Streaming Set Cover

Amit Chakrabarti

Dartmouth College

Joint work with A. Wirth

Sublinear Algorithms Workshop
JHU, Jan 2016

Combinatorial Optimisation Problems'

» 1950s, 60s: Operations research
» 1970s, 80s: NP-hardness
> 1990s, 2000s: Approximation algorithms, hardness of approximation

> 2010s: Space-constrained settings, e.g., streaming

(. L] .\ L]
[] L[] L[] .\

A
).

(o . o) o
. . . o)

4R
ey

Set Cover with Sets Streamed'

> Input: stream of m sets, each C [n]

> Goal: cover universe [n] using as few sets as possible

Set Cover with Sets Streamed'

> Input: stream of m sets, each C [n]

> Goal: cover universe [n] using as few sets as possible
e Use sublinear (in m) space
e Ideally O(npolylogn) ... “"semi-streaming”

e Need Q(nlog n) space to certify: for each item, who covered it?

Think m>n

Background and Related Work'

Offline results:
> Best possible poly-time approx (1 + o(1))Inn [Johnson'74] [Slavik'96]
[Lund-Yannakakis'94] [Dinur-Steurer'14]
> Simple greedy strategy gets In n-approx:
e Repeatedly add set with highest contribution

e Contribution := number of new elements covered

Background and Related Work'

Offline results:

> Best possible poly-time approx (1 + o(1))Inn [Johnson'74] [Slavik'96]
[Lund-Yannakakis'94] [Dinur-Steurer'14]

> Simple greedy strategy gets In n-approx:
e Repeatedly add set with highest contribution
e Contribution := number of new elements covered

Streaming results:

» One pass semi-streaming O(+/n) approx
» This is best possible in one semi-streaming pass [Emek-Rosén’14]

> O(log n) semi-streaming passes allow O(log n) approx
[Saha-Getoor'09] [Cormode-Karloff-Wirth'10]

Background and Related Work'

Offline results:

> Best possible poly-time approx (1 + o(1))Inn [Johnson'74] [Slavik'96]
[Lund-Yannakakis'94] [Dinur-Steurer'14]

> Simple greedy strategy gets In n-approx:
e Repeatedly add set with highest contribution
e Contribution := number of new elements covered
Streaming results:
» One pass semi-streaming O(+/n) approx
» This is best possible in one semi-streaming pass [Emek-Rosén’14]

> O(log n) semi-streaming passes allow O(log n) approx
[Saha-Getoor'09] [Cormode-Karloff-Wirth'10]

> There's more: wait till the end!
[Nisan'02] [Demaine-Indyk-Mahabadi-Vakilian'14] [Indyk-M-V'16]

Related Work: In Greater Detail'

Algorithms using p passes, S space, giving a-approximation
Upper bounds:

» p=1,5=0(n),a = O(y/n) [Emek-Rosén’'14]
» p= O(logn),S = O(n),a = O(log n) [Cormode-Karloff-Wirth'10]
» S = O(mn*/eP)) o = O(p) [Demaine-Indyk-Mahabadi-Vakilian'14]
> S = O(mn*/P)) o = O(p) [Indyk-Mahabadi-Vakilian'16]
Lower bounds:
» p=1,5=0(n) = a = Q(n'/29) [Emek-Rosén’14]
> a < ilog,n=5=Q(m) [Nisan’02]
> a = O(1), deterministic = S = Q(mn) [Demaine-1-M-V'14]
> a=1=§=Q(n /) [Indyk-Mahabadi-Vakilian'16]

»p=1la=32=5=Q(mn) [Indyk-Mahabadi-Vakilian'16]

Our Results

Upper bound
» With p passes, semi-streaming space, get O(1 P“)) approx
> Algorithm giving this approx based on very simple heuristic

» Deterministic

Lower bound

> Randomised
» In p passes, semi-streaming space, need Q(n/(P*1) /p?) approx
» Upper bound tight for all constant p

» Semi-streaming O(log n) approx requires Q(log n/ loglog n) passes

Progressive Greedy AIgorithmI

Recall simple greedy:

» Repeatedly add set with highest contribution

» Contribution := number of new elements covered

Progressive greedy:

In first pass, add all sets with contribution > nt=1/p

v

In second pass, add all sets with contribution > n'=2/P

v

> In pth pass, add all sets with contribution > 1

S

© o N

10:

Progressive Greedy AIgorithmI

: procedure GREEDYPASS(stream o, threshold 7, set Sol, array Coverer)
for each set S; in o do
C < {x: Coverer[x] # 0} > the already covered elements
if |Si\ C| > 7 then > set’s contribution > threshold
Sol + Sol U {i}
for each x € S;\ C do Coverer[x] < i

: procedure PROGGREEDYNAIVE(stream o, integer n, integer p > 1)
Coverer[l...n] < 0"; Sol + @

for j =1 to p do GREEDYPASS(o, n' /P, Sol, Coverer)

output Sol, Coverer

Progressive Greedy: Analysis Idea'

Consider p = 2 passes

» First pass: admit sets iff contribution > \/n
> Thus, first pass adds at most /n sets to Sol

Progressive Greedy: Analysis Idea'

Consider p = 2 passes
» First pass: admit sets iff contribution > \/n
> Thus, first pass adds at most /n sets to Sol
> Second pass: Opt covers remaining items with sets of contrib < \/n

> Thus, Sol will cover the same using < /n|Opt| sets

Progressive Greedy: Analysis Idea'

Consider p = 2 passes
» First pass: admit sets iff contribution > \/n
> Thus, first pass adds at most /n sets to Sol
> Second pass: Opt covers remaining items with sets of contrib < \/n

> Thus, Sol will cover the same using < /n|Opt| sets

But wait, this uses two passes for O(+/n) approx!

Progressive Greedy: Analysis Idea'

Consider p = 2 passes

» First pass: admit sets iff contribution > \/n
> Thus, first pass adds at most /n sets to Sol
> Second pass: Opt covers remaining items with sets of contrib < \/n

> Thus, Sol will cover the same using < /n|Opt| sets
But wait, this uses two passes for O(+/n) approx!

» Logic of last pass especially simple: add set if positive contrib

» Can fold this into previous one

Final result: p passes, O(n*/(P*1)-approx

Lower Bound ldea: One Pass'

Reduce from INDEX: Alice gets x € {0,1}", Bob gets j € [n], Alice talks
to Bob, who must determine x;. Requires Q(n)-bit message. [Ablayev'96]

o o o ,: QNI o o o0 (0 o o
(o o o [of @ <e<X0) e o o (0|0 o o
[] [] [] [[) [] (] L] L] [] [] [] L] L]
N\ Universe 2
L] [] [] [) [] [] [] Fl] L[] L] [] [] [] [] L] q
e e 0 0o @ o o o o o |0 0 o o 5
n=4q
o o 0\ (0o @ o o o o o |00 o o
[] [] [] g/ [] [] [] L] [] [] [] L] L] L]

Ali sets Bob’s set

Lower Bound ldea: One Pass'

Reduce from INDEX: Alice gets x € {0,1}", Bob gets j € [n], Alice talks
to Bob, who must determine x;. Requires Q(n)-bit message. [Ablayev'96]

o o o ,: QNI e o o o o o o
(o o o [of @ <e<X0) e o o o o o o
[] [] [] [[) [] (] L] L] [] [] [] L] L]
N\ Universe 2
L] [] [] [) [] [] [] Fl] L[] L] [] [] [] [] L] q
e e 0 0o @ o o e o o o o o o 5
n=4q
o o 0\ (0o @ o o e o o o o o o
[] [] [] g/ [] [] [] L] [] [] [] L] L] L]
Ali sets Bob’s set

If Alice has Bob's missing line, then |Opt| = 2, else |Opt| > q

Lower Bound ldea: One Pass'

Reduce from INDEX: Alice gets x € {0,1}", Bob gets j € [n], Alice talks
to Bob, who must determine x;. Requires Q(n)-bit message. [Ablayev'96]

o o o ,: QNI e o o o o o o
(o o o [of @ <e<X0) e o o o o o o
[] [] [] [[) [] (] L] L] [] [] [] L] L]
N\ Universe 2
L] [] [] [) [] [] [] Fq L[] L] [] [] [] [] L] q
e e 0 0o @ o o e o o o o o o 5
n=4q
o o 0\ (0o @ o o e o o o o o o
[] [] [] g/ [] [] [] L] [] [] [] L] L] L]
Ali sets Bob’s set

If Alice has Bob's missing line, then |Opt| = 2, else |Opt| > q
So ©(y/n) approx requires Q(#lines) = Q(q?) = Q(n) space

Goal: p semi-streaming passes require Q(nl/(P+1)) approx
» Handle more passes

» Increase space bound

Goal: p semi-streaming passes require Q(nl/(P+1)) approx
» Handle more passes
e Can't start from INDEX, need harder communication problem

» Increase space bound

e Need w(n) to rule out semi-streaming

Tree Pointer Jumping'

Multiplayer game TPJp11 ; defined on complete (p + 1)-level t-ary tree

» Pointer to child at each internal level-i node (known to Player /)
> Bit at each leaf node (known to Player 1)

> Goal: output (whp) bit reached by following pointers from root

Level 3
Model: p rounds of communication
Level 2
Each round:
PLAYER;1, PLAYERy, ..., PLAYERp41
Level 1

100111001

Theorem: Longest message is Q(t/p?) bits [C.-Cormode-McGregor'08]

Multi-Pass Set Cover: First Attempt'

Two passes, reducing from TPJs ;, using universe F (so n = g°)
> Three players: Alice, Bob, Carol
e Alice encodes leaf bits: lines in Fz
e Bob encodes lower pointers: planes in IE‘?7 with a line deleted

e Carol encodes root pointer: Fz with a plane deleted

Multi-Pass Set Cover: First Attempt'

Two passes, reducing from TPJs ;, using universe F (so n = g°)
> Three players: Alice, Bob, Carol
o Alice encodes leaf bits: lines in F}
e Bob encodes lower pointers: planes in IE‘?7 with a line deleted
e Carol encodes root pointer: Fz with a plane deleted
> (Carol set) U (corresp. Bob set) = I} \ (a line)
> If Alice has the missing line, then |Opt| = 3, else = |Opt| > q (*)

Multi-Pass Set Cover: First Attempt'

Two passes, reducing from TPJs ;, using universe F (so n = g°)
> Three players: Alice, Bob, Carol
o Alice encodes leaf bits: lines in F}
e Bob encodes lower pointers: planes in IE‘?7 with a line deleted
e Carol encodes root pointer: Fz with a plane deleted
> (Carol set) U (corresp. Bob set) = I} \ (a line)
> If Alice has the missing line, then |Opt| = 3, else = |Opt| > q (*)

How good is this?

Multi-Pass Set Cover: First Attempt'

Two passes, reducing from TPJs ;, using universe F (so n = g°)
> Three players: Alice, Bob, Carol
o Alice encodes leaf bits: lines in F}
e Bob encodes lower pointers: planes in IE‘?7 with a line deleted
e Carol encodes root pointer: Fz with a plane deleted
> (Carol set) U (corresp. Bob set) = I} \ (a line)
> If Alice has the missing line, then |Opt| = 3, else = |Opt| > q (*)
How good is this?

» Each pointer encoded by Bob can choose from only as many leaves as
there are lines in a specific plane = t = ©(q?) = O(n?/3)

Multi-Pass Set Cover: First Attempt'

Two passes, reducing from TPJs ;, using universe F (so n = g°)
> Three players: Alice, Bob, Carol
o Alice encodes leaf bits: lines in F}
e Bob encodes lower pointers: planes in IE‘?7 with a line deleted
e Carol encodes root pointer: Fz with a plane deleted
> (Carol set) U (corresp. Bob set) = I} \ (a line)
> If Alice has the missing line, then |Opt| = 3, else = |Opt| > q (*)
How good is this?

» Each pointer encoded by Bob can choose from only as many leaves as
there are lines in a specific plane = t = ©(q?) = O(n?/3)

» Implies space Q(n?/?) for approx < q/3 = ©(n'/3)

Carol space minus a plane
Bob plane minus a line
Alice line

100111001

Too few lines in a plane...

Carol “space-minus-a plane

space minus a surface

Bob
quadric surface minus a curve

Alice Hline-
FOOTTTOOT cupiccurve

Too few lines in a plane... increase the degree!

Basic idea: Generalise affine plane to high-rank Buekenhout geometry

Xroot = (Fq)p'":l

.................. Pointer encoded
as Xu \ Xy

IXjeafl = g Xz n Xy| = 2p

Basic idea: Generalise affine plane to high-rank Buekenhout geometry

Xroot = (Fq)p'":l

> Universe F2+!
» Variety X, at node u
> u above v

= Xu2 X,

.................. Pointer encoded
as Xu \ Xy

IXjeafl = g Xz n Xy| = 2p

Basic idea: Generalise affine plane to high-rank Buekenhout geometry

Xroot = (Fg)P*1

» Universe Fg“
» Variety X, at node u

> u above v

- X, 2 X,
------------------ Pointer encoded > Leaf z with bit =1
as Xy \ Xy encoded as set X,

[Xleafl = q Xz n Xy| = 2p

Basic idea: Generalise affine plane to high-rank Buekenhout geometry

Xroot = (Fq)p'":l

> Universe F2+!
» Variety X, at node u

> u above v

- X, 2 X,
------------------ Pointer encoded > Leaf z with bit =1
as Xy \ Xy encoded as set X,

» If player 1 has the
missing variety, then
|Opt| = p+1, else
|Opt| > q/(2p)

IXjeafl = g Xz n Xy| = 2p

Construction of an Edifice'

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are
low-degree surfaces, and so on.

Concern: Determining “cardinality” of algebraic variety over finite field is
the stuff of difficult mathematics.

Construction of an Edifice'

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are
low-degree surfaces, and so on.

Concern: Determining “cardinality” of algebraic variety over finite field is
the stuff of difficult mathematics.

Our Solution: Define varieties using equations of special format
» Coordinates (x, y1, Y2, ..., ¥p)
» Equation at each edge of tree; at level i:
yi =aiy1 + - ai—1yi—1 + aifpr1-i(x)

(x) = monic poly in F4[x] of degree p +

» Variety X, defined by equations on root-to-u path

Construction of an Edifice'

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are
low-degree surfaces, and so on.

Concern: Determining “cardinality” of algebraic variety over finite field is
the stuff of difficult mathematics.

Our Solution: Define varieties using equations of special format

> Coordinates (x, y1,¥2,...,¥p)

» Equation at each edge of tree; at level /:

Yi=awy1 + - ai—1yi—1 + aifpr1-i(x)
fi(x) = monic poly in Fg4[x] of degree p+j
Cardinality bound via much simpler mathematics.

» Schwartz-Zippel lemma

> Linear independence arguments via row reduction

Recap: Related Work and Our Results'

Upper bounds (p passes, S space, a-approximation):

» p=1,5=0(n),a = O(/n) [Emek-Rosén’14]
» p= O(logn),S = O(n), = O(log n) [Cormode-Karloff-Wirth'10]
> S = O(mn*/?%eP) o = O(p) [Demaine-Indyk-Mahabadi-Vakilian'14]
> S = O(mn*/¥P) o = O(p) [Indyk-Mahabadi-Vakilian'16]
> S =0(n),a = O(pn*/P+1) [this work]
Lower bounds:
» p=1,5=0(n) = a=Qn"/>7?) [Emek-Rosén’14]
> a<ilog,n=S=Q(m) [Nisan'02]
> «a = O(1), deterministic = S = Q(mn) [Demaine-I-M-V'14]
> a=1=§=Q(ntV/Cr) [Indyk-Mahabadi-Vakilian'16]
»p=la=32=5=Q(mn) [Indyk-Mahabadi-Vakilian'16]

v

S= 5(n) = a = Q(n¥/P) /p?) [this work]

Final Remarks I

Combinatorial optimisation: old topic
but relatively new territory for data stream algorithms

» Potential for many new research questions

> Fuller understanding of possible tradeoffs for set cover?

