Streaming Set Cover

Amit Chakrabarti

Dartmouth College

Joint work with A. Wirth

Sublinear Algorithms Workshop
JHU, Jan 2016

Combinatorial Optimisation Problems

- 1950s, 60s: Operations research
- 1970s, 80s: NP-hardness
- 1990s, 2000s: Approximation algorithms, hardness of approximation
- 2010s: Space-constrained settings, e.g., streaming

Set Cover

Set Cover

Set Cover with Sets Streamed

- Input: stream of m sets, each $\subseteq[n]$
- Goal: cover universe [n] using as few sets as possible

Set Cover with Sets Streamed

- Input: stream of m sets, each $\subseteq[n]$
- Goal: cover universe [n] using as few sets as possible
- Use sublinear (in m) space
- Ideally $O(n$ polylog $n)$... "semi-streaming"
- Need $\Omega(n \log n)$ space to certify: for each item, who covered it?

Think $m \geq n$

Background and Related Work

Offline results:

- Best possible poly-time approx $(1 \pm o(1)) \ln n \quad[J o h n s o n ' 74]$ [Slavík'96] [Lund-Yannakakis'94] [Dinur-Steurer'14]
- Simple greedy strategy gets $\ln n$-approx:
- Repeatedly add set with highest contribution
- Contribution := number of new elements covered

Background and Related Work

Offline results:

- Best possible poly-time approx $(1 \pm o(1)) \ln n \quad[J o h n s o n ' 74]$ [Slavík'96] [Lund-Yannakakis'94] [Dinur-Steurer'14]
- Simple greedy strategy gets $\ln n$-approx:
- Repeatedly add set with highest contribution
- Contribution := number of new elements covered

Streaming results:

- One pass semi-streaming $O(\sqrt{n})$ approx
- This is best possible in one semi-streaming pass
- $O(\log n)$ semi-streaming passes allow $O(\log n)$ approx [Saha-Getoor'09] [Cormode-Karloff-Wirth'10]

Background and Related Work

Offline results:

- Best possible poly-time approx $(1 \pm o(1)) \ln n \quad[J o h n s o n ' 74]$ [Slavík'96] [Lund-Yannakakis'94] [Dinur-Steurer'14]
- Simple greedy strategy gets $\ln n$-approx:
- Repeatedly add set with highest contribution
- Contribution := number of new elements covered

Streaming results:

- One pass semi-streaming $O(\sqrt{n})$ approx
- This is best possible in one semi-streaming pass
- $O(\log n)$ semi-streaming passes allow $O(\log n)$ approx [Saha-Getoor'09] [Cormode-Karloff-Wirth'10]
- There's more: wait till the end!
[Nisan'02] [Demaine-Indyk-Mahabadi-Vakilian'14] [Indyk-M-V'16]

Related Work: In Greater Detail

Algorithms using p passes, S space, giving α-approximation Upper bounds:

- $p=1, S=\widetilde{O}(n), \alpha=O(\sqrt{n})$
[Emek-Rosén'14]
- $p=O(\log n), S=\widetilde{O}(n), \alpha=O(\log n)$
[Cormode-Karloff-Wirth'10]
- $S=\widetilde{O}\left(m n^{1 / \Omega(\log p)}\right), \alpha=O(p) \quad$ [Demaine-Indyk-Mahabadi-Vakilian'14]
- $S=\widetilde{O}\left(m n^{1 / \Omega(p)}\right), \alpha=O(p)$
[Indyk-Mahabadi-Vakilian'16]
Lower bounds:
- $p=1, S=\widetilde{O}(n) \Rightarrow \alpha=\Omega\left(n^{1 / 2-\delta}\right)$
- $\alpha<\frac{1}{2} \log _{2} n \Rightarrow S=\Omega(m)$
- $\alpha=O(1)$, deterministic $\Rightarrow S=\Omega(m n)$
- $\alpha=1 \Rightarrow S=\widetilde{\Omega}\left(n^{1+1 /(2(p+1))}\right)$
- $p=1, \alpha=\frac{3}{2} \Rightarrow S=\Omega(m n)$
[Demaine-I-M-V'14]
[Emek-Rosén'14]
[Nisan'02]
[Indyk-Mahabadi-Vakilian'16]
[Indyk-Mahabadi-Vakilian'16]

Our Results

Upper bound

- With p passes, semi-streaming space, get $O\left(n^{1 /(p+1)}\right)$-approx
- Algorithm giving this approx based on very simple heuristic
- Deterministic

Lower bound

- Randomised
- In p passes, semi-streaming space, need $\Omega\left(n^{1 /(p+1)} / p^{2}\right)$ approx
- Upper bound tight for all constant p
- Semi-streaming $O(\log n)$ approx requires $\Omega(\log n / \log \log n)$ passes

Progressive Greedy Algorithm

Recall simple greedy:

- Repeatedly add set with highest contribution
- Contribution := number of new elements covered

Progressive greedy:

- In first pass, add all sets with contribution $\geq n^{1-1 / p}$
- In second pass, add all sets with contribution $\geq n^{1-2 / p}$
- ...
- ...
- In p th pass, add all sets with contribution ≥ 1

Progressive Greedy Algorithm

```
procedure GreedyPass(stream \(\sigma\), threshold \(\tau\), set Sol, array Coverer)
    for each set \(S_{i}\) in \(\sigma\) do
        \(C \leftarrow\{x\) : Coverer \([x] \neq 0\} \quad \triangleright\) the already covered elements
        if \(\left|S_{i} \backslash C\right| \geq \tau\) then \(\quad \triangleright\) set's contribution \(\geq\) threshold
        Sol \(\leftarrow\) Sol \(\cup\{i\}\)
        for each \(x \in S_{i} \backslash C\) do Coverer \([x] \leftarrow i\)
```

 procedure ProgGreedyNaive(stream \(\sigma\), integer \(n\), integer \(p \geq 1\))
 Coverer \([1 \ldots n] \leftarrow 0^{n} ; \quad\) Sol \(\leftarrow \varnothing\)
 for \(j=1\) to \(p\) do \(\operatorname{GreedyPass}\left(\sigma, n^{1-j / p}\right.\), Sol, Coverer)
 output Sol, Coverer

Progressive Greedy: Analysis Idea

Consider $p=2$ passes

- First pass: admit sets iff contribution $\geq \sqrt{n}$
- Thus, first pass adds at most \sqrt{n} sets to Sol

Progressive Greedy: Analysis Idea

Consider $p=2$ passes

- First pass: admit sets iff contribution $\geq \sqrt{n}$
- Thus, first pass adds at most \sqrt{n} sets to Sol
- Second pass: Opt covers remaining items with sets of contrib $\leq \sqrt{n}$
- Thus, Sol will cover the same using $\leq \sqrt{n}|O p t|$ sets

Progressive Greedy: Analysis Idea

Consider $p=2$ passes

- First pass: admit sets iff contribution $\geq \sqrt{n}$
- Thus, first pass adds at most \sqrt{n} sets to Sol
- Second pass: Opt covers remaining items with sets of contrib $\leq \sqrt{n}$
- Thus, Sol will cover the same using $\leq \sqrt{n}|O p t|$ sets

But wait, this uses two passes for $O(\sqrt{n})$ approx!

Progressive Greedy: Analysis Idea

Consider $p=2$ passes

- First pass: admit sets iff contribution $\geq \sqrt{n}$
- Thus, first pass adds at most \sqrt{n} sets to Sol
- Second pass: Opt covers remaining items with sets of contrib $\leq \sqrt{n}$
- Thus, Sol will cover the same using $\leq \sqrt{n}|O p t|$ sets

But wait, this uses two passes for $O(\sqrt{n})$ approx!

- Logic of last pass especially simple: add set if positive contrib
- Can fold this into previous one

Final result: p passes, $O\left(n^{1 /(p+1)}\right)$-approx

Lower Bound Idea: One Pass

Reduce from index: Alice gets $x \in\{0,1\}^{n}$, Bob gets $j \in[n]$, Alice talks to Bob, who must determine x_{j}. Requires $\Omega(n)$-bit message. [Ablayev'96]

Alice's sets

Bob's set

Universe \mathbb{F}_{q}^{2}
$n=q^{2}$

Lower Bound Idea: One Pass

Reduce from index: Alice gets $x \in\{0,1\}^{n}$, Bob gets $j \in[n]$, Alice talks to Bob, who must determine x_{j}. Requires $\Omega(n)$-bit message. [Ablayev'96]

Alice's sets

Universe \mathbb{F}_{q}^{2}
$n=q^{2}$

If Alice has Bob's missing line, then $|O p t|=2$, else $|O p t| \geq q$

Lower Bound Idea: One Pass

Reduce from index: Alice gets $x \in\{0,1\}^{n}$, Bob gets $j \in[n]$, Alice talks to Bob, who must determine x_{j}. Requires $\Omega(n)$-bit message. [Ablayev'96]

Alice's sets

Bob's set

Universe \mathbb{F}_{q}^{2}
$n=q^{2}$

If Alice has Bob's missing line, then $|O p t|=2$, else $|O p t| \geq q$ So $\Theta(\sqrt{n})$ approx requires $\Omega(\#$ lines $)=\Omega\left(q^{2}\right)=\Omega(n)$ space

Next Steps

Goal: p semi-streaming passes require $\Omega\left(n^{1 /(p+1)}\right)$ approx

- Handle more passes
- Increase space bound

Next Steps

Goal: p semi-streaming passes require $\Omega\left(n^{1 /(p+1)}\right)$ approx

- Handle more passes
- Can't start from index, need harder communication problem
- Increase space bound
- Need $\omega(n)$ to rule out semi-streaming

Tree Pointer Jumping

Multiplayer game $\operatorname{TPJ}_{p+1, t}$ defined on complete $(p+1)$-level t-ary tree

- Pointer to child at each internal level-i node (known to Player i)
- Bit at each leaf node (known to Player 1)
- Goal: output (whp) bit reached by following pointers from root

Model: p rounds of communication
Each round:
PLAYER $_{1}$, PLAYER $_{2}, \ldots$, PLAYER $_{p+1}$

Theorem: Longest message is $\Omega\left(t / p^{2}\right)$ bits
[C.-Cormode-McGregor'08]

Multi-Pass Set Cover: First Attempt

Two passes, reducing from $\mathrm{TPJ}_{3, t}$, using universe \mathbb{F}_{q}^{3} (so $n=q^{3}$)

- Three players: Alice, Bob, Carol
- Alice encodes leaf bits: lines in \mathbb{F}_{q}^{3}
- Bob encodes lower pointers: planes in \mathbb{F}_{q}^{3} with a line deleted
- Carol encodes root pointer: \mathbb{F}_{q}^{3} with a plane deleted

Multi-Pass Set Cover: First Attempt

Two passes, reducing from $\operatorname{TPJ}_{3, t}$, using universe \mathbb{F}_{q}^{3} (so $n=q^{3}$)

- Three players: Alice, Bob, Carol
- Alice encodes leaf bits: lines in \mathbb{F}_{q}^{3}
- Bob encodes lower pointers: planes in \mathbb{F}_{q}^{3} with a line deleted
- Carol encodes root pointer: \mathbb{F}_{q}^{3} with a plane deleted
- (Carol set) \cup (corresp. Bob set) $=\mathbb{F}_{q}^{3} \backslash$ (a line)
- If Alice has the missing line, then $|O p t|=3$, else $\Rightarrow|O p t| \geq q$

Multi-Pass Set Cover: First Attempt

Two passes, reducing from $\operatorname{TPJ}_{3, t}$, using universe \mathbb{F}_{q}^{3} (so $n=q^{3}$)

- Three players: Alice, Bob, Carol
- Alice encodes leaf bits: lines in \mathbb{F}_{q}^{3}
- Bob encodes lower pointers: planes in \mathbb{F}_{q}^{3} with a line deleted
- Carol encodes root pointer: \mathbb{F}_{q}^{3} with a plane deleted
- (Carol set) \cup (corresp. Bob set) $=\mathbb{F}_{q}^{3} \backslash$ (a line)
- If Alice has the missing line, then $|O p t|=3$, else $\Rightarrow|O p t| \geq q$

How good is this?

Multi-Pass Set Cover: First Attempt

Two passes, reducing from $\mathrm{TPJ}_{3, t}$, using universe \mathbb{F}_{q}^{3} (so $n=q^{3}$)

- Three players: Alice, Bob, Carol
- Alice encodes leaf bits: lines in \mathbb{F}_{q}^{3}
- Bob encodes lower pointers: planes in \mathbb{F}_{q}^{3} with a line deleted
- Carol encodes root pointer: \mathbb{F}_{q}^{3} with a plane deleted
- (Carol set) $\cup($ corresp. Bob set $)=\mathbb{F}_{q}^{3} \backslash$ (a line)
- If Alice has the missing line, then $|O p t|=3$, else $\Rightarrow|O p t| \geq q$

How good is this?

- Each pointer encoded by Bob can choose from only as many leaves as there are lines in a specific plane $\Longrightarrow t=\Theta\left(q^{2}\right)=\Theta\left(n^{2 / 3}\right)$

Multi-Pass Set Cover: First Attempt

Two passes, reducing from $\mathrm{TPJ}_{3, t}$, using universe \mathbb{F}_{q}^{3} (so $n=q^{3}$)

- Three players: Alice, Bob, Carol
- Alice encodes leaf bits: lines in \mathbb{F}_{q}^{3}
- Bob encodes lower pointers: planes in \mathbb{F}_{q}^{3} with a line deleted
- Carol encodes root pointer: \mathbb{F}_{q}^{3} with a plane deleted
- (Carol set) $\cup($ corresp. Bob set $)=\mathbb{F}_{q}^{3} \backslash$ (a line)
- If Alice has the missing line, then $|O p t|=3$, else $\Rightarrow|O p t| \geq q$

How good is this?

- Each pointer encoded by Bob can choose from only as many leaves as there are lines in a specific plane $\Longrightarrow t=\Theta\left(q^{2}\right)=\Theta\left(n^{2 / 3}\right)$
- Implies space $\Omega\left(n^{2 / 3}\right)$ for approx $<q / 3=\Theta\left(n^{1 / 3}\right)$

Too few lines in a plane...

Insight

Too few lines in a plane... increase the degree!

Edifices

Basic idea: Generalise affine plane to high-rank Buekenhout geometry

Edifices

Basic idea: Generalise affine plane to high-rank Buekenhout geometry

- Universe \mathbb{F}_{q}^{p+1}
- Variety X_{u} at node u
- u above v
$\Longrightarrow X_{u} \supseteq X_{v}$

Edifices

Basic idea: Generalise affine plane to high-rank Buekenhout geometry

- Universe \mathbb{F}_{q}^{p+1}
- Variety X_{u} at node u
- u above v

$$
\Longrightarrow X_{u} \supseteq X_{v}
$$

- Leaf z with bit $=1$ encoded as set X_{z}

Edifices

Basic idea: Generalise affine plane to high-rank Buekenhout geometry

- Universe \mathbb{F}_{q}^{p+1}
- Variety X_{u} at node u
- u above v

$$
\Longrightarrow X_{u} \supseteq X_{v}
$$

- Leaf z with bit $=1$ encoded as set X_{z}
- If player 1 has the missing variety, then $|O p t|=p+1$, else $|O p t| \geq q /(2 p)$

Construction of an Edifice

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are low-degree surfaces, and so on.

Concern: Determining "cardinality" of algebraic variety over finite field is the stuff of difficult mathematics.

Construction of an Edifice

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are low-degree surfaces, and so on.

Concern: Determining "cardinality" of algebraic variety over finite field is the stuff of difficult mathematics.

Our Solution: Define varieties using equations of special format

- Coordinates $\left(x, y_{1}, y_{2}, \ldots, y_{p}\right)$
- Equation at each edge of tree; at level i :

$$
\begin{aligned}
y_{i} & =a_{1} y_{1}+\cdots a_{i-1} y_{i-1}+a_{i} f_{p+1-i}(x) \\
f_{j}(x) & =\text { monic poly in } \mathbb{F}_{q}[x] \text { of degree } p+j
\end{aligned}
$$

- Variety X_{u} defined by equations on root-to- u path

Construction of an Edifice

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are low-degree surfaces, and so on.

Concern: Determining "cardinality" of algebraic variety over finite field is the stuff of difficult mathematics.

Our Solution: Define varieties using equations of special format

- Coordinates $\left(x, y_{1}, y_{2}, \ldots, y_{p}\right)$
- Equation at each edge of tree; at level i :

$$
\begin{aligned}
y_{i} & =a_{1} y_{1}+\cdots a_{i-1} y_{i-1}+a_{i} f_{p+1-i}(x) \\
f_{j}(x) & =\text { monic poly in } \mathbb{F}_{q}[x] \text { of degree } p+j
\end{aligned}
$$

Cardinality bound via much simpler mathematics.

- Schwartz-Zippel lemma
- Linear independence arguments via row reduction

Recap: Related Work and Our Results

Upper bounds (p passes, S space, α-approximation):

- $p=1, S=\widetilde{O}(n), \alpha=O(\sqrt{n})$ [Emek-Rosén'14]
- $p=O(\log n), S=\widetilde{O}(n), \alpha=O(\log n)$
[Cormode-Karloff-Wirth'10]
- $S=\widetilde{O}\left(m n^{1 / \Omega(\log p)}\right), \alpha=O(p)$
[Demaine-Indyk-Mahabadi-Vakilian'14]
- $S=\widetilde{O}\left(m n^{1 / \Omega(p)}\right), \alpha=O(p)$
- $S=\widetilde{O}(n), \alpha=O\left(p n^{1 /(p+1)}\right)$
[Indyk-Mahabadi-Vakilian'16]
[this work]
Lower bounds:
- $p=1, S=\widetilde{O}(n) \Rightarrow \alpha=\Omega\left(n^{1 / 2-\delta}\right)$
- $\alpha<\frac{1}{2} \log _{2} n \Rightarrow S=\Omega(m)$
[Emek-Rosén'14]
- $\alpha=O(1)$, deterministic $\Rightarrow S=\Omega(m n)$
[Demaine-I-M-V'14]
- $\alpha=1 \Rightarrow S=\widetilde{\Omega}\left(n^{1+1 /(2(p+1))}\right)$
- $p=1, \alpha=\frac{3}{2} \Rightarrow S=\Omega(m n)$
[Indyk-Mahabadi-Vakilian'16]
[Indyk-Mahabadi-Vakilian'16]
- $S=\widetilde{O}(n) \Rightarrow \alpha=\Omega\left(n^{1 /(p+1)} / p^{2}\right)$

Final Remarks

Combinatorial optimisation: old topic but relatively new territory for data stream algorithms

- Potential for many new research questions
- Fuller understanding of possible tradeoffs for set cover?

