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Monotone functions

Definition (Monotone functions; M)

f:{0,1}" — {0, 1} is monotone if for every x <y € {0,1}", it
satisfies f(z) < f(y).
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Functions that are far from monotone

Definition (Functions far from monotone; M.)

f:{0,1}" — {0, 1} is e-far from monotone if for every monotone
function g, we have |{z : f(z) # g(x)}| > €2™.
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Testing monotonicity

VS.

How many queries does a bounded-error randomized algorithm
need to distinguish monotone functions from functions that are
e-far from monotone?
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Edge tester

Definition (Goldreich, Goldwasser, Lehman, Ron ’98)

The edge tester selects edges (x,y) of the hypercube uniformly at
random and checks that f(x) < f(y).
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Pair testers

Definition (Dodis, Goldreich, Lehman, Raskhodnikova, Ron,
Samorodnitsky '99)

A pair tester selects comparable pairs z < y € {0,1}" from some
distribution and checks that f(z) < f(y).
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Another view of pair testers

The query complexity of pair testers can also be viewed as the
solution to the following optimization problem.

minimize Z Gy
=y
subject to Z Gzy > 1 Vfe M.
z=y:f(x)>f(y)

Gzy >0 Ve <y e {0,1}"
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A different optimization problem

2
minimize max Z (Z Gry(f )

FEMUM. e

subject to Z (Zd)xy ) b2yl )1 VfeM,ge M.

w:f(x)#g(x) \yz=



A different optimization problem

minimize max E E Gry(f

JeMUM =\ 7=

subject to Z Zd)x,y ) bxylg) | =1 VfeM,ge M..
z:f (z)#g(z) \yzz

Corollary (to the Dual adversary bound Theorem)

Every feasible solution to this problem gives an upper bound on
the quantum query complexity for testing monotonicity.
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The dual adversary bound

Theorem (Dual adversary bound)

The quantum query complexity for distinguishing X and Y is the
solution to the optimization problem

MM, X
minimize fren;\ggyg z[fs f]
subject to Z X:[fogl=1 VfeX,ge)

z:f () #9(2)
X, =0 Vze{0,1}"
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Simplifying the optimization problem

2
minimize  max Z (Z Gz,5( )

FEMUM. jeln]

s.t. Z Z(bxj “e,i(9) =1 VfeM,ge M..

z:f(z)#g(z) jE€ln]

SR
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First quantum monotonicity tester

For f € M, define

1/L ifx;=0and f(z) =0
ba,i(f) = orz; =1 and f(z) = f(z®) =1
0 otherwise.

For g € M., define

L/|E,| if (z,2%7) € E
d)x,j(g) = 7 . 7
0 otherwise

where E, is the set of edges of the hypercube on which g is
anti-monotone and L is a constant to be fixed later.
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First quantum tester: Correctness

1 L
> 3 i) s = B (L ) = L

z: f(z)#g(x) j€[n]
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First quantum tester: Complexity I

For f € M, the objective value of the optimization is

2

SIS o] ="
Jjeln]

T

And for g € M., it is

2
L 2L
Z (Z ¢r,j(9)) = 2|E9|W = @.

z  \j€[n]



First quantum tester: Complexity II

When L = /ne - 27!, the objective value of the optimization
problem is

max{m, mxm}

gEM. |Eg|
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First quantum tester: Complexity II

When L = /ne - 27!, the objective value of the optimization
problem is

271 /
max{\/n/e, max |E—n€} .
9

gEM

Lemma (Goldreich, Goldwasser, Lehman, Ron,
Samorodnitsky ’00)

For every g € M., |Ey4| > e2™.

So the quantum query complexity of the first tester is \/n/e.
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A more flexible optimization problem

2
min. max Z (7,/12 + Z d’x,y(f))

FEMUM. el

s.t. Z v,bx(f) )+ D> buy(f) daylg) | =1 V..
f(@)#9(@) i€
@

i
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Second quantum monotonicity tester

Theorem (Belovs, B. '15)

There is a feasible solution to this optimization problem with

objective value
Ve (AGy) ,
logn|Ey| \ n'/4

where Gg is any subgraph of the (1,0)-graph of g, A(Gy) is its

mazximum degree, and Eg4 is the set of non-monotone edges in G.
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Second quantum monotonicity tester
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objective value
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where Gy is any subgraph of the (1,0)-graph of g, A(Gy) is its
mazximum degree, and Eg4 is the set of non-monotone edges in G.

Theorem (Khot, Minzer, Safra '15)
For every g € M., there exists a such a subgraph Gy that satisfies

=0 <62n1/A(Gg)) |

log?n
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Conclusions

» We can test monotonicity with O(n'/*/1/€) quantum queries.

» The design of quantum testers can be done by considering
natural optimization problems.

» The analysis of quantum monotonicity testers uncovers the
key inequalities that are also required to analyze classical
monotonicity testers.

> Are there other property testing problems where considering
quantum testers may yield insights on promising directions?
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Thank you!

For all the details, see

A. Belovs and E.B. Quantum Algorithm for Monotonicity Testing on
the Hypercube. Theory of Computing 11(16), 2015.



