
8 Supervised Overlay Networks

Every application run on multiple machines needs a mechanism that allows the machines to exchange
information. An easy way of solving this problem is that every machine knows the domain name or IP
address of every other machine. While this may work well for a small number of machines, large-scale
distributed applications such as file sharing or grid computing systems need a different, more scalable
approach: instead of forming a clique (where everybody knows everybody else), each machine should
only be required to know some small subset of other machines. This graph of knowledge can be seen
as a logical network interconnecting the machines, which is also known as anoverlay network. A
prerequisite for an overlay network to be useful is that it has good topological properties. Among the
most important are:

• Degree: Ideally, the degree should be kept small to avoid a high update cost if a node enters or
leaves the system.

• Diameter: The diameter should be small to allow the fast exchange of information between any
pair of nodes in the network.

• Node expansion: The node expansion of a graphG = (V, E) is defined as

β(G) = min
U⊆V : |U |≤|V |/2

|N(U)|
|U |

whereN(U) is the set of neighbors ofU . To ensure a high fault tolerance, the node expansion
should be as large as possible.

The question is how to realize such an overlay network in a distributed environment where peers may
continuously enter and leave the system. This will be the topic of our investigations for the coming
weeks.

We start in this section with the study ofsupervisedoverlay networks. These networks were
first investigated in [2, 1]. In a supervised overlay network, the topology is under the control of a
special machine (or node) called thesupervisor. All nodes that want to join or leave the network have
to declare this to the supervisor, and the supervisor will then take care of integrating them into or
removing them from the network. All other operations, however, may be executed without involving
the supervisor. In order for a supervised network to be highly scalable, two central requirements have
to be fulfilled:

1. The supervisor needs to store at most a polylogarithmic amount of information about the network
at any time (i.e. if there aren nodes in the network, storing contact information aboutO(log2 n)
of these nodes would be fine, for example), and

2. it takes at most a constant number of communication rounds to include a new node into or
exclude an old node from the network.

A communication roundis over once all the packets that existed at the beginning of the communica-
tion round have been delivered. The packets generated by these packets will participate in the next
communication round.

1

We show in the following how these requirements can be achieved, using a general approach called
the recursive approach. To simplify the presentation, we assume that all departures aregraceful, i.e.
every node leaving the system informs the supervisor about this and may provide some additional
information simplifying the task of the supervisor to repair the network.

8.1 The recursive approach

In the resursive approach, the supervisor assigns alabel to every node that wants to join the system.
The labels are represented as binary strings and are generated in the following order:

0, 1, 01, 11, 001, 011, 101, 111, 0001, 0011, 0101, 0111, 1001, 1011, . . .

Basically, when stripping off the least significant bit, then the supervisor is first creating all binary
numbers of length 0, then length 1, then length 2, and so on. More formally, consider the mapping
` : IN0 → {0, 1}∗ with the property that for everyx ∈ IN0 with binary representation(xd . . . x0)2

(whered is minimum possible),
`(x) = (xd−1 . . . x0xd) .

Then` generates the sequence of labels displayed above. In the following, it will also be helpful to
view labels as real numbers in[0, 1). Let the functionr : {0, 1}∗ → [0, 1) be defined so that for every
label` = (`1`2 . . . `d) ∈ {0, 1}∗,

r(`) =
d∑

i=1

`i

2i
.

Then the sequence of labels above translates into

0, 1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, 5/16, 7/16, 9/16, . . .

Thus, the more labels are used, the more densely the[0, 1) interval will be populated. Furthermore, we
will use the functionb : [0, 1) → {0, 1}∗ that translates a real number back into a label.

When using the recursive approach, the supervisor aims to maintain the following invariant at every
step:

Invariant 8.1 The set of labels used by the nodes is{`(0), `(1), . . . , `(n− 1)}, wheren is the current
number of nodes in the system.

This invariant is preserved when using the following simple strategy:

• Whenever a new nodev joins the system and the current number of nodes isn, the supervisor
assigns the label̀(n) to v and increasesn by 1.

• Whenever a nodew with label ` wants to leave the system, the supervisor asks the node with
currently highest label̀(n− 1) to change its label tòand reducesn by 1.

How does this strategy help us with maintaining dynamic overlay networks? We will see how this
works in the following subsections. To keep things simple, we start with a cycle.

2

8.2 Recursively maintaining a cycle

We start with some notation. In the following, the label assigned to some nodev will be denoted as
`v. Givenn nodes with unique labels, we define thepredecessorpred(v) of nodev as the nodew for
whichr(`w) is closest from below tor(`v), and we define thesuccessorsucc(v) of nodev as the node
w for which r(`w) is closest from above to noder(`v) (viewing [0, 1) as a ring in both cases). Given
two nodesv andw, we define theirdistanceas

δ(v, w) = min{(1 + r(`v)− r(`w)) mod1, (1 + r(`w)− r(`v)) mod1} .

In order to maintain a cycle among the nodes, we simply have to maintain the following invariant:

Invariant 8.2 Every nodev in the system is connected topred(v) andsucc(v).

Now, suppose that the labels of the nodes are generated via the recursive strategy above. Then we
have the following properties:

Lemma 8.3 Let n be the current number of nodes in the system, and letn̄ = 2blog nc. Then for every
nodev ∈ V :

• |`v| ≤ dlog ne and

• δ(v, pred(v)) ∈ [1/(2n̄), 1/n̄] andδ(v, succ(v)) ∈ [1/(2n̄), 1/n̄].

So the nodes are approximately evenly distributed in[0, 1) and the number of bits for storing a
label is almost as low as it can be without violating the uniqueness requirement. But how does the
supervisor maintain the cycle? This is implied by the following demand, wheren is again the current
number of nodes in the system.

Invariant 8.4 At any time, the supervisor stores the contact information ofpred(v), v, succ(v), and
succ(succ(v)) wherev is the node with label̀(n− 1).

In order to satisfy Invariants 8.2 and 8.4, the supervisor performs the following actions.
If a new nodew joins, then the supervisor

• informsw that`(n) is its label,succ(v) is its predecessor, andsucc(succ(v)) is its successor,

• informssucc(v) thatw is its new successor,

• informssucc(succ(v)) thatw is its new predecessor,

• askssucc(succ(v)) to send its successor information to the supervisor, and

• setsn = n + 1.

If an old nodew leaves and reports̀w, pred(w), andsucc(w) to the supervisor (recall that we are
assuming graceful departures), then the supervisor

• informsv (the node with label̀(n− 1)) that`w is its new label,pred(w) is its new predecessor,
andsucc(w) is its new successor,

3

• informspred(w) that its new successor isv,

• informssucc(w) that its new predecessor isv,

• informspred(v) thatsucc(v) is its new successor,

• informssucc(v) thatpred(v) is its new predecessor,

• askspred(v) to send its predecessor information to the supervisor and to askpred(pred(v)) to
send its predecessor information to the supervisor, and

• setsn = n− 1.

A detailed implementation of the leave and join operations can be found in Figures 1 and 2. The
following lemma is not difficult to check and will be an assignment.

Supervisor{

Supervisor(){
n := 0 # counter
v := NULL # node with label̀ (n− 1)
pv := NULL # pred(v)
sv := NULL # succ(v)
ssv := NULL # succ(succ(v))

}

Join(w: Reference){
if (n = 0) {

w ← setup(0, w, w)
pv := w
v := w
sv := w
ssv := w

} else{
w ← setup(̀(n), sv, ssv)
sv ← setSucc(w)
ssv ← setPred(w)
pv := sv
v := w
sv := ssv
ssv := ssv ← getSucc()

}
n := n + 1

}

Leave(̀ : Int, pw: Reference,sw: Reference){
if (n > 0) {

if (n = 1) {
pv := NULL, v := NULL
sv := NULL, ssv := NULL

} else{
removev from the system
pv ← setSucc(sv)
sv ← setPred(pv)
if (pw = v) pw := pv
if (sw = v) sw := sv
movev into position ofw
if (v 6= w) {

v ← setup(̀, pw, sw)
pw ← setSucc(v)
sw ← setPred(v)

}
update pointers
if (pv = w) pv := v
if (sv = w) sv := v
ssv := sv
sv := pv
v := pv ← getPred()
pv := pv ← getPredPred()

}
n := n− 1

}
}
}

Figure 1: Operations needed by the supervisor to maintain a cycle.

4

Peer{

Peer(){
label := 0 # label of peerv
succ := NULL # succ(v)
pred := NULL # pred(v)
sc := newContact() #contact point ofv
Register(sc) # requests tosc forwarded tov

}

Join(s: Reference){
if (s 6= NULL) {

s ← Join(Ref(sc))
super := s # current supervisor

}
}

Leave(){
if (super 6= NULL)

super ← Leave(label, pred, succ)
}

setup(̀ : Int, p : Reference,s : Reference){
label := `
pred := p
succ := s

}

setSucc(w: Reference){
succ := w

}

setPred(w: Reference){
pred := w

}

getSucc(): Reference{
returnsucc

}

getPred(): Reference{
returnpred

}

getPredPred(): Reference{
returnpred ← getPred()

}

Figure 2: Operations needed by a peer to maintain a cycle.

Lemma 8.5 The join and leave operations preserve Invariants 8.2 and 8.4.

Hence, we arrive at the following theorem, which implies that our central requirements on a super-
visor are kept.

Theorem 8.6 At any time, the supervisor only needs to store the current value ofn and a constant
amount of contact information, and the join and leave operations only need a constant amount of
messages and three communication rounds to complete.

However, one important issue that needs to be pointed out is that the supervisor has to handle leave
operations in a strictly sequential manner. Otherwise, it may happen that two neighbors on the cycle
leave at the same time, which can lead to a violation of Invariant 8.2 when reconnecting the nodes
according to the leave operation above. It will be an assignment to think about ways avoiding a strictly
sequential execution of leave requests since this can make the supervisor algorithm less scalable.

8.3 Recursively maintaining a tree

The cycle has a low degree but its diameter and expansion are very bad. The simplest way of achieving
a low diameter is to use a tree. Thus, next we discuss how to recursively maintain a tree. As for the

5

cycle, our basic approach will be to preserve Invariant 8.1. We will also preserve Inviarant 8.2, though
the edges implied by this Invariant will not be part of the tree. But they will tremendously simplify the
task of maintaining a tree, as we will see. Altogether, the following connectivity information has to be
preserved.

Invariant 8.7 Every nodev in the system with label̀v = (`1 . . . `d) is connected to

1. pred(v) andsucc(v) (to form a cycle) and

2. the nodes with labels(`1 . . . `d−21), (`1 . . . `d−101), and(`1 . . . `d−111), if they exist (to form a
tree).

Suppose that this invariant is kept at any time. Then the following lemma follows.

Lemma 8.8 At any time, then nodes (apart from node 0) form a binary tree of depthdlog ne − 1.

Proof. Consider a binary tree withn nodes, and label the edge to the left child of any node “0” and
to the right child of any node “1”. Let the labeltv of every nodev in this tree be the sequence of edge
labels when moving along the unique path from the root tov. Then every nodev with label(`1 . . . `d)
is connected to the node with label(`1 . . . `d−1) (its parent), if it exists, and is also connected to the
nodes with labels(`1 . . . `d0) and(`1 . . . `d1) (its children), if they exist. Definingtv as`v (the label of
v in our network) without the least significant bit, we see that Invariant 8.7(2) fulfills the connectivity
requirements of a tree. Since it follows from Lemma 8.3 that every node has a label of size at most
dlog ne, the depth of the tree can be at mostdlog ne − 1 (when ignoring node 0). ut

Next we specify the connectivity information the supervisor needs in order to maintain the tree.

Invariant 8.9 At any time, the supervisor stores the contact information ofpred(v), v, succ(v), and
succ(succ(v)) wherev is the node with label̀(n).

Hence, the supervisor does not need any further connectivity information beyond what it needs for
the cycle. In order to satisfy Invariants 8.7 and 8.9, the supervisor performs the following actions. If a
new nodew joins, then the supervisor

• informsw that`(n+1) is its label,succ(v) is its predecessor, andsucc(succ(v)) is its successor,
andsucc(v) resp.succ(succ(v)) is its parent (depending oǹ(n + 1)),

• informssucc(v) thatw is its new successor,

• informssucc(succ(v)) thatw is its new predecessor,

• askssucc(succ(v)) to send its successor information to the supervisor, and

• setsn = n + 1.

Hence, from the point of view of the supervisor, the inclusion of a new node is almost identical to the
cycle.

If an old nodew leaves and reports̀w, pred(w), succ(w), parent(w), lchild(w), and rchild(w) to
the supervisor, then the supervisor again executes almost the same steps as for the cycle.

When using the code for the supervisor given in Figure 3 and the code for the peers given in
Figure 4, it is not difficult to prove the following lemma.

6

Supervisor{

Supervisor(){
n := 0 # counter
v := NULL # node with label̀ (n)
pv := NULL # pred(v)
sv := NULL # succ(v)
ssv := NULL # succ(succ(v))

}

Join(w: Reference){
if (n = 0) {

w ← setup(0, w, w, NULL, NULL, NULL)
pv := w
v := w
sv := w
ssv := w

} else{
if (`(n)&2 = 0) {

w ← setup(̀(n), sv, ssv, ssv, NULL, NULL)
ssv ← setRightChild(w)

} else{
w ← setup(̀(n), sv, ssv, sv, NULL, NULL)
sv ← setLeftChild(w)

}
sv ← setSucc(w)
ssv ← setPred(w)
pv := sv
v := w
sv := ssv
ssv := ssv ← getSucc()

}
n := n + 1

}

Leave(̀ : Int, pw: Reference,sw: Reference,
fw, lcw, rcw: Reference){

if (n > 0) {
if (n = 1) {

pv := NULL, v := NULL
sv := NULL, ssv := NULL

} else{
removev from tree
if (`(n− 1)&2 = 0) sv ← setRightChild(NULL)

elsepv ← setLeftChild(NULL)
pv ← setSucc(sv)
sv ← setPred(pv)
if (pw = v) pw := pv
if (sw = v) sw := sv
if (lcw = v) lcw := NULL
if (rcw = v) rcw := NULL
movev into position ofw
if (v 6= w) {

v ← setup(̀ , pw, sw, fw, lcw, rcw)
pw ← setSucc(v)
sw ← setPred(v)
if (`&2 = 0)

fw ← setRightChild(v)
else

fw ← setLeftChild(v)
if (lcw 6= NULL) lcw ← setParent(v)
if (rcw 6= NULL) rcw ← setParent(v)

}
update pointers
if (pv = w) pv := v
if (sv = w) sv := v
ssv := sv
sv := pv
v := pv ← getPred()
pv := pv ← getPredPred()

}
n := n− 1

}
}
}

Figure 3: Operations needed by the supervisor to maintain a tree.

Lemma 8.10 The join and leave operations preserve Invariants 8.7 and 8.9.

Hence, we arrive at the following theorem.

Theorem 8.11 At any time, the supervisor only needs to store the current value ofn and a constant
amount of contact information, and the join and leave operations only need a constant amount of
messages and three communication rounds to complete.

Broadcasting

The dynamic tree can be used for efficient broadcasting. Suppose that some nodev wants to broadcast
information to all other nodes in the system. One way of solving this is that it forwards the broadcast
message directly to the supervisor (so that the supervisor can authorize the broadcast, for example)
and the supervisor initiates sending the broadcast message down the tree. A prerequisite for this is that

7

Peer{
Peer(){

label := 0 # label of peerv
succ := NULL # succ(v)
pred := NULL # pred(v)
parent := NULL
lchild := NULL
rchild := NULL
sc := newContact() #contact point ofv
Register(sc) # requests tosc forwarded tov

}

Join(s: Reference){
if (s 6= NULL) {

s → Join(Ref(sc))
super := s # current supervisor

}
}

Leave(){
if (super 6= NULL)

super ← Leave(label, pred, succ, parent, lchild, rchild)
}

setup(̀ : Int, p : Reference,s : Reference,f : Reference,
lc: Reference,rc: Reference){

label := `
pred := p
succ := s
parent := f
lchild := lc
rchild := rc

}

setSucc(w: Reference){
succ := w

}

setPred(w: Reference){
pred := w

}

setParent(w: Reference){
parent := w

}

setLeftChild(w: Reference){
lchild := w

}

setRightChild(w: Reference){
rchild := w

}

getSucc(): Reference{
returnsucc

}

getPred(): Reference{
returnpred

}

getPredPred(): Reference{
returnpred ← getPred()

}

Figure 4: Operations needed by a peer to maintain a tree.

the supervisor remembers the node with label 0, calledroot by it. If this is the case, then the code in
Figure 5 will be executed correctly.

Inspecting the code, we arrive at the following result, which is optimal for broadcasting in constant
degree networks. Here, thedilation means the longest path taken by a message in the broadcast
operation.

Theorem 8.12 The broadcast operation has a dilation ofO(log n) and requires a work ofO(n).

8.4 Recursively maintaining a deBruijn graph

The tree may be sufficient for broadcasting (if the rate of peers entering and leaving the system is
not too high and departures are graceful), but it is insufficient for applications such as large-scale
distributed computing (also known as grid computing) or file sharing. To take the file sharing example,

8

operations of supervisor

Broadcast(m : Message){
root ← sendDown(m)

}

operations of peer

Broadcast(m : Message){
if (super 6= NULL) super ← Broadcast(m)

}

sendDown(m : Message){
if (lchild 6= NULL) lchild ← sendDown(m)
if (rchild 6= NULL) rchild ← sendDown(m)
handle broadcast message

}

Figure 5: Implementation of a broadcast operation in the dynamic tree.

imagine we want to come up with a supervised form of the Napster service. That is, instead of having a
server that knows every peer and stores an index table of all files offered by the peers for download, we
just have a supervisor that takes care of the topology, but all other operations such as storing the index
table and insert, delete, and search operations on this index table have to be handled by the peers. To
solve this problem in an efficient way, we need a network that allows low-congestion routing, such as
the hypercube or the deBruijn graph. Since the deBruijn graph has the advantage that it has a constant
degree, we will focus on a solution using the deBruijn graph.

Topology control

We will use a recursive approach similar to the dynamic tree. That is, we will maintain a cycle as our
basic structure and will use this cycle to keep the deBruijn edges up-to-date as nodes enter and leave
the system. Here, we will use the following interesting geometric representation of a deBruijn graph.

Definition 8.13 The (binary) deBruijn graph of dimensiond, DB(d), is an undirected graphG =
(V, E) with node setV = {j/2d | j ∈ {0, . . . , 2d − 1}} and edge setE containing all edges{x, y}
with y being the closest predecessor inV to x/2 or (1 + x)/2.

By “closest predecessor toz”, or epred(z), we mean here a node with numbery so that eithery is
equal toz or y is the closest number from below toz.

The casex/2 represents the right-shift operation with new leftmost bit 0, and the casey = (1+x)/2
represents the right-shift operation with new leftmost bit 1. This becomes apparent when looking at the
bit stringsb(x), b(x/2), andb((1 + x)/2). Suppose thatb(x) = (`1 . . . `d). Thenb(x/2) = (0`1 . . . `d)
andb((1 + x)/2) = (1`1 . . . `d). Hence, removing the least significant bit from the bit strings results
in bit strings that are neighbors ofb(x) in the deBruijn graph.

9

Thus, the following connectivity information has to be preserved at every node to form a dynamic
deBruijn graph.

Invariant 8.14 Every nodev in the system with label̀v = (`1 . . . `d) is connected to

1. pred(v) andsucc(v) (to form a cycle),

2. epred(r(`v)/2) andepred((1 + r(`v))/2) (to form the right-shift edges), and

3. all nodesw that have a right-shift edge tov (to form the left-shift edges).

Suppose that this invariant is kept at any time. Then it follows from our previous observations that
the following lemma is true.

Lemma 8.15 At any time, then nodes adhere to the connectivity requirements in Definition 8.13 and
therefore form a dynamic deBruijn graph.

Next we specify the connectivity information that the supervisor needs to maintain in order to
preserve Invariant 8.14.

Invariant 8.16 Any any time, the supervisor stores the contact information of

1. pred(v), v, succ(v), andsucc(succ(v)) wherev is the node with label̀(n− 1), and

2. epred(r(`v)/2) andepred((1 + r(`v))/2).

Item (2) is needed to update the right-shift edges, because as long as the right-shift edges are
up-to-date, Invariant 8.14(3) will make sure that all edges are up-to-date.

When using now the standard scheme in the recursive approach of inserting a node into or removing
a node from the system, then the connections in Invariant 8.16 can always be updated efficiently. The
reason for this is that for anyn,

1. epred(r(`(n))/2) ∈ {epred(r(`(n− 1))/2), succ(epred(r(`(n− 1))/2))},
2. epred((1 + r(`(n)))/2) ∈ {epred((1 + r(`(n− 1)))/2), succ(epred((1 + r(`(n− 1)))/2))},
3. epred(r(`(n− 2))/2) ∈ {epred(r(`(n− 1))/2), pred(epred(r(`(n− 1))/2))}, and

4. epred((1+ r(`(n−2)))/2) ∈ {epred((1+ r(`(n−1)))/2), pred(epred((1+ r(`(n−1)))/2))}.
Items (1) and (2) imply that in a join operation it suffices for the supervisor to ask about the successors
of epred(r(`v)/2) andepred((1 + r(`v))/2), and items (3) and (4) imply that in a leave operation it
suffices for the supervisor to ask about the predecessors ofepred(r(`v)/2) andepred((1 + r(`v))/2),
in addition to the actions necessary to maintain the cycle (and replace one node by another in the leave
operation). Thus, the following theorem can be shown.

Theorem 8.17 At any time, the supervisor only needs to store the current value ofn and a constant
amount of contact information, and the join and leave operations only need a constant amount of
messages and three communication rounds to complete.

10

Dynamic data management

Now, we show how to perform dynamic data management on the supervised deBruijn network. Sup-
pose that we have a hash functionh mapping data items to random real values in[0, 1). Then we use
a strategy similar to the consistent hashing strategy:

Every nodev is responsible for the intervalIv = (r(`pred(v)), r(`v)], and every data item mapped
into Iv is stored atv.

Lemma 8.3 implies that this simple strategy has the following nice property.

Lemma 8.18 At any point, the expected number of data items stored at a node only deviates by a
factor of 2 among the nodes.

The other nice property of the strategy is that it is easy to maintain by the supervisor:

• If a new nodew joins andv is currently the node with label`(n− 1), thenw obtains half of the
interval ofsucc(succ(v)).

• If an old nodew leaves, thenv takes over the interval ofw and gives its old interval back to
succ(v).

Hence, in our strategy is also similar to the cut-and-paste strategy.

Next, we describe how to search for data. Suppose that we want to find the nodev owning data
item d and that we are currently at nodew. Then move to the nodew′ with the label̀ w′ whose suffix
is a maximum prefix ofh(d). Or more precisely, if̀w′ = (`1 . . . `d) andb(h(d)) = (x1x2 . . .) thenw′

maximizes thek for which (`d−k . . . `d) = (x1 . . . xk).
This routing strategy can be seen as simulating the bit-adjustment strategy for the perfect deBruijn

graph via left-shift operations. Using it, the following result can be shown:

Theorem 8.19 Any search request can be executed withO(log n) work.

The same bound can certainly also be achieved for insert and delete requests.

References

[1] C. Riley and C. Scheideler. A distributed hash table for computational grids. In18th Int. Parallel and
Distributed Processing Symposium (IPDPS), 2004.

[2] C. Riley and C. Scheideler. Guaranteed broadcasting using SPON: A supervised peer overlay network. In
3rd International Z̈urich Seminar on Communications (IZS), 2004.

11

