
3 Basic routing theory I – Oblivious routing

Now that we had a look at how well certain families of networks can perform routing, we want to
concentrate on the problem of how to find good paths in networks. One way would be to simply
calculate the best collection of paths for a given routing problem and then to use it to send the messages.
This has two major drawbacks:

• In order to calculate the best paths, global information is needed about the routing problem,
which may consume a lot of time to obtain (if possible at all).

• Even if it were possible to collect information about the routing problem sufficiently fast, it can
still take a lot of time to compute a (near-)optimal solution to that problem (large linear programs
may have to be solved!).

Hence, path selection strategies are needed that allow the nodes to decidelocally in a small amount
of time along which edge to forward a packet. There are basically two approaches to that:oblivious
routing andadaptiverouting. In oblivious routing a system of optional paths is chosen in advance for
every source-destination pair, and every packet for that pair must travel along one of these optional
paths (see Figure 1). Thus, the path a packet takes only depends on its source-destination pair (and
maybe a random choice to select one of the options). Formally, this can be expressed as follows:

Definition 3.1 An oblivious routing strategy is specified by apath systemP and a functionw assigning
a weightto every path inP. w has the property that for every source-destination pair(s, t), the system
of flow pathsPs,t for (s, t) fulfills

∑
q∈Ps,t

w(q) = 1.

In adaptive routing, however, the path taken by a packet may also depend on other packets or events
taking place in the network during its travel.

s

t

1/4

1/8

1/8

1/2

Figure 1: A system of optional paths for the pair(s, t). The numbers indicate how a flow froms to t
has to be split among the paths, or equivalently, with which probability a path will have to be selected
by a packet.

In this section we will concentrate on oblivious routing, and in the next section we will concentrate
on adaptive routing. We start with an example on how to select paths in a mesh, followed by a lower

1

bound on the congestion if every source-destination pair just has a single path. Afterwards, we show
how to get around this lower bound for the hypercube. At the end we refine the path selection problem
for the mesh to be more competitive with best possible solutions than the path selection rule in the next
subsection, which will demonstrate that despite the restrictive nature of oblivious routing it is a quite
powerful concept.

3.1 Routing in a mesh

Consider the two-dimensionaln× n-mesh. Every node in this mesh has a number(x, y) ∈ [n]2 where
x represents its number in thex-dimension andy represents its number in they-dimension. Thex− y
routing strategyworks as follows:

Given a packet with source-destination pair((x1, y1), (x2, y2)), first route the packet along thex-
dimension from(x1, y1) to (x2, y1) and then along they-dimension from(x2, y1) to (x2, y2).

This is certainly an oblivious routing strategy, since the path of a packet only depends on its source
and destination. How well can this strategy now route arbitrary BMFPs? The following theorem gives
an answer to this:

Theorem 3.2 Thex−y routing strategy can route arbitrary BMFPs in ann×n-mesh of unit-capacity
edges with congestion at most4n and dilation at most2n.

Proof. Recall that in a BMFP every node is the source and destination of a demand of at most 4. Thus,
everyx-dimensional line in the mesh injects a total demand of at most4n, and everyy-dimensional
line in the mesh has to absorb a total demand of at most4n. When using thex − y routing strategy,
a total demand of at most4n can therefore overlap at an edge inx-direction, and a total demand of at
most4n can overlap at an edge iny-direction. Hence, the maximum fraction of each demand that can
be satisfied so that we obtain a feasible flow is at least1/4n, and therefore the congestion is at most
4n. Since thex− y routing strategy uses shortest paths and the diameter of then× n-mesh is equal to
2(n− 1), the dilation of thex− y routing strategy can be at most2n. uu

Since the flow number of then×n-mesh is at least2(n−1), thex−y routing strategy therefore has
a performance on BMFPs that is comparable to what can be achieved on average for BMFPs by using
abest possibleset of flow paths for each problem (see the properties of the flow number in Section 1).

3.2 The Borodin-Hopcroft lower bound

The nice property of thex − y routing strategy is that it just has to specify one path for each source-
destination pair. Does this suffice to obtain good oblivious routing strategies for arbitrary networks?
The next theorem shows that there is a limit to this. Apermutation routing problemis a problem in
which every node is the source of exactly one source-destination pair and the destination of exactly
one source-destination pair and all demands are equal to 1. Thus, the routing problem can be described
by a permutationπ : V → V on the set of nodesV .

Theorem 3.3 ([1]) For every graphG of sizen and degreed and every oblivious routing strategy
using only a single path for every source-destination pair, there is a permutationπ that causes an
overlap of at least

√
n/d paths at some node.

2

Proof. Let [n] = {0, . . . , n− 1} represent the set of all nodes inG and letA be any oblivious routing
algorithm forG within our framework. Furthermore, letP = {pi,j : i, j ∈ [n]} be the path system
induced byA. A nodes is called asourcefor nodei w.r.t. t if ps,t moves throughi. In Figure 2, for
example,s3 is a source fori w.r.t. t.

G

3

4

2

1

t

s

s

s

s

i

Figure 2: Illustration of the paths tok.

In the following, we will construct a permutationπ with a high congestion. First we show that for
any nodet there are many nodes that have many sources w.r.t.t. Let A(t, z) = {i ∈ [n] : i has w.r.t.t
at leastz sources} be the set of all nodes that are contained in at leastz different paths ofP that lead
to t. Then the following lemma holds.

Lemma 3.4 For all t ∈ [n]: |A(t, z)| ≥ n
d·z .

Proof. For any fixedt ∈ [n], let L = {ps,t : s ∈ [n] ands 6∈ A(t, z)}, or in words, the number of
paths that start outside ofA(t, z), and letB ⊆ L be the set of all direct neighbors of nodes inA(t, z)
that are not inA(t, z).

G

B

A()t, z

t

Figure 3: Illustration ofA(t, z) andB.

Obviously,|L| = n − |A(t, z)|. Since the maximum degree ofG is d, it further holds that|B| ≤
|A(t, z)| · d. BecauseB ∩ A(t, z) = ∅, every node inB has at mostz − 1 paths that lead tot. Hence,

3

|B| · (z − 1) ≥ L and therefore

|A(t, z)| · d · (z − 1) ≥ |B| · (z − 1) ≥ |L|
⇒ |A(t, z)| · d · (z − 1) ≥ n− |A(t, z)|
⇒ |A(t, z)| · (d · (z − 1) + 1) ≥ n

⇒ |A(t, z)| ≥ n

d · (z − 1) + 1
≥ n

d · z .

uu

Now, letX(z) = {(i, t) : i, t ∈ [n] andi ∈ A(t, z)} =
⋃

t∈[n](A(t, z)× {t}). Then it holds

|X(z)| = ∑

t∈[n]

|A(t, z)| Lemma 3.4≥ n · n

d · z =
n2

d · z .

For every nodei let Ti = {t : (i, t) ∈ X(z)} be the set of all destinations for which at leastz paths
move throughi. Since

∑

i∈[n]

|Ti| = |X(z)| ≥ n2

d · z
but on the other hand there are onlyn setsTi, there must exist a nodei with |Ti| ≥ n

d·z . Choosez so

thatz and|Ti| are of the same size. This is the case forz = n
d·z or z =

√
n/d.

Thus, there must be a nodei for which there are at least
√

n/d destinations that have at least
√

n/d
paths throughi. Simply choosing for all of these destinations one after the other any source that has
not been chosen by a previous destination results in a partial permutation with an overlap of at least√

n/d paths ati. uu

Thus, for constant degree networks with unit-capacity edges, the theorem implies that the con-
gestion for routing a permutation can be as high asΘ(

√
n). For unit-capacity networks with flow

numberO(log n) such as the butterfly this is unacceptably high, since we know from Section 1 that
every BMFP and therefore also every permutation routing problem can be solved in the butterfly with
congestion and dilation at mostO(log n).

3.3 Valiant’s Trick

We saw in Section 2.1 that oblivious routing strategies with only a single path for each source-
destination pair can have an extremely high congestion. But what about multiple paths? LetS be
the best possible solution for the multicommodity flow problem underlying the definition ofF , i.e.
F = max{C(S), D(S)}. From Theorem 1.10 we know that by applyingS twice we can solveevery
BMFP with congestion and dilation at most2F . This works in a way that for every source-destination
pair (s, t) we first branch off the demand froms to all other nodes in the system and afterwards reunite
it at the destinationt. UsingS twice still gives an oblivious path system, but now we have many
optional paths for a flow. In the case of actually sending packets, this boils down to the following
strategy, which is a generalization of a well-known trick by Valiant [4]:

4

For every packet with source-destination pair(s, t), choose a random intermediate destination
v ∈ [n] with probability c(v)/c(V) and send the packet first along a flow path inS from s to v and
then along a flow path inS from v to t. (If there is more than one path froms to v resp.v to t in S,
then there will be another random experiment for picking one of these optional paths based on their
flow values).

For the simple case thatS only has a single path for every source-destination pair andc(v) is the
same for all nodesv, this boils down to:

For every packet with source-destination pair(s, t), choose an intermediate destinationv ∈ [n]
uniformly at random and send the packet first along the path inS from s to v and then along the path
in S from v to t.

To demonstrate the effect of this trick, let us consider routing in thed-dimensional hypercube.
Suppose that we use for every source-destination pair(sd−1, . . . , s0), (td−1, . . . , t0) ∈ {0, 1}d the path
that first adjustss0 to t0, thens1 to t1, and so on, until all bits have been set to the destination’s values.
(I.e. these paths form our systemS.) Using Theorem 3.3, there must be a permutation that has an
overlap of at least

√
2d/d at a node and therefore a congestion of at least(

√
2d/d)/d at an edge when

usingS directly. However, if we use Valiant’s trick, we arrive at the following result.

Theorem 3.5 Using Valiant’s trick in thed-dimensional hypercube, any BMFP can be routed with
congestion at most4d and dilation at most2d.

Proof. Since thed-dimensional hypercube has a diameter ofd andS uses shortest paths, the dilation
of Valiant’s trick must certainly be at most2d. Thus, it remains to bound the congestion. First, consider
the congestion forS. Since every source-destination pair (or commodity) inS has a path of length of
at mostd and there are(2d)2 commodities (since there are2d nodes in the hypercube), the sum of the
lengths of all paths inS is at mostd · 22d. Because the hypercube hasd · 2d/2 edges and, due to the
symmetry of the hypercube, every edge is used by the same amount of paths inS, the number of paths
overlapping at an edge is equal to

d·2d

d · 2d/2
= 2d+1 . (1)

On the other hand, the demand for every path is equal to

d · d
d · 2d

=
d

2d
. (2)

So the total demand crossing an edge is equal to(1) · (2) = 2d, but every edge can only support a flow
of 1. Hence, the maximum concurrent flow faluef for S is 1/(2d). This gives a congestion of2d for
S and therefore a congestion of4d for Valiant’s trick, because it doubles the overlap. uu

In general, it follows from Theorem 1.10:

Theorem 3.6 For any networkG with flow numberF it holds: when using Valiant’s trick on an
optimal path collection forF , any BMFP can be routed inG with congestion and dilation at most
O(F).

5

3.4 Oblivious routing for the mesh revisited

As we saw earlier, it is not really necessary to use Valiant’s trick for the mesh to be good for all
BMFPs in a sense that the congestion and dilation is always close to the flow number. However, if we
are more picky here, then thex− y routing strategy is still not really satisfying, since there are routing
problems (other than BMFPs) where thex − y routing strategy would perform very poorly. Imagine,
for example, that we have a multicommodity flow problem for then×n-mesh with source-destination
pairs((i, 0), (m, i)) for all i ∈ {0, . . . ,m−1}, where each pairi has a demand ofdi = m. When using
thex− y routing strategy, then all paths for the pairs would go though the edge{(m− 1, 0), (m, 0)},
causing a congestion ofm2. If, however, all pairs would have used ay − x routing strategy, the
congestion would have only beenm (see Figure 4). In the first case it would takeΘ(m2) time steps
to send a flow ofm for every source-destination pair, whereas in the second case it would only take
O(m) steps to do this. Hence, there would be a large difference between what thex − y strategy can
achieve and what can be achieved in the best case. A similar counterexample can also be found for the
y − x strategy. Also, Valiant’s trick does not help, because it would create a dilation ofΘ(n), causing
a time ofΩ(n) to deliver all flows, whereas for the case thatm =

√
n this can already be achieved in

O(
√

n) time steps. So we need a different approach.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

x-y routing strategy

y-
x

ro
ut

in
g

st
ra

te
gy

Figure 4:x− y routing vs.y − x routing on a mesh.

Fortunately, there is a better approach. For simplicity, we assume that we have ann × n-mesh of
unit-capacity edges wheren is a power of 2. For every source-destination pair(s, t), a system of flow
paths froms to t is recursively constructed in the following way:

Let Ms,t be the smallest possible2k × 2k-mesh that hass in a corner and that containst (if this
is not possible,Ms,t represents the wholen× n-mesh). The flow paths are constructed recursively as
shown in Figure 5. Initially, all the flow starts ats. Then, it is evenly distributed among all nodes in
M0 using a mixedx − y andy − x routing strategy as sketched in Figure 5(b). That is, each node in
M0 receives a quarter of the flow, and the flow for the node at the opposite corner ofs in M0 comes in

6

equal parts from the other two nodes inM0. Afterwards, the flow inM0 is evenly distributed among
all nodes inM4. Finally, the flow inM4 is evenly distributed among all nodes inMs,t. The same is
done fromt. Thus, the beginning and endpoints of the flow paths froms andt meet inMs,t, resulting
in a legal flow froms to t.

M2 M3

M1

9

M6

M4

M7

M5

10M M11

M8 M

M0

s

t

(b)(a)

1/4 remains

1/8

1/8

3/8

3/8

Figure 5: Recursive routing strategy froms to t. (a) illustrates the recursive decomposition into sub-
meshes and (b) illustrates the distribution of flow from the shaded sub-mesh to the three other sub-
meshes in its next higher mesh.

It is clear that this strategy is oblivious, but how good is it? For this we need some notation. For
any multicommodity flow problemP in then× n-mesh letCP

OPT be the best possible congestion and
andDP

OPT be the best possible dilation achievable forP (by possibly different solutions).

Theorem 3.7 For any multicommodity flow problemP our recursive routing scheme has a congestion
of O(CP

OPT · log n) and a dilation ofO(DP
OPT).

Proof. Suppose thatMs,t is a2k×2k-mesh. Thens andt must have a distance of at least2k−1. On the
other side, the longest possible path our routing strategy would construct from some nodes to some
nodet in Ms,t is

2
k−1∑

i=0

2(2i − 1) + 2(2k − 1) ≤ 4 · 2k + 2 · 2k = 6 · 2k .

Thus, the dilation of our routing strategy is at most a constant times the maximum distance between a
source-destination pair inP and therefore bounded byO(DP

OPT).
Hence, it remains to bound the congestion. Our aim will be to show that for everyk, the congestion

caused by all2k × 2k-meshes used by source-destination pairs is at mostO(CP
OPT). Since there are

only log n differentk, this results in a total congestion ofO(CP
OPT · log n). So consider some fixedk.

Given a source-destination pair(s, t) with demandd, let M be a2k × 2k-mesh that is used by(s, t) to
spread its demand to all nodes inM as shown in Figure 5(b). In this case,M has a2k−1 × 2k−1-mesh
M ′ in which the demand was initially evenly distributed among all of its nodes. That is, every node in

7

M ′ had a demand ofd/22(k−1). When using a mixedx− y andy − x routing strategy for spreading it
out toM , every edge is crossed by a demand of at most

3

8
· d

22(k−1)
· 2k−1 ≤ d

2k
. (3)

Now consider an edgee that is contained inm different2k × 2k-meshesM1, . . . ,Mm that belong to
source-destination pairs(s1, t1), . . . , (sm, tm) with demandsd1, . . . , dm. Then it follows from (3) that
e is crossed by a total demand of at most2−k ·∑m

i=1 di. On the other hand, one can draw a2k+1×2k+1-
meshM arounde that contains all sub-meshesMi. Suppose that of the total demandd =

∑m
i=1 di

a demand ofd′ is routed completely inside ofM from source to destination, and a demand ofd′′ is
leaving or enteringM at some point. Since the distance betweensi andti must be at least2k−1 for
everyi, the average amount of the demandd′ crossing an edge inM must be at least

2k−1d′

2 · 22(k+1)
=

d′

2k+4
.

Furthermore, the average amount of demand crossing an edge in(M, M̄) must be at least

d′′

4 · 2k+1
=

d′′

2k+3
.

Since eitherd′ or d′′ must be at leastd/2, everyrouting strategy must therefore have an edge that is
crossed by a total demand ofΩ(d/2k), i.e. CP

OPT = Ω(d/2k). On the other hand, we calculated that
edgee is crossed by a demand ofO(d/2k). Hence, the congestion caused by our recursive scheme is
O(CP

OPT), which completes the proof. uu

This result is optimal, since it is known that foreveryoblivious routing strategy on then×n-mesh
there is a routing problemP for which the strategy has a congestion ofΩ(CP

OPT · log n) [2].
One may ask whether our upper bound for oblivious routing on a mesh can also be extended to

other networks. Surprisingly, R̈acke recently showed that when only looking at the congestion this is
possible:

Theorem 3.8 ([3]) For every network with non-negative capacities there is an oblivious routing strat-
egy that achieves for every multicommodity flow problemP a congestion ofO(CP

OPT · polylog(n)).

Hence, oblivious routing is a surprisingly powerful concept.

References

[1] A. Borodin and J. Hopcroft. Routing, merging, and sorting on parallel models of computation.Journal of
Computer and System Sciences, 30:130–145, 1985.

[2] B. Maggs, F. M. auf der Heide, B. V̈ocking, and M. Westermann. Exploiting locality for networks of limited
bandwidth. InProc. of the 38th IEEE Symp. on Foundations of Computer Science (FOCS), pages 284–293,
1997.

[3] H. Räcke. Minimizing congestion in general networks. InProc. of the 43rd IEEE Symp. on Foundations of
Computer Science (FOCS), 2002.

[4] L. Valiant. A scheme for fast parallel communication.SIAM Journal on Computing, 2(11):350–361, 1982.

8

