
Streaming Set Cover

Amit Chakrabarti

Dartmouth College

Joint work with A. Wirth

Sublinear Algorithms Workshop
JHU, Jan 2016

Combinatorial Optimisation Problems

I 1950s, 60s: Operations research

I 1970s, 80s: NP-hardness

I 1990s, 2000s: Approximation algorithms, hardness of approximation

I 2010s: Space-constrained settings, e.g., streaming

Set Cover

Set Cover

Set Cover with Sets Streamed

I Input: stream of m sets, each ✓ [n]

I Goal: cover universe [n] using as few sets as possible

• Use sublinear (in m) space

• Ideally O(n polylog n) ... “semi-streaming”

• Need ⌦(n log n) space to certify: for each item, who covered it?

Think m � n

Set Cover with Sets Streamed

I Input: stream of m sets, each ✓ [n]

I Goal: cover universe [n] using as few sets as possible

• Use sublinear (in m) space

• Ideally O(n polylog n) ... “semi-streaming”

• Need ⌦(n log n) space to certify: for each item, who covered it?

Think m � n

Background and Related Work

O✏ine results:

I Best possible poly-time approx (1± o(1)) ln n [Johnson’74] [Slav́ık’96]

[Lund-Yannakakis’94] [Dinur-Steurer’14]

I Simple greedy strategy gets ln n-approx:

• Repeatedly add set with highest contribution

• Contribution := number of new elements covered

Streaming results:

I One pass semi-streaming O(
p
n) approx

I This is best possible in one semi-streaming pass [Emek-Rosén’14]

I O(log n) semi-streaming passes allow O(log n) approx
[Saha-Getoor’09] [Cormode-Karlo↵-Wirth’10]

I There’s more: wait till the end!
[Nisan’02] [Demaine-Indyk-Mahabadi-Vakilian’14] [Indyk-M-V’16]

Background and Related Work

O✏ine results:

I Best possible poly-time approx (1± o(1)) ln n [Johnson’74] [Slav́ık’96]

[Lund-Yannakakis’94] [Dinur-Steurer’14]

I Simple greedy strategy gets ln n-approx:

• Repeatedly add set with highest contribution

• Contribution := number of new elements covered

Streaming results:

I One pass semi-streaming O(
p
n) approx

I This is best possible in one semi-streaming pass [Emek-Rosén’14]

I O(log n) semi-streaming passes allow O(log n) approx
[Saha-Getoor’09] [Cormode-Karlo↵-Wirth’10]

I There’s more: wait till the end!
[Nisan’02] [Demaine-Indyk-Mahabadi-Vakilian’14] [Indyk-M-V’16]

Background and Related Work

O✏ine results:

I Best possible poly-time approx (1± o(1)) ln n [Johnson’74] [Slav́ık’96]

[Lund-Yannakakis’94] [Dinur-Steurer’14]

I Simple greedy strategy gets ln n-approx:

• Repeatedly add set with highest contribution

• Contribution := number of new elements covered

Streaming results:

I One pass semi-streaming O(
p
n) approx

I This is best possible in one semi-streaming pass [Emek-Rosén’14]

I O(log n) semi-streaming passes allow O(log n) approx
[Saha-Getoor’09] [Cormode-Karlo↵-Wirth’10]

I There’s more: wait till the end!
[Nisan’02] [Demaine-Indyk-Mahabadi-Vakilian’14] [Indyk-M-V’16]

Related Work: In Greater Detail

Algorithms using p passes, S space, giving ↵-approximation

Upper bounds:

I p = 1, S = eO(n),↵ = O(
p
n) [Emek-Rosén’14]

I p = O(log n), S = eO(n),↵ = O(log n) [Cormode-Karlo↵-Wirth’10]

I S = eO(mn1/⌦(log p)),↵ = O(p) [Demaine-Indyk-Mahabadi-Vakilian’14]

I S = eO(mn1/⌦(p)),↵ = O(p) [Indyk-Mahabadi-Vakilian’16]

Lower bounds:

I p = 1, S = eO(n)) ↵ = ⌦(n1/2��) [Emek-Rosén’14]

I ↵ < 1

2

log
2

n) S = ⌦(m) [Nisan’02]

I ↵ = O(1), deterministic) S = ⌦(mn) [Demaine-I-M-V’14]

I ↵ = 1) S = e⌦(n1+1/(2(p+1))) [Indyk-Mahabadi-Vakilian’16]

I p = 1,↵ = 3

2

) S = ⌦(mn) [Indyk-Mahabadi-Vakilian’16]

Our Results

Upper bound

I With p passes, semi-streaming space, get O(n1/(p+1))-approx

I Algorithm giving this approx based on very simple heuristic

I Deterministic

Lower bound

I Randomised

I In p passes, semi-streaming space, need ⌦(n1/(p+1)/p2) approx

I Upper bound tight for all constant p

I Semi-streaming O(log n) approx requires ⌦(log n/ log log n) passes

Progressive Greedy Algorithm

Recall simple greedy:

I Repeatedly add set with highest contribution

I Contribution := number of new elements covered

Progressive greedy:

I In first pass, add all sets with contribution � n1�1/p

I In second pass, add all sets with contribution � n1�2/p

I ...

I ...

I In pth pass, add all sets with contribution � 1

Progressive Greedy Algorithm

1: procedure GreedyPass(stream �, threshold ⌧ , set Sol , array Coverer)
2: for each set Si in � do
3: C {x : Coverer [x] 6= 0} . the already covered elements
4: if |Si \ C | � ⌧ then . set’s contribution � threshold
5: Sol Sol [{i}
6: for each x 2 Si \ C do Coverer [x] i

7: procedure ProgGreedyNaive(stream �, integer n, integer p � 1)
8: Coverer [1 . . . n] 0n; Sol ?
9: for j = 1 to p do GreedyPass(�, n1�j/p, Sol ,Coverer)

10: output Sol ,Coverer

Progressive Greedy: Analysis Idea

Consider p = 2 passes

I First pass: admit sets i↵ contribution �
p
n

I Thus, first pass adds at most
p
n sets to Sol

I Second pass: Opt covers remaining items with sets of contrib
p
n

I Thus, Sol will cover the same using
p
n|Opt| sets

But wait, this uses two passes for O(
p
n) approx!

I Logic of last pass especially simple: add set if positive contrib

I Can fold this into previous one

Final result: p passes, O(n1/(p+1))-approx

Progressive Greedy: Analysis Idea

Consider p = 2 passes

I First pass: admit sets i↵ contribution �
p
n

I Thus, first pass adds at most
p
n sets to Sol

I Second pass: Opt covers remaining items with sets of contrib
p
n

I Thus, Sol will cover the same using
p
n|Opt| sets

But wait, this uses two passes for O(
p
n) approx!

I Logic of last pass especially simple: add set if positive contrib

I Can fold this into previous one

Final result: p passes, O(n1/(p+1))-approx

Progressive Greedy: Analysis Idea

Consider p = 2 passes

I First pass: admit sets i↵ contribution �
p
n

I Thus, first pass adds at most
p
n sets to Sol

I Second pass: Opt covers remaining items with sets of contrib
p
n

I Thus, Sol will cover the same using
p
n|Opt| sets

But wait, this uses two passes for O(
p
n) approx!

I Logic of last pass especially simple: add set if positive contrib

I Can fold this into previous one

Final result: p passes, O(n1/(p+1))-approx

Progressive Greedy: Analysis Idea

Consider p = 2 passes

I First pass: admit sets i↵ contribution �
p
n

I Thus, first pass adds at most
p
n sets to Sol

I Second pass: Opt covers remaining items with sets of contrib
p
n

I Thus, Sol will cover the same using
p
n|Opt| sets

But wait, this uses two passes for O(
p
n) approx!

I Logic of last pass especially simple: add set if positive contrib

I Can fold this into previous one

Final result: p passes, O(n1/(p+1))-approx

Lower Bound Idea: One Pass

Reduce from index: Alice gets x 2 {0, 1}n, Bob gets j 2 [n], Alice talks
to Bob, who must determine xj . Requires ⌦(n)-bit message. [Ablayev’96]

sets

F

Bob’s set

q

Alice’s

Universe F2

q

n = q2

If Alice has Bob’s missing line, then |Opt| = 2, else |Opt| � q

So ⇥(
p
n) approx requires ⌦(#lines) = ⌦(q2) = ⌦(n) space

Lower Bound Idea: One Pass

Reduce from index: Alice gets x 2 {0, 1}n, Bob gets j 2 [n], Alice talks
to Bob, who must determine xj . Requires ⌦(n)-bit message. [Ablayev’96]

sets

F

Bob’s set

q

Alice’s

Universe F2

q

n = q2

If Alice has Bob’s missing line, then |Opt| = 2, else |Opt| � q

So ⇥(
p
n) approx requires ⌦(#lines) = ⌦(q2) = ⌦(n) space

Lower Bound Idea: One Pass

Reduce from index: Alice gets x 2 {0, 1}n, Bob gets j 2 [n], Alice talks
to Bob, who must determine xj . Requires ⌦(n)-bit message. [Ablayev’96]

sets

F

Bob’s set

q

Alice’s

Universe F2

q

n = q2

If Alice has Bob’s missing line, then |Opt| = 2, else |Opt| � q

So ⇥(
p
n) approx requires ⌦(#lines) = ⌦(q2) = ⌦(n) space

Next Steps

Goal: p semi-streaming passes require ⌦(n1/(p+1)) approx

I Handle more passes

• Can’t start from index, need harder communication problem

I Increase space bound

• Need !(n) to rule out semi-streaming

Next Steps

Goal: p semi-streaming passes require ⌦(n1/(p+1)) approx

I Handle more passes

• Can’t start from index, need harder communication problem

I Increase space bound

• Need !(n) to rule out semi-streaming

Tree Pointer Jumping

Multiplayer game tpjp+1,t defined on complete (p + 1)-level t-ary tree

I Pointer to child at each internal level-i node (known to Player i)

I Bit at each leaf node (known to Player 1)

I Goal: output (whp) bit reached by following pointers from root

Model: p rounds of communication

Each round:
player

1

, player
2

, . . . , playerp+1

1 0 0 1 1 1 00 1

Level

Level

2

3

Level 1

Theorem: Longest message is ⌦(t/p2) bits [C.-Cormode-McGregor’08]

Multi-Pass Set Cover: First Attempt

Two passes, reducing from tpj

3,t , using universe F3

q (so n = q3)

I Three players: Alice, Bob, Carol

• Alice encodes leaf bits: lines in F3

q

• Bob encodes lower pointers: planes in F3

q with a line deleted

• Carol encodes root pointer: F3

q with a plane deleted

I (Carol set) [(corresp. Bob set) = F3

q \ (a line)

I If Alice has the missing line, then |Opt| = 3, else) |Opt| � q (*)

How good is this?

I Each pointer encoded by Bob can choose from only as many leaves as
there are lines in a specific plane =) t = ⇥(q2) = ⇥(n2/3)

I Implies space ⌦(n2/3) for approx < q/3 = ⇥(n1/3)

Multi-Pass Set Cover: First Attempt

Two passes, reducing from tpj

3,t , using universe F3

q (so n = q3)

I Three players: Alice, Bob, Carol

• Alice encodes leaf bits: lines in F3

q

• Bob encodes lower pointers: planes in F3

q with a line deleted

• Carol encodes root pointer: F3

q with a plane deleted

I (Carol set) [(corresp. Bob set) = F3

q \ (a line)

I If Alice has the missing line, then |Opt| = 3, else) |Opt| � q (*)

How good is this?

I Each pointer encoded by Bob can choose from only as many leaves as
there are lines in a specific plane =) t = ⇥(q2) = ⇥(n2/3)

I Implies space ⌦(n2/3) for approx < q/3 = ⇥(n1/3)

Multi-Pass Set Cover: First Attempt

Two passes, reducing from tpj

3,t , using universe F3

q (so n = q3)

I Three players: Alice, Bob, Carol

• Alice encodes leaf bits: lines in F3

q

• Bob encodes lower pointers: planes in F3

q with a line deleted

• Carol encodes root pointer: F3

q with a plane deleted

I (Carol set) [(corresp. Bob set) = F3

q \ (a line)

I If Alice has the missing line, then |Opt| = 3, else) |Opt| � q (*)

How good is this?

I Each pointer encoded by Bob can choose from only as many leaves as
there are lines in a specific plane =) t = ⇥(q2) = ⇥(n2/3)

I Implies space ⌦(n2/3) for approx < q/3 = ⇥(n1/3)

Multi-Pass Set Cover: First Attempt

Two passes, reducing from tpj

3,t , using universe F3

q (so n = q3)

I Three players: Alice, Bob, Carol

• Alice encodes leaf bits: lines in F3

q

• Bob encodes lower pointers: planes in F3

q with a line deleted

• Carol encodes root pointer: F3

q with a plane deleted

I (Carol set) [(corresp. Bob set) = F3

q \ (a line)

I If Alice has the missing line, then |Opt| = 3, else) |Opt| � q (*)

How good is this?

I Each pointer encoded by Bob can choose from only as many leaves as
there are lines in a specific plane =) t = ⇥(q2) = ⇥(n2/3)

I Implies space ⌦(n2/3) for approx < q/3 = ⇥(n1/3)

Multi-Pass Set Cover: First Attempt

Two passes, reducing from tpj

3,t , using universe F3

q (so n = q3)

I Three players: Alice, Bob, Carol

• Alice encodes leaf bits: lines in F3

q

• Bob encodes lower pointers: planes in F3

q with a line deleted

• Carol encodes root pointer: F3

q with a plane deleted

I (Carol set) [(corresp. Bob set) = F3

q \ (a line)

I If Alice has the missing line, then |Opt| = 3, else) |Opt| � q (*)

How good is this?

I Each pointer encoded by Bob can choose from only as many leaves as
there are lines in a specific plane =) t = ⇥(q2) = ⇥(n2/3)

I Implies space ⌦(n2/3) for approx < q/3 = ⇥(n1/3)

Insight

1 0 0 1 1 1 00 1

space minus a plane

plane minus a line

line

Carol

Bob

Alice

Too few lines in a plane...

increase the degree!

Insight

1 0 0 1 1 1 00 1

space minus a plane

plane minus a line

line

Carol

Bob

Alice

cubic curve

quadric surface minus a curve

space minus a surface

Too few lines in a plane... increase the degree!

Edifices

Basic idea: Generalise a�ne plane to high-rank Buekenhout geometry

Pointer encoded
as Xu \ Xv

|Xleaf| ≥ q

Xroot = (Fq)p+1

u

v

|Xz ∩ Xv| ≤ 2p

z

I Universe Fp+1

q

I Variety Xu at node u

I u above v
=) Xu ◆ Xv

I Leaf z with bit = 1
encoded as set Xz

I If player 1 has the
missing variety, then
|Opt| = p + 1, else
|Opt| � q/(2p)

Edifices

Basic idea: Generalise a�ne plane to high-rank Buekenhout geometry

Pointer encoded
as Xu \ Xv

|Xleaf| ≥ q

Xroot = (Fq)p+1

u

v

|Xz ∩ Xv| ≤ 2p

z

I Universe Fp+1

q

I Variety Xu at node u

I u above v
=) Xu ◆ Xv

I Leaf z with bit = 1
encoded as set Xz

I If player 1 has the
missing variety, then
|Opt| = p + 1, else
|Opt| � q/(2p)

Edifices

Basic idea: Generalise a�ne plane to high-rank Buekenhout geometry

Pointer encoded
as Xu \ Xv

|Xleaf| ≥ q

Xroot = (Fq)p+1

u

v

|Xz ∩ Xv| ≤ 2p

z

I Universe Fp+1

q

I Variety Xu at node u

I u above v
=) Xu ◆ Xv

I Leaf z with bit = 1
encoded as set Xz

I If player 1 has the
missing variety, then
|Opt| = p + 1, else
|Opt| � q/(2p)

Edifices

Basic idea: Generalise a�ne plane to high-rank Buekenhout geometry

Pointer encoded
as Xu \ Xv

|Xleaf| ≥ q

Xroot = (Fq)p+1

u

v

|Xz ∩ Xv| ≤ 2p

z

I Universe Fp+1

q

I Variety Xu at node u

I u above v
=) Xu ◆ Xv

I Leaf z with bit = 1
encoded as set Xz

I If player 1 has the
missing variety, then
|Opt| = p + 1, else
|Opt| � q/(2p)

Construction of an Edifice

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are
low-degree surfaces, and so on.

Concern: Determining “cardinality” of algebraic variety over finite field is
the stu↵ of di�cult mathematics.

Our Solution: Define varieties using equations of special format

I Coordinates (x , y
1

, y
2

, . . . , yp)

I Equation at each edge of tree; at level i :

yi = a
1

y
1

+ · · · ai�1

yi�1

+ ai fp+1�i (x)

fj(x) = monic poly in Fq[x] of degree p + j

Construction of an Edifice

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are
low-degree surfaces, and so on.

Concern: Determining “cardinality” of algebraic variety over finite field is
the stu↵ of di�cult mathematics.

Our Solution: Define varieties using equations of special format

I Coordinates (x , y
1

, y
2

, . . . , yp)

I Equation at each edge of tree; at level i :

yi = a
1

y
1

+ · · · ai�1

yi�1

+ ai fp+1�i (x)

fj(x) = monic poly in Fq[x] of degree p + j

I Variety Xu defined by equations on root-to-u path

Construction of an Edifice

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are
low-degree surfaces, and so on.

Concern: Determining “cardinality” of algebraic variety over finite field is
the stu↵ of di�cult mathematics.

Our Solution: Define varieties using equations of special format

I Coordinates (x , y
1

, y
2

, . . . , yp)

I Equation at each edge of tree; at level i :

yi = a
1

y
1

+ · · · ai�1

yi�1

+ ai fp+1�i (x)

fj(x) = monic poly in Fq[x] of degree p + j

Cardinality bound via much simpler mathematics.

I Schwartz-Zippel lemma

I Linear independence arguments via row reduction

Recap: Related Work and Our Results

Upper bounds (p passes, S space, ↵-approximation):

I p = 1, S = eO(n),↵ = O(
p
n) [Emek-Rosén’14]

I p = O(log n), S = eO(n),↵ = O(log n) [Cormode-Karlo↵-Wirth’10]

I S = eO(mn1/⌦(log p)),↵ = O(p) [Demaine-Indyk-Mahabadi-Vakilian’14]

I S = eO(mn1/⌦(p)),↵ = O(p) [Indyk-Mahabadi-Vakilian’16]

I S = eO(n),↵ = O(pn1/(p+1)) [this work]

Lower bounds:

I p = 1, S = eO(n)) ↵ = ⌦(n1/2��) [Emek-Rosén’14]

I ↵ < 1

2

log
2

n) S = ⌦(m) [Nisan’02]

I ↵ = O(1), deterministic) S = ⌦(mn) [Demaine-I-M-V’14]

I ↵ = 1) S = e⌦(n1+1/(2(p+1))) [Indyk-Mahabadi-Vakilian’16]

I p = 1,↵ = 3

2

) S = ⌦(mn) [Indyk-Mahabadi-Vakilian’16]

I S = eO(n)) ↵ = ⌦(n1/(p+1)/p2) [this work]

Final Remarks

Combinatorial optimisation: old topic
but relatively new territory for data stream algorithms

I Potential for many new research questions

I Fuller understanding of possible tradeo↵s for set cover?

