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Pentium® 4 Processor

386 Processor

May 1986
@16 MHz core

275,000 1.5µ transistors
~1.2 SPECint2000

17 Years
200x

200x/11x
1000x

August 27, 2003
@3.2 GHz core
55 Million 0.13µ transistors
1249 SPECint2000
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SPECint2000/MHz (normalized)
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Pushing Frequency 

Pipeline & Performance
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Diminishing return on performance.  Increase in power
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Reducing power with voltage scaling

Power = Capacitance * Voltage**2 * Frequency

Frequency ~ Voltage in region of interest

Power ~ Voltage ** 3

10% reduction of voltage yields

• 10% reduction in frequency

• 30% reduction in power

• Less than 10% reduction in performance

Rule of ThumbRule of Thumb

Voltage Frequency Power Performance

1% 1% 3% 0.66%
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Dual core with voltage scaling

Area      = 1Area      = 1
Voltage = 1Voltage = 1
Freq      = 1Freq      = 1
Power   = 1Power   = 1
PerfPerf = 1= 1

Area      =  2Area      =  2
Voltage =  0.85Voltage =  0.85
Freq      =  0.85Freq      =  0.85
Power   =  1Power   =  1
PerfPerf =  ~1.8=  ~1.8

Frequency

Reduction

Power

Reduction

Performance

Reduction

15% 45% 10%

A 15% A 15% 

ReductionReduction

In VoltageIn Voltage

YieldsYields

SINGLE CORESINGLE CORE DUAL COREDUAL CORE

RULE OF THUMBRULE OF THUMB

ftp://download.intel.com/pressroom/images/centrino_dieshot.zip
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Multiple cores deliver more performance per watt

Big coreBig core

CacheCache PowerPower
Power = Power = ¼¼

Performance = 1/2
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SmallSmall
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Memory Gap

Growing Performance GapGrowing Performance Gap
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Reduce DRAM access with large caches
Extra benefit:  power savings.  Cache is lower power than logic

Tolerate memory latency with multiple threads
Multiple cores
Hyper-threading
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Multi-threading tolerates memory latency

Serial Execution

Ai Idle Bi IdleAi+1 Bi+1

Multi-threaded Execution

Ai Ai+1Idle

Bi Bi+1

Execute thread B while thread A waits for memoryExecute thread B while thread A waits for memory

Multi-core has a similar effect
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Multi-core tolerates memory latency

Serial Execution

Ai Ai+1 Bi IdleIdle Bi+1

Multi-core Execution

Ai Idle Ai+1

Bi Bi+1Idle

Execute thread A and  B simultaneouslyExecute thread A and  B simultaneously
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Die area/core shrinking after peaking with PPro

Why shrinking?  Diminishing returns on performance.        

Interconnect.  Caches.   Complexity.
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Reliability in the long term
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In future process 
generations, soft and 
hard errors will be 
more common.



July, 200617

Redundant multi-threading: an 
architecture for fault detection and 
recovery

Two copies of each architecturally visible thread

Compare results: signal fault if different

Memory System

Sphere of Replication

Output
Comparison

Input
Replication

Leading
Thread

Trailing
Thread

Multi-core enables many possible designs for redundant 
threading.
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Transistor Count
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Multi-core addresses power, performance, memory, 
complexity, reliability
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Moore’s Law will provide transistors

Intel process technology capabilitiesIntel process technology capabilities

High Volume Manufacturing 2004 2006 2008 2010 2012 2014 2016 2018

Feature Size 90nm 65nm 45nm 32nm 22nm 16nm 11nm

128

8nm

Integration Capacity
(Billions of Transistors) 2 4 8 16 32 64 256

50nm

Transistor for Transistor for 
90nm Process90nm Process

Source: IntelSource: Intel

Influenza VirusInfluenza Virus
Source: CDCSource: CDC

Use transistors for multiple cores, caches, and new features.
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Multi-Core Processors

CLOVERTOWNCLOVERTOWN

WOODCRESTWOODCREST
Quad CoreQuad Core

PENTIUMPENTIUM®® MM
Dual CoreDual Core

Single CoreSingle Core
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Future Architecture:  More Cores

Open issues
Cores
• How many?
• What size?
• Homogeneous?
• Heterogeneous?

On-die Interconnect
• Topology
• Bandwidth

Cache hierarchy
• Number of levels
• Sharing
• Inclusion

Scalability

Power delivery and managementPower delivery and management

High bandwidth memoryHigh bandwidth memory

Reconfigurable cacheReconfigurable cache

Scalable fabricScalable fabric

FixedFixed--function unitsfunction units

CoreCore CoreCore

CoreCore CoreCore

CoreCore CoreCore

CoreCore

CoreCore

CoreCore

CoreCore CoreCore

CoreCore CoreCore

CoreCore CoreCore
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The Importance of Threading

Do Nothing: Benefits Still Visible
• Operating systems ready for multi-processing
• Background tasks benefit from more compute resources
• Virtual machines

Parallelize: Unlock the Potential
• Native threads
• Threaded libraries
• Compiler generated threads
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Performance Scaling
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Amdahl’s Law: Parallel Speedup = 1/(Serial% + (1-Serial%)/N)

Serial% = 6.7%
N = 16, N1/2 = 8

16 Cores, Perf = 8

Serial% = 20%
N = 6, N1/2 = 3

6 Cores, Perf = 3

Parallel software key to Multi-core successParallel software key to MultiParallel software key to Multi--core successcore success
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How does Multicore Change Parallel 
Programming?

No change in fundamental 
programming model

Synchronization and communication 
costs greatly reduced

• Makes it practical to parallelize more 
programs

Resources now shared

• Caches

• Memory interface

• Optimization choices may be 
different

P1

cache

P2 P3 P4

cache cache cache

Memory

SMP

C1

cache

Memory

C2 C3 C4

cache cache cache

CMP
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Threading for Multi-Core

Introducing Introducing 
ThreadsThreads

Architectural Architectural 
AnalysisAnalysis IntelIntel®® VTuneVTune™™ AnalyzersAnalyzers

IntelIntel®® C++ CompilerC++ Compiler

DebuggingDebugging IntelIntel®® Thread CheckerThread Checker

PerformancePerformance
TuningTuning IntelIntel®® Thread ProfilerThread Profiler

Intel has a full set of tools for parallel programming
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The Era Of Tera
Terabytes of data. Teraflops of performance.

ImprovedImproved
Medical careMedical care Machine Machine 

visionvision

TeleTele--present meetingspresent meetings

Interactive learning Interactive learning 

Source: Steven K. Feiner, Columbia 
University.

Immersive 3DImmersive 3D
entertainmententertainment

Virtual Virtual 
realitiesrealities

Courtesy of the Electronic Visualization 
Laboratory, Univ. of Illinois at Chicago.

When personal
computing finally 

becomes
personal

Scientific SimulationScientific Simulation
Courtesy Tsinghua
University HPC Center

Text Text 
MiningMining

Computationally intensive applications of the future will 
be highly parallel

TeleTele--
present present 
meetingsmeetings

X

Y
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Slide fromSlide from

Patterson 2006Patterson 200621st Century Computer Architecture

Old CW: Since cannot know future programs, find set of old programs 
to evaluate designs of computers for the future

• E.g., SPEC2006

What about parallel codes? 

• Few available, tied to old models, languages, architectures, …

New approach: Design computers of future for numerical methods 
important in future

Claim: key methods for next decade are 7 dwarves (+  a few), so 
design for them!

• Representative codes may vary over time, but these numerical 
methods will be important for > 10 years

Patterson, UC Berkeley, also predicts importance of 
parallel applications.
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Slide fromSlide from

Patterson 2006Patterson 2006
Phillip Colella’s “Seven dwarfs”

High-end simulation in the physical 
sciences = 7 numerical methods:

Structured Grids (including locally structured 
grids, e.g. Adaptive Mesh Refinement)

Unstructured Grids

Fast Fourier Transform

Dense Linear Algebra

Sparse Linear Algebra 

Particles

Monte Carlo

If add 4 for embedded, covers all 41 
EEMBC benchmarks

8. Search/Sort
9. Filter

10. Combinational logic
11. Finite State Machine

Note: Data sizes (8 bit  to 32 bit) 
and types (integer, character) differ, 
but algorithms the same 

Slide from “Defining Software 
Requirements for Scientific 
Computing”, Phillip Colella, 2004 

Well-defined targets from algorithmic, 
software, and architecture standpoint 

Note scientific computing, media processing, machine 
learning, statistical computing share many algorithms
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Workload Acceleration 

RMS Workload Speedup (Simulated)RMS Workload Speedup (Simulated)

0

8

16

24

32

40

48

56

64

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

# of Cores

Sp
ee

du
p

Ray Tracing (Avg.)

Mod. Levelset

FB_Est

Body Tracker

Gauss-Seidel

Sparse Matrix (Avg.)

Dense Matrix (Avg.)
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Forward Solver (pds-10)

Forward Solver (world)

Backward Solver (pds-
10)
Backward Solver
(watson)

48x - 57x

19x - 33x

Recognition

Mining

Synthesis

Group I Group I –– Scale well with increasing core countScale well with increasing core count
Examples: Ray tracing, body tracking, physical simulationExamples: Ray tracing, body tracking, physical simulation

Group II Group II –– WorstWorst--case scaling examples, yet still scalecase scaling examples, yet still scale
Examples: Forward & backward solversExamples: Forward & backward solvers

Source: Intel CorporationSource: Intel Corporation
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Tera-Leap to Parallelism:
E
N

E
R
G

Y
-E

FF
IC

IE
N

T
 P

E
R
FO

R
M

A
N

C
E

TIME

Instruction level parallelism

Hyper-Threading

Dual Core

Quad-Core

Tera-Scale
Computing

SingleSingle--core chipscore chips

More performanceMore performance
Using Using lessless energyenergy

ScienceScience
fictionfiction

becomes becomes 
A REALITYA REALITY

Energy Efficient PerformanceEnergy Efficient Performance
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Summary

Technology is driving Intel to build multi-core processors.
– Power
– Performance
– Memory latency
– Complexity
– Reliability

Parallel programming is a central issue.

Parallel applications will become mainstream
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