Streaming Set Cover

Amit Chakrabarti

Dartmouth College

Joint work with A. Wirth

Sublinear Algorithms Workshop JHU, Jan 2016

Combinatorial Optimisation Problems

- ▶ 1950s, 60s: Operations research
- ▶ 1970s, 80s: NP-hardness
- ▶ 1990s, 2000s: Approximation algorithms, hardness of approximation
- ▶ 2010s: Space-constrained settings, e.g., streaming

Set Cover with Sets Streamed

- ▶ Input: stream of *m* sets, each \subseteq [*n*]
- ▶ Goal: cover universe [n] using as few sets as possible

Set Cover with Sets Streamed

- ▶ Input: stream of *m* sets, each \subseteq [*n*]
- ▶ Goal: cover universe [n] using as few sets as possible
 - Use sublinear (in *m*) space
 - Ideally O(n polylog n) ... "semi-streaming"
 - Need $\Omega(n \log n)$ space to *certify*: for each item, who covered it?

Think $m \ge n$

Background and Related Work

Offline results:

- Best possible poly-time approx (1 ± o(1)) ln n [Johnson'74] [Slavík'96] [Lund-Yannakakis'94] [Dinur-Steurer'14]
- Simple greedy strategy gets In *n*-approx:
 - Repeatedly add set with highest contribution
 - Contribution := number of *new* elements covered

Background and Related Work

Offline results:

- ▶ Best possible poly-time approx $(1 \pm o(1)) \ln n$ [Johnson'74] [Slavík'96] [Lund-Yannakakis'94] [Dinur-Steurer'14]
- Simple greedy strategy gets In *n*-approx:
 - Repeatedly add set with highest contribution
 - Contribution := number of *new* elements covered

Streaming results:

- One pass semi-streaming $O(\sqrt{n})$ approx
- This is best possible in one semi-streaming pass [Emek-Rosén'14]
- $O(\log n)$ semi-streaming passes allow $O(\log n)$ approx

[Saha-Getoor'09] [Cormode-Karloff-Wirth'10]

Background and Related Work

Offline results:

- ▶ Best possible poly-time approx $(1 \pm o(1)) \ln n$ [Johnson'74] [Slavík'96] [Lund-Yannakakis'94] [Dinur-Steurer'14]
- Simple greedy strategy gets In *n*-approx:
 - Repeatedly add set with highest contribution
 - Contribution := number of *new* elements covered

Streaming results:

- One pass semi-streaming $O(\sqrt{n})$ approx
- This is best possible in one semi-streaming pass [Emek-Rosén'14]
- $O(\log n)$ semi-streaming passes allow $O(\log n)$ approx

[Saha-Getoor'09] [Cormode-Karloff-Wirth'10]

There's more: wait till the end!

[Nisan'02] [Demaine-Indyk-Mahabadi-Vakilian'14] [Indyk-M-V'16]

Related Work: In Greater Detail

Algorithms using p passes, S space, giving α -approximation Upper bounds:

• $\alpha = O(1)$, deterministic $\Rightarrow S = \Omega(mn)$

 $\bullet \ \alpha = 1 \Rightarrow S = \widetilde{\Omega}(n^{1+1/(2(p+1))})$

 \blacktriangleright $p = 1, \alpha = \frac{3}{2} \Rightarrow S = \Omega(mn)$

- \blacktriangleright $p = 1, S = \widetilde{O}(n), \alpha = O(\sqrt{n})$ [Emek-Rosén'14] ▶ $p = O(\log n), S = O(n), \alpha = O(\log n)$ [Cormode-Karloff-Wirth'10] • $S = \widetilde{O}(mn^{1/\Omega(\log p)}), \alpha = O(p)$ [Demaine-Indyk-Mahabadi-Vakilian'14] • $S = \widetilde{O}(mn^{1/\Omega(p)}), \alpha = O(p)$ [Indyk-Mahabadi-Vakilian'16] Lower bounds:
- \blacktriangleright $p = 1, S = \widetilde{O}(n) \Rightarrow \alpha = \Omega(n^{1/2-\delta})$ [Emek-Rosén'14] $a < \frac{1}{2} \log_2 n \Rightarrow S = \Omega(m)$
 - [Nisan'02]
 - [Demaine-I-M-V'14]
 - [Indyk-Mahabadi-Vakilian'16]
 - [Indyk-Mahabadi-Vakilian'16]

Upper bound

- With p passes, semi-streaming space, get $O(n^{1/(p+1)})$ -approx
- Algorithm giving this approx based on very simple heuristic
- Deterministic

Lower bound

- Randomised
- ▶ In *p* passes, semi-streaming space, need $\Omega(n^{1/(p+1)}/p^2)$ approx
- Upper bound tight for all constant p
- Semi-streaming $O(\log n)$ approx requires $\Omega(\log n / \log \log n)$ passes

Progressive Greedy Algorithm

Recall simple greedy:

- Repeatedly add set with highest contribution
- Contribution := number of new elements covered

Progressive greedy:

- ▶ In first pass, add all sets with contribution $\ge n^{1-1/p}$
- ▶ In second pass, add all sets with contribution $\ge n^{1-2/p}$

▶ ...

- ► ...
- ▶ In *p*th pass, add all sets with contribution ≥ 1

Progressive Greedy Algorithm

- 1: procedure GREEDYPASS(stream σ , threshold τ , set Sol, array Coverer)
- for each set S_i in σ do 2:
- 3.
- if $|S_i \setminus C| > \tau$ then 4:

 $C \leftarrow \{x : Coverer[x] \neq 0\}$ be the already covered elements \triangleright set's contribution \geq threshold

- 5: $Sol \leftarrow Sol \cup \{i\}$
- for each $x \in S_i \setminus C$ do Coverer $[x] \leftarrow i$ 6:
- 7: procedure PROGGREEDYNAIVE(stream σ , integer n, integer p > 1)
- *Coverer*[1...*n*] $\leftarrow 0^n$; *Sol* $\leftarrow \emptyset$ 8:
- for j = 1 to p do GREEDYPASS(σ , $n^{1-j/p}$, Sol, Coverer) 9:
- 10: output Sol, Coverer

Consider p = 2 passes

- First pass: admit sets iff contribution $\geq \sqrt{n}$
- Thus, first pass adds at most \sqrt{n} sets to Sol

Consider p = 2 passes

- First pass: admit sets iff contribution $\geq \sqrt{n}$
- Thus, first pass adds at most \sqrt{n} sets to *Sol*
- ▶ Second pass: *Opt* covers remaining items with sets of contrib $\leq \sqrt{n}$
- ▶ Thus, *Sol* will cover the same using $\leq \sqrt{n}|Opt|$ sets

Consider p = 2 passes

- First pass: admit sets iff contribution $\geq \sqrt{n}$
- Thus, first pass adds at most \sqrt{n} sets to *Sol*
- ▶ Second pass: *Opt* covers remaining items with sets of contrib $\leq \sqrt{n}$
- ▶ Thus, *Sol* will cover the same using $\leq \sqrt{n}|Opt|$ sets

But wait, this uses *two* passes for $O(\sqrt{n})$ approx!

Consider p = 2 passes

- First pass: admit sets iff contribution $\geq \sqrt{n}$
- Thus, first pass adds at most \sqrt{n} sets to Sol
- Second pass: *Opt* covers remaining items with sets of contrib $\leq \sqrt{n}$
- ▶ Thus, Sol will cover the same using $\leq \sqrt{n}|Opt|$ sets

But wait, this uses *two* passes for $O(\sqrt{n})$ approx!

- ▶ Logic of last pass especially simple: add set if positive contrib
- Can fold this into previous one

Final result: *p* passes, $O(n^{1/(p+1)})$ -approx

Lower Bound Idea: One Pass

Reduce from INDEX: Alice gets $x \in \{0, 1\}^n$, Bob gets $j \in [n]$, Alice talks to Bob, who must determine x_i . Requires $\Omega(n)$ -bit message. [Ablayev'96]

Lower Bound Idea: One Pass

Reduce from INDEX: Alice gets $x \in \{0, 1\}^n$, Bob gets $j \in [n]$, Alice talks to Bob, who must determine x_i . Requires $\Omega(n)$ -bit message. [Ablayev'96]

If Alice has Bob's missing line, then |Opt| = 2, else $|Opt| \ge q$

Lower Bound Idea: One Pass

Reduce from INDEX: Alice gets $x \in \{0, 1\}^n$, Bob gets $j \in [n]$, Alice talks to Bob, who must determine x_i . Requires $\Omega(n)$ -bit message. [Ablayev'96]

If Alice has Bob's *missing line*, then |Opt| = 2, else $|Opt| \ge q$ So $\Theta(\sqrt{n})$ approx requires $\Omega(\# \text{lines}) = \Omega(q^2) = \Omega(n)$ space

Goal: *p* semi-streaming passes require $\Omega(n^{1/(p+1)})$ approx

► Handle more passes

Increase space bound

Goal: *p* semi-streaming passes require $\Omega(n^{1/(p+1)})$ approx

- ► Handle more passes
 - Can't start from INDEX, need harder communication problem
- Increase space bound
 - Need $\omega(n)$ to rule out semi-streaming

Tree Pointer Jumping

Multiplayer game $TPJ_{p+1,t}$ defined on complete (p+1)-level *t*-ary tree

- Pointer to child at each internal level-i node (known to Player i)
- Bit at each leaf node (known to Player 1)
- Goal: output (whp) bit reached by following pointers from root

```
Model: p rounds of communication
Each round:
PLAYER<sub>1</sub>, PLAYER<sub>2</sub>, ..., PLAYER<sub>p+1</sub>
```


Theorem: Longest message is $\Omega(t/p^2)$ bits

[C.-Cormode-McGregor'08]

Two passes, reducing from $\text{TPJ}_{3,t}$, using universe \mathbb{F}_q^3 (so $n = q^3$)

- ▶ Three players: Alice, Bob, Carol
 - Alice encodes leaf bits: lines in \mathbb{F}_q^3
 - Bob encodes lower pointers: planes in \mathbb{F}_q^3 with a line deleted
 - Carol encodes root pointer: \mathbb{F}_q^3 with a plane deleted

Two passes, reducing from $\text{TPJ}_{3,t}$, using universe \mathbb{F}_q^3 (so $n = q^3$)

- ▶ Three players: Alice, Bob, Carol
 - Alice encodes leaf bits: lines in \mathbb{F}_q^3
 - Bob encodes lower pointers: planes in \mathbb{F}_q^3 with a line deleted
 - Carol encodes root pointer: \mathbb{F}_q^3 with a plane deleted
- ▶ (Carol set) \cup (corresp. Bob set) = $\mathbb{F}_q^3 \setminus$ (a line)
- ▶ If Alice has the missing line, then |Opt| = 3, else $\Rightarrow |Opt| \ge q$ (*)

Two passes, reducing from $\text{TPJ}_{3,t}$, using universe \mathbb{F}_q^3 (so $n = q^3$)

- ▶ Three players: Alice, Bob, Carol
 - Alice encodes leaf bits: lines in \mathbb{F}_q^3
 - Bob encodes lower pointers: planes in \mathbb{F}_q^3 with a line deleted
 - Carol encodes root pointer: \mathbb{F}_q^3 with a plane deleted
- ▶ (Carol set) \cup (corresp. Bob set) = $\mathbb{F}_q^3 \setminus$ (a line)
- ▶ If Alice has the missing line, then |Opt| = 3, else $\Rightarrow |Opt| \ge q$ (*) How good is this?

Two passes, reducing from $\text{TPJ}_{3,t}$, using universe \mathbb{F}_q^3 (so $n = q^3$)

- ▶ Three players: Alice, Bob, Carol
 - Alice encodes leaf bits: lines in \mathbb{F}_q^3
 - Bob encodes lower pointers: planes in \mathbb{F}_q^3 with a line deleted
 - Carol encodes root pointer: \mathbb{F}_q^3 with a plane deleted
- ▶ (Carol set) \cup (corresp. Bob set) = $\mathbb{F}_q^3 \setminus$ (a line)
- ▶ If Alice has the missing line, then |Opt| = 3, else $\Rightarrow |Opt| \ge q$ (*)

How good is this?

► Each pointer encoded by Bob can choose from only as many leaves as there are lines in a specific plane ⇒ t = Θ(q²) = Θ(n^{2/3})

Two passes, reducing from $\text{TPJ}_{3,t}$, using universe \mathbb{F}_q^3 (so $n = q^3$)

- ▶ Three players: Alice, Bob, Carol
 - Alice encodes leaf bits: lines in \mathbb{F}_q^3
 - Bob encodes lower pointers: planes in \mathbb{F}_q^3 with a line deleted
 - Carol encodes root pointer: \mathbb{F}_q^3 with a plane deleted
- ▶ (Carol set) \cup (corresp. Bob set) = $\mathbb{F}_q^3 \setminus$ (a line)
- ▶ If Alice has the missing line, then |Opt| = 3, else $\Rightarrow |Opt| \ge q$ (*)

How good is this?

- ► Each pointer encoded by Bob can choose from only as many leaves as there are lines in a specific plane ⇒ t = Θ(q²) = Θ(n^{2/3})
- Implies space $\Omega(n^{2/3})$ for approx $< q/3 = \Theta(n^{1/3})$

Too few lines in a plane...

Too few lines in a plane... increase the degree!

Edifices

Edifices

Edifices

- Universe \mathbb{F}_{q}^{p+1}
- ► Variety X_u at node u
- u above v $\implies X_u \supseteq X_v$
- Leaf z with bit = 1 encoded as set X_z
- If player 1 has the missing variety, then |Opt| = p + 1, else |Opt| ≥ q/(2p)

Construction of an Edifice

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are low-degree surfaces, and so on.

Concern: Determining "cardinality" of algebraic variety over finite field is the stuff of difficult mathematics.

Construction of an Edifice

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are low-degree surfaces, and so on.

Concern: Determining "cardinality" of algebraic variety over finite field is the stuff of difficult mathematics.

Our Solution: Define varieties using equations of special format

- Coordinates $(x, y_1, y_2, \ldots, y_p)$
- Equation at each edge of tree; at level i:

 $y_i = a_1 y_1 + \cdots + a_{i-1} y_{i-1} + a_i f_{p+1-i}(x)$ $f_j(x) = \text{monic poly in } \mathbb{F}_q[x] \text{ of degree } p + j$

• Variety X_u defined by equations on root-to-u path

Construction of an Edifice

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are low-degree surfaces, and so on.

Concern: Determining "cardinality" of algebraic variety over finite field is the stuff of difficult mathematics.

Our Solution: Define varieties using equations of special format

- Coordinates $(x, y_1, y_2, \ldots, y_p)$
- Equation at each edge of tree; at level i:

 $y_i = a_1 y_1 + \cdots + a_{i-1} y_{i-1} + a_i f_{p+1-i}(x)$ $f_j(x) = \text{monic poly in } \mathbb{F}_q[x] \text{ of degree } p + j$

Cardinality bound via much simpler mathematics.

- Schwartz-Zippel lemma
- Linear independence arguments via row reduction

Recap: Related Work and Our Results

Upper bounds (*p* passes, *S* space, α -approximation):

▶
$$p = 1, S = \widetilde{O}(n), \alpha = O(\sqrt{n})$$
 [Emek-Rosén'14]
▶ $p = O(\log n), S = \widetilde{O}(n), \alpha = O(\log n)$ [Cormode-Karloff-Wirth'10]
▶ $S = \widetilde{O}(mn^{1/\Omega(p)}), \alpha = O(p)$ [Demaine-Indyk-Mahabadi-Vakilian'14]
▶ $S = \widetilde{O}(mn^{1/\Omega(p)}), \alpha = O(p)$ [Indyk-Mahabadi-Vakilian'16]
▶ $S = \widetilde{O}(n), \alpha = O(pn^{1/(p+1)})$ [this work]
Lower bounds:
▶ $p = 1, S = \widetilde{O}(n) \Rightarrow \alpha = \Omega(n^{1/2-\delta})$ [Emek-Rosén'14]
▶ $\alpha < \frac{1}{2} \log_2 n \Rightarrow S = \Omega(m)$ [Nisan'02]
▶ $\alpha = O(1),$ deterministic $\Rightarrow S = \Omega(mn)$ [Demaine-I-M-V'14]
▶ $\alpha = 1 \Rightarrow S = \widetilde{\Omega}(n^{1+1/(2(p+1))})$ [Indyk-Mahabadi-Vakilian'16]
▶ $p = 1, \alpha = \frac{3}{2} \Rightarrow S = \Omega(mn)$ [Indyk-Mahabadi-Vakilian'16]

•
$$S = \widetilde{O}(n) \Rightarrow \alpha = \Omega(n^{1/(p+1)}/p^2)$$

[this work]

Final Remarks

Combinatorial optimisation: old topic but relatively new territory for data stream algorithms

- Potential for many new research questions
- Fuller understanding of possible tradeoffs for set cover?