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Monotone functions

Definition (Monotone functions; M)

f : {0, 1}n → {0, 1} is monotone if for every x � y ∈ {0, 1}n, it
satisfies f(x) ≤ f(y).
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Functions that are far from monotone

Definition (Functions far from monotone; Mε)

f : {0, 1}n → {0, 1} is ε-far from monotone if for every monotone
function g, we have |{x : f(x) 6= g(x)}| ≥ ε2n.
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Testing monotonicity

vs.

How many queries does a bounded-error randomized algorithm
need to distinguish monotone functions from functions that are
ε-far from monotone?
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Edge tester

Definition (Goldreich, Goldwasser, Lehman, Ron ’98)

The edge tester selects edges (x, y) of the hypercube uniformly at
random and checks that f(x) ≤ f(y).
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Pair testers

Definition (Dodis, Goldreich, Lehman, Raskhodnikova, Ron,
Samorodnitsky ’99)

A pair tester selects comparable pairs x � y ∈ {0, 1}n from some
distribution and checks that f(x) ≤ f(y).
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Another view of pair testers

The query complexity of pair testers can also be viewed as the
solution to the following optimization problem.

minimize
∑
x�y

φx,y

subject to
∑

x�y:f(x)>f(y)

φx,y ≥ 1 ∀f ∈Mε

φx,y ≥ 0 ∀x � y ∈ {0, 1}n
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A different optimization problem

minimize max
f∈M∪Mε

∑
x

∑
y�x

φx,y(f)

2

subject to
∑

x:f(x)6=g(x)

∑
y�x

φx,y(f) · φx,y(g)

 = 1 ∀f ∈M, g ∈Mε.

Corollary (to the Dual adversary bound Theorem)

Every feasible solution to this problem gives an upper bound on
the quantum query complexity for testing monotonicity.
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The dual adversary bound

Theorem (Dual adversary bound)

The quantum query complexity for distinguishing X and Y is the
solution to the optimization problem

minimize max
f∈X∪Y

∑
x

Xx[f, f ]

subject to
∑

x:f(x)6=g(x)

Xx[f, g] = 1 ∀f ∈ X , g ∈ Y

Xx � 0 ∀x ∈ {0, 1}n
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Simplifying the optimization problem

minimize max
f∈M∪Mε

∑
x

∑
j∈[n]

φx,j(f)

2

s.t.
∑

x:f(x)6=g(x)

∑
j∈[n]

φx,j(f) · φx,j(g) = 1 ∀f ∈M, g ∈Mε.

vs.
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First quantum monotonicity tester

For f ∈M, define

φx,j(f) =


1/L if xj = 0 and f(x) = 0

or xj = 1 and f(x) = f(x⊕j) = 1

0 otherwise.

For g ∈Mε, define

φx,j(g) =

{
L/|Eg| if (x, x⊕j) ∈ Eg
0 otherwise

where Eg is the set of edges of the hypercube on which g is
anti-monotone and L is a constant to be fixed later.
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First quantum tester: Correctness

vs.

∑
x:f(x) 6=g(x)

∑
j∈[n]

φx,j(f) · φx,j(g) = |Eg| · (
1

L
· L

|Eg|
) = 1.

11 / 16



First quantum tester: Complexity I

For f ∈M, the objective value of the optimization is

∑
x

∑
j∈[n]

φx,j(f)

2

=
n2n

L2

And for g ∈Mε, it is

∑
x

∑
j∈[n]

φx,j(g)

2

= 2|Eg|
L

|Eg|2
=

2L

|Eg|
.
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First quantum tester: Complexity II

When L =
√
nε · 2n−1, the objective value of the optimization

problem is

max

{√
n/ε, max

g∈Mε

2n
√
nε

|Eg|

}
.

Lemma (Goldreich, Goldwasser, Lehman, Ron,
Samorodnitsky ’00)

For every g ∈Mε, |Eg| ≥ ε2n.

So the quantum query complexity of the first tester is
√
n/ε.
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A more flexible optimization problem

min. max
f∈M∪Mε

∑
x

ψx(f) +
∑
j∈[n]

φx,j(f)

2

s.t.
∑

x:f(x)6=g(x)

ψx(f) · ψx(g) +
∑
j∈[n]

φx,j(f) · φx,j(g)

 = 1 ∀...

vs.
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Second quantum monotonicity tester

Theorem (Belovs, B. ’15)

There is a feasible solution to this optimization problem with
objective value

2n
√
ε

log n|Eg|

(
∆(Gg)

n1/4
+ n1/4

)
where Gg is any subgraph of the (1, 0)-graph of g, ∆(Gg) is its
maximum degree, and Eg is the set of non-monotone edges in Gg.

Theorem (Khot, Minzer, Safra ’15)

For every g ∈Mε, there exists a such a subgraph Gg that satisfies

|Eg| = Ω

(
ε2n
√

∆(Gg)

log2 n

)
.
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Conclusions

I We can test monotonicity with Õ(n1/4/
√
ε) quantum queries.

I The design of quantum testers can be done by considering
natural optimization problems.

I The analysis of quantum monotonicity testers uncovers the
key inequalities that are also required to analyze classical
monotonicity testers.

I Are there other property testing problems where considering
quantum testers may yield insights on promising directions?
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Thank you!

For all the details, see

A. Belovs and E.B. Quantum Algorithm for Monotonicity Testing on
the Hypercube. Theory of Computing 11(16), 2015.


