
Why Intel is designing
multi-core processors

Geoff Lowney

Intel Fellow, Microprocessor
Architecture and Planning

July, 2006

July, 20062

Transistor Count

1.E+03

1.E+05

1.E+07

1.E+09

1970 1980 1990 2000 2010 2020

2.0x

Frequency (MHz)

1

10

100

1000

10000

100000

1970 1980 1990 2000 2010 2020

1.5x

2.0x

CPU Power (W)

10

100

1000

1990 1995 2000 2005 2010 2015

1.4x

Feature Size (um)

0.01

0.1

1

10

1970 1980 1990 2000 2010 2020

0.70x

0.79x

Moore’s Law at Intel 1970-2005

Power trend not Power trend not
sustainablesustainable

July, 20063

Pentium® 4 Processor

386 Processor

May 1986
@16 MHz core

275,000 1.5µ transistors
~1.2 SPECint2000

17 Years
200x

200x/11x
1000x

August 27, 2003
@3.2 GHz core
55 Million 0.13µ transistors
1249 SPECint2000

July, 20064

1

10

100

1000

10000

Jan-85 Jan-87 Jan-89 Jan-91 Jan-93 Jan-95 Jan-97 Jan-99 Jan-01 Jan-03 Jan-05

Introduction Date

SP
EC

in
t2

00
0

1

10

100

1000

10000

Jan-85 Jan-87 Jan-89 Jan-91 Jan-93 Jan-95 Jan-97 Jan-99 Jan-01 Jan-03 Jan-05

Introduction Date

C
lo

ck
 F

re
qu

en
cy

Performance: 1000x

Frequency: 200x

July, 20065

SPECint2000/MHz (normalized)

0

1

2

3

4

5

6

7

Jan-85 Jan-87 Jan-89 Jan-91 Jan-93 Jan-95 Jan-97 Jan-99 Jan-01 Jan-03 Jan-05

Introduction Date

N
or

m
al

iz
ed

 S
PE

C
in

t2
00

0/
M

H
z

386
486 486DX2

P5 P55-MMX

PPro/II

PIII

P4

July, 20066

0

1

2

3

4

5

Pipelined S-Scalar OOO-
Spec

Deep Pipe

In
cr

ea
se

 (X
)

Area X
Perf X

-1

0

1

2

3

Pipelined S-Scalar OOO-
Spec

Deep
Pipe

In
cr

ea
se

 (X
)

Power X
Mips/W (%)

Performance scales
with area**.5

Power efficiency
has dropped

July, 20067

Pushing Frequency

Pipeline & Performance

0
2
4
6
8

10

1 2 3 4 5 6 7 8 9 10
Relative Frequency (Pipelining)

Performance

Diminishing
Return

Maximized frequency byMaximized frequency by
•• Deeper pipelinesDeeper pipelines
•• Pushed process to the limitPushed process to the limit

Process Technology

0
2
4
6
8

10

1 2 3 4 5 6 7 8 9 10
Relative Frequency

Sub-threshold
Leakage increases

exponentially••Dynamic power increases Dynamic power increases
with frequency with frequency
••Leakage power increases Leakage power increases
with reducing with reducing VtVt

Diminishing return on performance. Increase in power

July, 20068

Transistor Count

1.E+03

1.E+05

1.E+07

1.E+09

1970 1980 1990 2000 2010 2020

2.0x

Frequency (MHz)

1

10

100

1000

10000

100000

1970 1980 1990 2000 2010 2020

1.5x

2.0x

CPU Power (W)

10

100

1000

1990 1995 2000 2005 2010 2015

1.4x

Feature Size (um)

0.01

0.1

1

10

1970 1980 1990 2000 2010 2020

0.70x

0.79x

Moore’s Law at Intel 1970-2005

Power trend not Power trend not
sustainablesustainable

July, 20069

Reducing power with voltage scaling

Power = Capacitance * Voltage**2 * Frequency

Frequency ~ Voltage in region of interest

Power ~ Voltage ** 3

10% reduction of voltage yields

• 10% reduction in frequency

• 30% reduction in power

• Less than 10% reduction in performance

Rule of ThumbRule of Thumb

Voltage Frequency Power Performance

1% 1% 3% 0.66%

July, 200610

Dual core with voltage scaling

Area = 1Area = 1
Voltage = 1Voltage = 1
Freq = 1Freq = 1
Power = 1Power = 1
PerfPerf = 1= 1

Area = 2Area = 2
Voltage = 0.85Voltage = 0.85
Freq = 0.85Freq = 0.85
Power = 1Power = 1
PerfPerf = ~1.8= ~1.8

Frequency

Reduction

Power

Reduction

Performance

Reduction

15% 45% 10%

A 15% A 15%

ReductionReduction

In VoltageIn Voltage

YieldsYields

SINGLE CORESINGLE CORE DUAL COREDUAL CORE

RULE OF THUMBRULE OF THUMB

ftp://download.intel.com/pressroom/images/centrino_dieshot.zip

July, 200611

Multiple cores deliver more performance per watt

Big coreBig core

CacheCache PowerPower
Power = Power = ¼¼

Performance = 1/2

C1C1

C4C4

C2C2

C3C3

SmallSmall
corecore

CacheCache

11

22

33

44 Performance = 1/2

PerformancePerformance

11

22

11 11

Many core is more Many core is more
power efficientpower efficient

Power ~ areaPower ~ area

Single thread Single thread
performance ~ area**.5

11

22

33

44

11

22

33

44

performance ~ area**.5

July, 200612

Memory Gap

Growing Performance GapGrowing Performance Gap

0

100

200

300

400

500

600

700

Pentium
66MHz

Pentium-Pro
200MHz

PentiumIII
1100MHz

Pentium4 2
GHz

19921992 19941994 19961996 19981998 20002000 20022002

LOGICLOGIC

MEMORYMEMORY

G
A

P
G

A
P

Peak InstructionsPeak Instructions
Per DRAM AccessPer DRAM Access

Reduce DRAM access with large caches
Extra benefit: power savings. Cache is lower power than logic

Tolerate memory latency with multiple threads
Multiple cores
Hyper-threading

July, 200613

Multi-threading tolerates memory latency

Serial Execution

Ai Idle Bi IdleAi+1 Bi+1

Multi-threaded Execution

Ai Ai+1Idle

Bi Bi+1

Execute thread B while thread A waits for memoryExecute thread B while thread A waits for memory

Multi-core has a similar effect

July, 200614

Multi-core tolerates memory latency

Serial Execution

Ai Ai+1 Bi IdleIdle Bi+1

Multi-core Execution

Ai Idle Ai+1

Bi Bi+1Idle

Execute thread A and B simultaneouslyExecute thread A and B simultaneously

July, 200615

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

1970 1975 1980 1985 1990 1995 2000 2005

Introduction Date

C
or

e
A

re
a

- m
m

^2

PPro

Pentium Processor

Banias

Pentium 4 processor

Merom
4004

386

Pentium II processor

486

McKinley

Prescott

Yonah

Core Area (with L1 caches) Trend
Die area/core shrinking after peaking with PPro

Why shrinking? Diminishing returns on performance.

Interconnect. Caches. Complexity.

July, 200616

Reliability in the long term

Soft Error FIT/Chip (Logic & Mem)

0

50

100

150

180
130 90 65 45 32 22 16

R
el

at
iv

e

~8% degradation/bit/generation

Extreme device variations

0

50

100

100 120 140 160 180 200
Vt(mV)

R
el

at
iv

e

Wider

Time dependent device degradation

0

1

1 2 3 4 5 6 7 8 9 10
Time

Io
n

R
el

at
iv

e

In future process
generations, soft and
hard errors will be
more common.

July, 200617

Redundant multi-threading: an
architecture for fault detection and
recovery

Two copies of each architecturally visible thread

Compare results: signal fault if different

Memory System

Sphere of Replication

Output
Comparison

Input
Replication

Leading
Thread

Trailing
Thread

Multi-core enables many possible designs for redundant
threading.

July, 200618

Transistor Count

1.E+03

1.E+05

1.E+07

1.E+09

1970 1980 1990 2000 2010 2020

2.0x

Frequency (MHz)

1

10

100

1000

10000

100000

1970 1980 1990 2000 2010 2020

1.5x

2.0x

CPU Power (W)

10

100

1000

1990 1995 2000 2005 2010 2015

1.4x

Feature Size (um)

0.01

0.1

1

10

1970 1980 1990 2000 2010 2020

0.70x

0.79x

Moore’s Law at Intel 1970-2005

Multi-core addresses power, performance, memory,
complexity, reliability

July, 200619

Moore’s Law will provide transistors

Intel process technology capabilitiesIntel process technology capabilities

High Volume Manufacturing 2004 2006 2008 2010 2012 2014 2016 2018

Feature Size 90nm 65nm 45nm 32nm 22nm 16nm 11nm

128

8nm

Integration Capacity
(Billions of Transistors) 2 4 8 16 32 64 256

50nm

Transistor for Transistor for
90nm Process90nm Process

Source: IntelSource: Intel

Influenza VirusInfluenza Virus
Source: CDCSource: CDC

Use transistors for multiple cores, caches, and new features.

July, 200620

Multi-Core Processors

CLOVERTOWNCLOVERTOWN

WOODCRESTWOODCREST
Quad CoreQuad Core

PENTIUMPENTIUM®® MM
Dual CoreDual Core

Single CoreSingle Core

July, 200621

Future Architecture: More Cores

Open issues
Cores
• How many?
• What size?
• Homogeneous?
• Heterogeneous?

On-die Interconnect
• Topology
• Bandwidth

Cache hierarchy
• Number of levels
• Sharing
• Inclusion

Scalability

Power delivery and managementPower delivery and management

High bandwidth memoryHigh bandwidth memory

Reconfigurable cacheReconfigurable cache

Scalable fabricScalable fabric

FixedFixed--function unitsfunction units

CoreCore CoreCore

CoreCore CoreCore

CoreCore CoreCore

CoreCore

CoreCore

CoreCore

CoreCore CoreCore

CoreCore CoreCore

CoreCore CoreCore

July, 200622

The Importance of Threading

Do Nothing: Benefits Still Visible
• Operating systems ready for multi-processing
• Background tasks benefit from more compute resources
• Virtual machines

Parallelize: Unlock the Potential
• Native threads
• Threaded libraries
• Compiler generated threads

July, 200623

Performance Scaling

0
1
2
3
4
5
6
7
8
9

10

0 10 20 30
Number of Cores

Pe
rf

or
m

an
ce

Amdahl’s Law: Parallel Speedup = 1/(Serial% + (1-Serial%)/N)

Serial% = 6.7%
N = 16, N1/2 = 8

16 Cores, Perf = 8

Serial% = 20%
N = 6, N1/2 = 3

6 Cores, Perf = 3

Parallel software key to Multi-core successParallel software key to MultiParallel software key to Multi--core successcore success

July, 200624

How does Multicore Change Parallel
Programming?

No change in fundamental
programming model

Synchronization and communication
costs greatly reduced

• Makes it practical to parallelize more
programs

Resources now shared

• Caches

• Memory interface

• Optimization choices may be
different

P1

cache

P2 P3 P4

cache cache cache

Memory

SMP

C1

cache

Memory

C2 C3 C4

cache cache cache

CMP

July, 200625

Threading for Multi-Core

Introducing Introducing
ThreadsThreads

Architectural Architectural
AnalysisAnalysis IntelIntel®® VTuneVTune™™ AnalyzersAnalyzers

IntelIntel®® C++ CompilerC++ Compiler

DebuggingDebugging IntelIntel®® Thread CheckerThread Checker

PerformancePerformance
TuningTuning IntelIntel®® Thread ProfilerThread Profiler

Intel has a full set of tools for parallel programming

July, 200626

The Era Of Tera
Terabytes of data. Teraflops of performance.

ImprovedImproved
Medical careMedical care Machine Machine

visionvision

TeleTele--present meetingspresent meetings

Interactive learning Interactive learning

Source: Steven K. Feiner, Columbia
University.

Immersive 3DImmersive 3D
entertainmententertainment

Virtual Virtual
realitiesrealities

Courtesy of the Electronic Visualization
Laboratory, Univ. of Illinois at Chicago.

When personal
computing finally

becomes
personal

Scientific SimulationScientific Simulation
Courtesy Tsinghua
University HPC Center

Text Text
MiningMining

Computationally intensive applications of the future will
be highly parallel

TeleTele--
present present
meetingsmeetings

X

Y

July, 200627

Slide fromSlide from

Patterson 2006Patterson 200621st Century Computer Architecture

Old CW: Since cannot know future programs, find set of old programs
to evaluate designs of computers for the future

• E.g., SPEC2006

What about parallel codes?

• Few available, tied to old models, languages, architectures, …

New approach: Design computers of future for numerical methods
important in future

Claim: key methods for next decade are 7 dwarves (+ a few), so
design for them!

• Representative codes may vary over time, but these numerical
methods will be important for > 10 years

Patterson, UC Berkeley, also predicts importance of
parallel applications.

July, 200628

Slide fromSlide from

Patterson 2006Patterson 2006
Phillip Colella’s “Seven dwarfs”

High-end simulation in the physical
sciences = 7 numerical methods:

Structured Grids (including locally structured
grids, e.g. Adaptive Mesh Refinement)

Unstructured Grids

Fast Fourier Transform

Dense Linear Algebra

Sparse Linear Algebra

Particles

Monte Carlo

If add 4 for embedded, covers all 41
EEMBC benchmarks

8. Search/Sort
9. Filter

10. Combinational logic
11. Finite State Machine

Note: Data sizes (8 bit to 32 bit)
and types (integer, character) differ,
but algorithms the same

Slide from “Defining Software
Requirements for Scientific
Computing”, Phillip Colella, 2004

Well-defined targets from algorithmic,
software, and architecture standpoint

Note scientific computing, media processing, machine
learning, statistical computing share many algorithms

July, 200629

Workload Acceleration

RMS Workload Speedup (Simulated)RMS Workload Speedup (Simulated)

0

8

16

24

32

40

48

56

64

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

of Cores

Sp
ee

du
p

Ray Tracing (Avg.)

Mod. Levelset

FB_Est

Body Tracker

Gauss-Seidel

Sparse Matrix (Avg.)

Dense Matrix (Avg.)

Kmeans

SVD

SVM_classification

Cholesky (watson)

Cholesky (mod2)

Forward Solver (pds-10)

Forward Solver (world)

Backward Solver (pds-
10)
Backward Solver
(watson)

48x - 57x

19x - 33x

Recognition

Mining

Synthesis

Group I Group I –– Scale well with increasing core countScale well with increasing core count
Examples: Ray tracing, body tracking, physical simulationExamples: Ray tracing, body tracking, physical simulation

Group II Group II –– WorstWorst--case scaling examples, yet still scalecase scaling examples, yet still scale
Examples: Forward & backward solversExamples: Forward & backward solvers

Source: Intel CorporationSource: Intel Corporation

July, 200630

Tera-Leap to Parallelism:
E
N

E
R
G

Y
-E

FF
IC

IE
N

T
 P

E
R
FO

R
M

A
N

C
E

TIME

Instruction level parallelism

Hyper-Threading

Dual Core

Quad-Core

Tera-Scale
Computing

SingleSingle--core chipscore chips

More performanceMore performance
Using Using lessless energyenergy

ScienceScience
fictionfiction

becomes becomes
A REALITYA REALITY

Energy Efficient PerformanceEnergy Efficient Performance

July, 200631

Summary

Technology is driving Intel to build multi-core processors.
– Power
– Performance
– Memory latency
– Complexity
– Reliability

Parallel programming is a central issue.

Parallel applications will become mainstream

	Why Intel is designing multi-core processors
	Moore’s Law at Intel 1970-2005
	Pentium® 4 Processor
	SPECint2000/MHz (normalized)
	Pushing Frequency
	Moore’s Law at Intel 1970-2005
	Reducing power with voltage scaling
	Dual core with voltage scaling
	Multiple cores deliver more performance per watt
	Memory Gap
	Multi-threading tolerates memory latency
	Multi-core tolerates memory latency
	Core Area (with L1 caches) Trend
	Reliability in the long term
	Moore’s Law at Intel 1970-2005
	Moore’s Law will provide transistors
	Multi-Core Processors
	Future Architecture: More Cores
	The Importance of Threading
	Performance Scaling
	How does Multicore Change Parallel Programming?
	Threading for Multi-Core
	The Era Of TeraTerabytes of data. Teraflops of performance.
	21st Century Computer Architecture
	High-end simulation in the physical sciences = 7 numerical methods:
	Workload Acceleration
	Tera-Leap to Parallelism:
	Summary

