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Moore’s Law at Intel 1970-2005
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Pushing Frequency
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Moore’s Law at Intel 1970-2005
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Reducing power with voltage scaling

Power = Capacitance * Voltage**2 * Frequency

Frequency — Voltage in region of interest

Power — Voltage ** 3

10%06 reduction of voltage yields
* 10%b reduction in frequency

e 30%0o reduction in power

* Less than 10%b6 reduction in performance

Rule of Thumb
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Dual core with voltage scaling

RULE OF THUMB

(

(o)
A 1596 Frequency Power Performance
Reduction Reduction Reduction Reduction
In Voltage 15% 45% 10%

Yields

SINGLE CORE DUAL CORE

Voltage = 1 Voltage = 0.85

Ereq =1 Freg = 0.85
Power =1 Power = 1
Pertf — | Perf = —1.8
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Multiple cores deliver more performance per watt

Big core

Pawer Power = ¥z

4 Performance = 1/2
3 | Performance

2 Small

" core 1 n

BB

Many core Is more
power efficient

Power ~ area

Single thread
perfoermance ~ area**.5




Memory Gap

Growing Performance Gap Peak Instructions
l l l Per DRAM Access l
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Reduce DRAM access with large caches
Extra benefit: power savings. Cache is lower power than logic

Tolerate memory latency with multiple threads
Multiple cores
Hyper-threading
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Multi-threading tolerates memory latency

Serial Execution

A Idle Al *i Idle FM
Multi-threaded Execution
A Idle A,

-

Execute thread B while thread A waits for memory

13 July, 2006 < iH/tGD

Multi-core has a similar effect



Multi-core tolerates memory latency

Serial Execution

A dle A, B ge FETW

Multi-core Execution

A idle A,
EN e FETW

Execute thread A and B simultaneously
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Core Area (with L1 caches) Trend

Die area/core shrinking after peaking with PPro
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Why shrinking? Diminishing returns on performance.

Interconnect. Caches. Complexity.



Reliability in the long term
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Redundant multi-threading: an
architecture for fault detection and
recovery

Trailing
Thread

o<

[ Memory System }

Two copies of each architecturally visible thread

Compare results: signal fault if different

Multi-core enables many possible designs for redundant
threading.



Moore’s Law at Intel 1970-2005
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complexity, reliability



Moore’s Law will provide transistors

Intel process technology capabilities

High Volume Manufacturing 2004 {0]0]6) 2008 2010 2012 2014 2016 2018
Feature Size 90nm 65nm 45nm 32nm 22nm 16nm 11nm 8nm
Integration Capacity.

(Billions of Transistors) 2 4 8 16 32 64 128 256

Transistor for
90nm Process

Source: Intel

Influenza Virus
Source: CDC
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Use transistors for multiple cores, caches, and new features.
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Future Architecture: More Cores

Open issues

Cores

* How many?

* What size?

* Homogeneous?
®* Heterogeneous?

On-die Interconnect
®* Topology
* Bandwidth

Cache hierarchy

* Number of levels
® Sharing
®* Inclusion

Scalability

21 July, 2006

Power delivery and management

High bandwidth memory
Reconfigurable cache

Scalable fabric

Core

Core

Core

Core

Core |Core

Core Core |Core
Core Core |Core

Fixed-function units
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The Importance of Threading

Do Nothing: Benefits Still Visible

* Operating systems ready for multi-processing

* Background tasks benefit from more compute resources
* Virtual machines

Parallelize: Unlock the Potential
* Native threads

* Threaded libraries

e Compiler generated threads

22 July, 2006



Performance Scaling

Amdahl’'s Law: Parallel Speedup = 1/7(Serial% + (1-Serial%)/N)
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How does Multicore Change Parallel
Programming?

No change in fundamental

SMP
programming model

cache cache cache cache Synchronization and communication

costs greatly reduced
Memory * Makes it practical to parallelize more

programs

CMP

Resources now shared

C1 C2 C3 C4

® Caches

* Memory interface

cache cache cache cache

* Optimization choices may be
different
Memory

24 July, 2006 intel)




Threading for Multi-Core

Architectural

Analysis Intel® VTune™ Analyzers
|

Introducing

Threads Intel® C++ Compiler

\J

Debugging Intel® Thread Checker

\

e Intel® Thread Profiler

_p——

Intel has a full set of tools for parallel programming



The Era Of Tera

Terabytes of data. Teraflops of performance.

Improved
Medical care

y Machine

,“” vision
Scientific Simulation
Onivershy PG Center When personal
computing finally Immersive 3D

entertainment

T becomes
é personal

= R o, Interactive learning

| TEle- Virtual
Source: Steven K. Feiner, Colurbia __F ' prese_nt realities
University. Q& S > meetmgs

Computationaly Intensive applications of the future will
be highly parallel



Slide from

215t Century Computer Architecture patterson 2006

Old CW: Since cannot know future programs, find set of old programs
to evaluate designs of computers for the future

e E.g., SPEC2006

What about parallel codes?

* Few available, tied to old models, languages, architectures, ...

Claim: key methods for next decade are 7 dwarves (+ a few), so
design for them!

* Representative codes may vary over time, but these numerical
methods will be important for > 10 years

Patterson, UC Berkeley, also predicts importance of
parallel applications.



Phillip Colella’s ““Seven dwarfs™ stidefrom
Patterson 2006

High-end simulation in the physical
sciences = 7 numerical methods:

Structured Grids (including locally structured If add 4 for embedded, covers all 41
grids, e.g. Adaptive Mesh Refinement) EEMBC benchmarks
Unstructured Grids 8. Search/Sort
: 9. Filter
Fast Fourier Transform . :
_ 10. Combinational logic

Dense Linear Algebra 11. Finite State Machine
Sparse Linear Algebra Note: Data sizes (8 bit to 32 bit)
particl and types (integer, character) differ,

articles but algorithms the same

Monte Carlo

Slide from ““Defining Software
Requirements for Scientific
Computing”, Phillip Colella, 2004

Note scientific computing, media processing, machine
learning, statistical computing share many algorithms



Workload Acceleration

RMS Workload Speedup (Simulated)
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Group | — Scale well with increasing core count
Examples: Ray tracing, body tracking, physical simulation

Group Il — Worst-case scaling examples, yet still' scale

” July, 2006 Examples: Forward & backward solvers (lntel

Source: Intel Corporation



Tera-Leap to Parallelism:

Energy Efficient Performance

........ Science
Tera-Scale jz=z====== .
fiction

Computing J======== becomes

y A REALITY
” |
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More performance

m Dual Core Using less energy
- Hyper-Threading ) )
Single-core chips

ﬁ

ENERGY-EFFICIENT PERFORMANCE

. Instruction level parallelism
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Summary

Technology is driving Intel to build multi-core processors.
— Power
— Performance
— Memory latency
— Complexity
— Reliability

Parallel programming is a central issue.

Parallel applications will become mainstream

31 July, 2006
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