3 Basic routing theory | — Oblivious routing

Now that we had a look at how well certain families of networks can perform routing, we want to
concentrate on the problem of how to find good paths in networks. One way would be to simply
calculate the best collection of paths for a given routing problem and then to use it to send the messages.
This has two major drawbacks:

¢ In order to calculate the best paths, global information is needed about the routing problem,
which may consume a lot of time to obtain (if possible at all).

e Even if it were possible to collect information about the routing problem sufficiently fast, it can
still take a lot of time to compute a (near-)optimal solution to that problem (large linear programs
may have to be solved!).

Hence, path selection strategies are needed that allow the nodes toldealtiein a small amount

of time along which edge to forward a packet. There are basically two approaches tolnatus

routing andadaptiverouting. In oblivious routing a system of optional paths is chosen in advance for
every source-destination pair, and every packet for that pair must travel along one of these optional
paths (see Figure 1). Thus, the path a packet takes only depends on its source-destination pair (and
maybe a random choice to select one of the options). Formally, this can be expressed as follows:

Definition 3.1 An oblivious routing strategy is specified bpath systen® and a functiono assigning
aweightto every path inP. w has the property that for every source-destination gait ), the system
of flow pathsP; ; for (s, t) fulfills 3> cp_ , w(q) = 1.

In adaptive routing, however, the path taken by a packet may also depend on other packets or events
taking place in the network during its travel.

Figure 1: A system of optional paths for the pgirt). The numbers indicate how a flow frosrto ¢
has to be split among the paths, or equivalently, with which probability a path will have to be selected
by a packet.

In this section we will concentrate on oblivious routing, and in the next section we will concentrate
on adaptive routing. We start with an example on how to select paths in a mesh, followed by a lower
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bound on the congestion if every source-destination pair just has a single path. Afterwards, we show
how to get around this lower bound for the hypercube. At the end we refine the path selection problem
for the mesh to be more competitive with best possible solutions than the path selection rule in the next
subsection, which will demonstrate that despite the restrictive nature of oblivious routing it is a quite
powerful concept.

3.1 Routing in a mesh

Consider the two-dimensionalx n-mesh. Every node in this mesh has a nunibey) € [n)*> where
x represents its number in thedimension and represents its number in thedimension. The: — y
routing strategyworks as follows:

Given a packet with source-destination p@dir;, v1), (z2,v2)), first route the packet along the
dimension from(z, y;) to (x2, y; ) and then along thg-dimension from(xs, y;) t0 (2, y2).

This is certainly an oblivious routing strategy, since the path of a packet only depends on its source
and destination. How well can this strategy now route arbitrary BMFPs? The following theorem gives
an answer to this:

Theorem 3.2 Thex —y routing strategy can route arbitrary BMFPs in anx n-mesh of unit-capacity
edges with congestion at mast and dilation at mosgn.

Proof. Recall thatin a BMFP every node is the source and destination of a demand of at most 4. Thus,
everyz-dimensional line in the mesh injects a total demand of at miesand everyy-dimensional

line in the mesh has to absorb a total demand of at mestVhen using the: — y routing strategy,

a total demand of at mogt can therefore overlap at an edgerhdirection, and a total demand of at
most4n can overlap at an edge indirection. Hence, the maximum fraction of each demand that can
be satisfied so that we obtain a feasible flow is at l@a$t, and therefore the congestion is at most

4n. Since ther — y routing strategy uses shortest paths and the diameter afthe-mesh is equal to

2(n — 1), the dilation of ther — y routing strategy can be at masi. M

Since the flow number of thex n-mesh is at least(n — 1), thex — y routing strategy therefore has
a performance on BMFPs that is comparable to what can be achieved on average for BMFPs by using
abest possiblset of flow paths for each problem (see the properties of the flow number in Section 1).

3.2 The Borodin-Hopcroft lower bound

The nice property of the — y routing strategy is that it just has to specify one path for each source-
destination pair. Does this suffice to obtain good oblivious routing strategies for arbitrary networks?
The next theorem shows that there is a limit to thispémutation routing problers a problem in

which every node is the source of exactly one source-destination pair and the destination of exactly
one source-destination pair and all demands are equal to 1. Thus, the routing problem can be described
by a permutationr : V' — V' on the set of nodes.

Theorem 3.3 ([1]) For every graphG of sizen and degreel and every oblivious routing strategy
using only a single path for every source-destination pair, there is a permutatithat causes an

overlap of at least/n/d paths at some node.



Proof. Let[n] ={0,...,n — 1} represent the set of all nodes@hand letA be any oblivious routing
algorithm for G within our framework. Furthermore, 162 = {p; ; : i,j € [n]} be the path system
induced by.4. A nodes is called asourcefor node: w.r.t. ¢ if p,;, moves through. In Figure 2, for
exampless is a source fof w.r.t. ¢.

Figure 2: lllustration of the paths ta

In the following, we will construct a permutationwith a high congestion. First we show that for
any nodet there are many nodes that have many sources ket A(t, z) = {i € [n] : i has w.r.tz
at leastz source$ be the set of all nodes that are contained in at leakfferent paths ofP that lead
to ¢t. Then the following lemma holds.

Lemma 3.4 Forallt € [n]: |A(t,2)| > I-.

Proof. For any fixedt € [n], letL = {p,, : s € [n] ands & A(t, z)}, or in words, the number of
paths that start outside of(¢, z), and letB C L be the set of all direct neighbors of nodesAfy, )
that are not inA(t, z).

Figure 3: Illustration ofA(t, =) and B.

Obviously,|L| = n — |A(t, z)|. Since the maximum degree 6fis d, it further holds thatB| <
|A(t, z)| - d. Because3 N A(t, z) = (), every node inB has at most — 1 paths that lead te. Hence,
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|B| - (2 — 1) > L and therefore

A(t,2)| - d- (== 1) > |B| - (z = 1) > |L|
= JA(t,2)-d- (z—1)>n—|A(t 2)]
= |A(t,2)|-(d-(z—1)+1) >
= |A(t2)| = . .

> .
d-(z—1)4+1"d-z

Now, let X (z) = {(i,t) : i,t € [n] andi € A(t, 2)} = Usep (A(t, 2) x {t}). Then it holds

Lemma 3.4 n n

2= A2 = LT g

For every node let7; = {t : (i,t) € X(z)} be the set of all destinations for which at leagiaths

move through. Since
2

ST = X () 2 T

1€[n]
but on the other hand there are onlsetsT;, there must exist a nodewith |7;| > . Choosez so
thatz and|T;| are of the same size. This is the casedfer 7~ orz = |/n/d.

Thus, there must be a nodéor which there are at Iea§tn/d destinations that have at Iew
paths throughi. Simply choosing for all of these destinations one after the other any source that has
not been chosen by a previous destination results in a partial permutation with an overlap of at least

\/n/d paths at. M

Thus, for constant degree networks with unit-capacity edges, the theorem implies that the con-
gestion for routing a permutation can be as highodsg/n). For unit-capacity networks with flow
numberO(logn) such as the butterfly this is unacceptably high, since we know from Section 1 that
every BMFP and therefore also every permutation routing problem can be solved in the butterfly with
congestion and dilation at moStlog n).

3.3 Valiant’'s Trick

We saw in Section 2.1 that oblivious routing strategies with only a single path for each source-
destination pair can have an extremely high congestion. But what about multiple paths?beet

the best possible solution for the multicommodity flow problem underlying the definitidn, oke.

F = max{C(S), D(S)}. From Theorem 1.10 we know that by applyi§gwice we can solvevery
BMFP with congestion and dilation at mast'. This works in a way that for every source-destination
pair (s, t) we first branch off the demand frogto all other nodes in the system and afterwards reunite

it at the destinatiort. Using S twice still gives an oblivious path system, but now we have many
optional paths for a flow. In the case of actually sending packets, this boils down to the following
strategy, which is a generalization of a well-known trick by Valiant [4]:



For every packet with source-destination pgirt), choose a random intermediate destination
v € [n] with probability c¢(v)/c(V') and send the packet first along a flow pattsSifirom s to v and
then along a flow path i& from v to ¢. (If there is more than one path frosto v resp.v totin S,
then there will be another random experiment for picking one of these optional paths based on their
flow values).

For the simple case th& only has a single path for every source-destination paircandis the
same for all nodes, this boils down to:

For every packet with source-destination p@irt), choose an intermediate destinatiore [n]
uniformly at random and send the packet first along the pathfiom s to v and then along the path
in S fromv tot.

To demonstrate the effect of this trick, let us consider routing inddsgmensional hypercube.
Suppose that we use for every source-destination(pair, . . . , so), (ta_1, - . ., to) € {0,1}% the path
that first adjusts to ¢y, thens; to ¢;, and so on, until all bits have been set to the destination’s values.
(l.e. these paths form our systeth) Using Theorem 3.3, there must be a permutation that has an

overlap of at leas{/2?/d at a node and therefore a congestion of at légst'/d)/d at an edge when
usingS directly. However, if we use Valiant’s trick, we arrive at the following result.

Theorem 3.5 Using Valiant's trick in thed-dimensional hypercube, any BMFP can be routed with
congestion at mosid and dilation at mos2d.

Proof. Since thel-dimensional hypercube has a diameted @hdS uses shortest paths, the dilation
of Valiant’s trick must certainly be at mo2t.. Thus, it remains to bound the congestion. First, consider
the congestion fof. Since every source-destination pair (or commodityy ihas a path of length of

at mostd and there ar¢2?)? commodities (since there a2é nodes in the hypercube), the sum of the
lengths of all paths ii5 is at mostd - 22¢. Because the hypercube has2¢/2 edges and, due to the
symmetry of the hypercube, every edge is used by the same amount of p&theeémumber of paths
overlapping at an edge is equal to

d-* d+1
d-24/2 2 @)
On the other hand, the demand for every path is equal to
d-d d
d-24 247 @

So the total demand crossing an edge is equélto(2) = 2d, but every edge can only support a flow
of 1. Hence, the maximum concurrent flow falfidor S is 1/(2d). This gives a congestion @fl for
S and therefore a congestion 4f for Valiant’s trick, because it doubles the overlap. M

In general, it follows from Theorem 1.10:

Theorem 3.6 For any networkG with flow numberF it holds: when using Valiant’s trick on an
optimal path collection forF’, any BMFP can be routed i’ with congestion and dilation at most
O(F).



3.4 Oblivious routing for the mesh revisited

As we saw earlier, it is not really necessary to use Valiant’s trick for the mesh to be good for all
BMFPs in a sense that the congestion and dilation is always close to the flow number. However, if we
are more picky here, then the— y routing strategy is still not really satisfying, since there are routing
problems (other than BMFPs) where the- y routing strategy would perform very poorly. Imagine,

for example, that we have a multicommodity flow problem for#then-mesh with source-destination
pairs((s,0), (m,q)) foralli € {0,...,m—1}, where each pairhas a demand af, = m. When using

thex — y routing strategy, then all paths for the pairs would go though the édge- 1,0), (m,0)},
causing a congestion of?. If, however, all pairs would have usedya— x routing strategy, the
congestion would have only been (see Figure 4). In the first case it would ta®ém?) time steps

to send a flow ofn for every source-destination pair, whereas in the second case it would only take
O(m) steps to do this. Hence, there would be a large difference between what-thestrategy can
achieve and what can be achieved in the best case. A similar counterexample can also be found for the
y — x strategy. Also, Valiant’s trick does not help, because it would create a dilati&frof causing

a time of(2(n) to deliver all flows, whereas for the case that= \/n this can already be achieved in
O(y/n) time steps. So we need a different approach.

X-y routing strategy
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Figure 4.z — y routing vs.y — x routing on a mesh.

Fortunately, there is a better approach. For simplicity, we assume that we have armesh of
unit-capacity edges whereis a power of 2. For every source-destination gait), a system of flow
paths froms to ¢ is recursively constructed in the following way:

Let M., be the smallest possib® x 2*-mesh that has in a corner and that containg(if this
is not possible)/; ; represents the whole x n-mesh). The flow paths are constructed recursively as
shown in Figure 5. Initially, all the flow starts at Then, it is evenly distributed among all nodes in
M, using a mixedr — y andy — x routing strategy as sketched in Figure 5(b). That is, each node in
M, receives a quarter of the flow, and the flow for the node at the opposite cornar 6f, comes in
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equal parts from the other two nodesify. Afterwards, the flow in)/, is evenly distributed among
all nodes in)M,. Finally, the flow in), is evenly distributed among all nodes it ,. The same is
done fromt. Thus, the beginning and endpoints of the flow paths fscand¢ meet in)/; ,, resulting
in a legal flow froms to ¢.
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Figure 5: Recursive routing strategy fronto ¢. (a) illustrates the recursive decomposition into sub-
meshes and (b) illustrates the distribution of flow from the shaded sub-mesh to the three other sub-
meshes in its next higher mesh.

It is clear that this strategy is oblivious, but how good is it? For this we need some notation. For
any multicommodity flow problen® in then x n-mesh letCZ, be the best possible congestion and
and D{, be the best possible dilation achievable fotby possibly different solutions).

Theorem 3.7 For any multicommaodity flow problef our recursive routing scheme has a congestion
of O(CEpr - logn) and a dilation ofO(DEpr).

Proof. Suppose that/, , is a2* x 2*-mesh. Then andt must have a distance of at least!. On the
other side, the longest possible path our routing strategy would construct from some tocstame
nodet in M, is

k—1
23 22— 1) +2(2"—1)<4-2"+2.2"=6.2".
=0

Thus, the dilation of our routing strategy is at most a constant times the maximum distance between a
source-destination pair iff and therefore bounded 6y( Do ).
Hence, it remains to bound the congestion. Our aim will be to show that for &y#rg congestion
caused by al* x 2¥-meshes used by source-destination pairs is at meSt ). Since there are
only log n differentk, this results in a total congestion 6{CJ, - logn). So consider some fixekd
Given a source-destination pdir, t) with demandi, let M be a2* x 2*-mesh that is used b, t) to
spread its demand to all nodeshin as shown in Figure 5(b). In this cas¥, has a2~ x 2¢¥~!-mesh
M’ in which the demand was initially evenly distributed among all of its nodes. That is, every node in



M’ had a demand af/22*~1), When using a mixed — y andy — z routing strategy for spreading it
out to M, every edge is crossed by a demand of at most

3 d d

k—1
g 2 T Sgr )
Now consider an edgethat is contained imn different2* x 2¥-meshes\/,, . .., M,, that belong to
source-destination paifs,, t;), ..., (Sm, t,,) With demandsi,, . .., d,,. Then it follows from (3) that

e is crossed by a total demand of at mdst - 7, d;. On the other hand, one can dra@*a® x 2++!-
mesh )/ arounde that contains all sub-meshdsg;. Suppose that of the total demadd= 1", d;
a demand of!’ is routed completely inside af/ from source to destination, and a demandi'6is
leaving or enteringl/ at some point. Since the distance betweegandt; must be at leas?*~! for
everyi, the average amount of the demati@rossing an edge in/ must be at least
2k:—1d/ d
9. 92(k+1) _ Qk+d -

Furthermore, the average amount of demand crossing an ed@g it¥) must be at least
d// d//

4.9k+1 k43

Since either!’ or d” must be at least/2, everyrouting strategy must therefore have an edge that is
crossed by a total demand Qfd/2%), i.e. Cipr = Q(d/2%). On the other hand, we calculated that
edgec is crossed by a demand 6f(d/2%). Hence, the congestion caused by our recursive scheme is
O(CEpr), which completes the proof. M

This result is optimal, since it is known that feveryoblivious routing strategy on the x n-mesh
there is a routing problen® for which the strategy has a congestioff"J, . - log n) [2].

One may ask whether our upper bound for oblivious routing on a mesh can also be extended to
other networks. Surprisingly,&ke recently showed that when only looking at the congestion this is
possible:

Theorem 3.8 ([3]) For every network with non-negative capacities there is an oblivious routing strat-
egy that achieves for every multicommodity flow probleacongestion 0O (CEp - polylog(n)).

Hence, oblivious routing is a surprisingly powerful concept.
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