitter is any item i^{*} such that $g\left(f_{i^{*}}\right) \geq \alpha \sum_{i} g\left(f_{i}\right)$.

Theorem (Braverman \& Ostrovsky 2010)

$$
\frac{\epsilon^{2}}{\log ^{3} n} \text {-heavy hitters } \Rightarrow \quad(1 \pm \epsilon) \text {-approximation to } \sum_{i} g\left(f_{i}\right) \text {. }
$$

Recursive Subsampling [Indyk \& Woodruff 2005]

An α-heavy hitter is any item i^{*} such that $g\left(f_{i^{*}}\right) \geq \alpha \sum_{i} g\left(f_{i}\right)$.

Theorem (Braverman \& Ostrovsky 2010)

$$
\frac{\epsilon^{2}}{\log ^{3} n} \text {-heavy hitters } \Rightarrow \quad(1 \pm \epsilon) \text {-approximation to } \sum_{i} g\left(f_{i}\right) \text {. }
$$

Heavy hitters by CountSketch[Charikar, Chen \& Farach-Colton 2002]

- Find i^{*} such that $f_{i^{*}}^{2} \geq \alpha \sum_{i} f_{i}^{2}$
- Estimate $f_{i *}$
- $O\left(\alpha^{-1} \log ^{2} n\right)$ bits.

Three properties are sufficient and almost necessary for $\tilde{O}(1)$ bits

Slow-jumping

YES: $g(x)=x^{2} \log x \quad$ NO: $g(x)=x^{3}$

Slow-dropping

YES: $g(x)=\Theta\left(\frac{1}{\log x}\right) \quad$ NO: $g(x)=\Theta\left(\frac{1}{x}\right)$

Predictable

YES: $g(x)=(2+\sin x) \mathbf{1}(x>0)$
NO: $g(x)=(2+\sin x) x^{2}$

Predictable

YES: $g(x)=(2+\sin x) \mathbf{1}(x>0)$
NO: $g(x)=(2+\sin x) x^{2}$

Three properties are sufficient and almost necessary for $\widetilde{O}(1)$ bits
slow-jumping $\frac{g(y)}{g(x)} \lesssim\left(\frac{y}{x}\right)^{2}$,
slow-dropping $g(y) \gtrsim g(x)$, and
predictable whenever $0<y-x \ll x$

$$
g(y)=(1 \pm \epsilon) g(x) \text { or } g(y-x) \gtrsim g(x)
$$

$\mathbf{g}(\mathbf{x})$	lower bound	fails
x^{3}	$\Omega\left(n^{1 / 3}\right)$	slow-jumping
$1 / x$	$\Omega(n)$	slow-dropping
$g(x)=(2+\sin x) x^{2}$	$\Omega(n)$	predictability

Almost necessary?

$i(x)=\max \left\{j \in \mathbb{N}: 2^{j}\right.$ divides $\left.x\right\}$

