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ABSTRACT 

We present an image-guided intervention system based on tracked 3D elasticity imaging (EI) to provide a novel 
interventional modality for registration with pre-operative CT. The system can be integrated in both laparoscopic and 
robotic partial nephrectomies scenarios, where this new use of EI makes exact intra-operative execution of pre-operative 
planning possible. Quick acquisition and registration of 3D-B-Mode and 3D-EI volume data allows intra-operative 
registration with CT and thus with pre-defined target and critical regions (e.g. tumors and vasculature). Their real-time 
location information is then overlaid onto a tracked endoscopic video stream to help the surgeon avoid vessel damage 
and still completely resect tumors including safety boundaries. 

The presented system promises to increase the success rate for partial nephrectomies and potentially for a wide range of 
other laparoscopic and robotic soft tissue interventions. This is enabled by the three components of robust real-time 
elastography, fast 3D-EI/CT registration, and intra-operative tracking. With high quality, robust strain imaging (through 
a combination of parallelized 2D-EI, optimal frame pair selection, and optimized palpation motions), kidney tumors that 
were previously unregistrable or sometimes even considered isoechoic with conventional B-mode ultrasound can now be 
imaged reliably in interventional settings. Furthermore, this allows the transformation of planning CT data of kidney 
ROIs to the intra-operative setting with a markerless mutual-information-based registration, using EM sensors for intra-
operative motion tracking. 

Overall, we present a complete procedure and its development, including new phantom models – both ex vivo and 
synthetic – to validate image-guided technology and training, tracked elasticity imaging, real-time EI frame selection, 
registration of CT with EI, and finally a real-time, distributed software architecture. Together, the system allows the 
surgeon to concentrate on intervention completion with less time pressure.  
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1. INTRODUCTION  

1.1 Motivation 

Laparoscopic interventions are notoriously difficult for surgeons because of the limited field of view and limited 
dexterity associated with transcutaneous access. Laparoscopic partial nephrectomies – the standard of care treatment for 
a range of kidney cancers – compound these difficulties when sub-surface tumors are to be resected without the aid of 
visible landmarks for orientation. The current state-of-the-art approach of planning the intervention on CT data with only 
endoscopic intra-operative navigation is therefore error-prone because of limited intra-operative feature visibility. A 
major difficulty of these procedures is the time pressure the surgeon is facing after clamping the renal artery. The entire 
procedure of tumor localization, resection, stopping blood loss, and closure of the kidney has to be completed within 30 
minutes. The complex internal renal anatomy (Figure 1) complicates this up to the point where indicated partial 
nephrectomies may become impossible. Therefore, advances in intra-operative imaging, registration with pre-operative 
plans, and navigation promise to substantially increase safety and applicability of these interventions. 
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Figure 1: Excised kidney (front) after aborted partial nephrectomy. Note its complex internal anatomy with blood vessels 
close to the resected tumor (top right). 

1.2 Approach 

We propose a tracked laparoscopic system (Figure 2) for ultrasound-based 3D strain imaging (elasticity imaging/EI) to 
provide a novel modality for registration with pre-operative CT. Quick acquisition and registration of EI volume data 
allows intra-operative registration with CT and, by extension, with pre-defined locations of target and critical regions 
(e.g. tumors and vasculature). Dynamic registration or tracking is maintained by tracking the positions of the camera and 
the target regions using an electromagnetic (EM) localizer. The real-time location information of the target regions is 
then overlaid onto the tracked endoscopic video stream (the simple video amounts to the current standard procedure) to 
help the surgeon avoid vessel damage and still completely resect the tumor including safety boundaries. 

2. SYSTEM 

2.1 Methods 

This approach is facilitated through real-time elastography, fast 3D-EI/CT registration, and intra-operative tracking. 
While real-time elastography modules do exist for commercial ultrasound (US) systems, they are extremely sensitive 
with respect to suboptimal palpation motion. It is difficult for sonographers to generate proper palpation motions (axial 
motion at the right speed) with conventional handheld probes; this is exacerbated by the use of laparoscopic US probes 
(lapUS) at the distal end of long tools. We therefore propose a combination of methods to improve the robustness of 
laparoscopic EI (lapEI). 

First, the strain computation process itself is optimized. Unlike current approaches that mostly rely on cross-correlation 
or phase-zero methods, dynamic programming algorithms to compute the underlying tissue displacement maps exhibit 
fewer dropouts and naturally include displacement continuity [5] (Figure 4). Second, extending the conventional 1D (A-
line) displacement estimation to a 2D method makes the process more robust under lateral (non-axial) motions. As this 
process can be partially parallelized, it has been ported to a GPU-based implementation to increase the achievable frame 
rate [1]. Finally, as the linear lapUS probe is electromagnetically tracked to allow 3D volume reconstruction, this 
information can be used to select optimal frame pairs for strain computation based on their relative poses [2]. This 
significantly reduces the amount of low-quality EI frames being generated (Figure 5), and improves the quality of the 
reconstructed volume. 

The second key step in the proposed system is registration of the intra-operative situation with the pre-operative CT and 
its associated intervention plan. With the availability of EI, being a simple imaging modality sensitive to relevant 
features, previously segmented regions (the “plan”) can be associated with the patient anatomy via registration of 3D-EI 
and CT. This registration step, however, is hampered by a variety of difficulties related to ultrasound. Apart from the 
need for tracking the probe, the field-of-view as well as the amount of discernible features are limited. As the region-
based stiffness values of EI data are related to CT density information, an information-based metric (Mattes Mutual 
Information in this case) is used for registration [4]. 

Finally, these static registrations are maintained dynamically by associating an EM sensor with each component. With 
the segmentation plan rigidly associated with the underlying CT, which in turn is registered to the intra-operative tracked 
3D-EI, the pre-operative plan regions are then present in tracking coordinates. One EM sensor is inserted beforehand 
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into the tumor itself under US guidance to ensure proper association of the tumor region of interest (ROI) with the actual 
site while the kidney is moved around during the intervention. Previous work in our group has augmented an endoscope 
(a standard component in laparoscopic surgery) with calibration and EM tracking, so the ROIs – represented as 3D 
surface objects – can then be overlaid onto the video stream in a real-time augmented reality (AR) setup. This serves as 
immediate feedback to the surgeon as to where he is allowed to cut into the tissue without damaging underlying 
structures or leaving behind tumor tissue that was to be resected. 

All of the described steps were validated using a variety of realistic kidney phantom models, both physiological and 
synthetic, specifically aimed to mimic actual kidneys, to demonstrate feasibility of the proposed system. More detailed 
descriptions will be given in the following sections. 

 
Figure 2: Proposed system components, comprising intra-operative situation (center), EM tracker (top left), endoscopic 
camera and ultrasound probe (around center), and pre-operative CT with planning data (bottom left). 

2.2 Kidney Phantoms 

The system has been developed and validated on both physiological porcine kidney phantoms as well as on synthetic 
ones. The challenges faced by surgeons in the actual intervention are closely tied to the visibility of the target and critical 
regions (i.e. tumor lesions as well as blood and collective vasculature) within the kidney. In pre-operative CT, both kinds 
of regions are discernible, which allows planning of the intervention. However, while the tumors may be palpable intra-
operatively, they are often isoechoic, i.e. invisible under standard B-mode ultrasound. Furthermore, manual palpation is 
all but impossible in laparoscopic interventions. Therefore, the pre-operative plan can be transferred into the OR 
situation only approximately, with potentially catastrophic consequences for the operation outcome, where tumor 
excision in a partial nephrectomy can turn into total resection. Strain imaging can detect lesions of different stiffness 
deep within the tissue, which makes tumor detection and delineation possible. 

In freshly-excised physiological phantoms (, flushed with saline solution), both thermal ablation and material injection 
create lesion areas with properties similar to real tumors. Contrast material injection resulted in CT images comparable 
to contrast-enhanced human kidney CT scans in different phases (cf. [4] for more details). With these phantoms 
exhibiting a high variability with respect to time-to-decomposition, a decision to transfer these results to synthetic 
phantoms was made. Based on our experience with kidney and lesion phantoms, we designed novel “Hopkins kidney 
phantom” prototypes with inserted lesions of varying stiffness and B-mode visibility. These were produced by CIRS Inc. 
(Norfolk, VA) and proved to be similar to physiological ones in all relevant aspects (cf. Figure 10 for those Hopkins 
phantoms in use; Figure 6 for EI from a different synthetic phantom). Details for both kinds of phantoms will be 
presented in a separate publication. 
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Figure 3: Physiological porcine kidney phantom. Embedded in gel (left), reproducible strain imaging of the contours as well 
as of internal structures (right; CT with contrast material in arterial-phase analogue and natural tumor) is possible. 

2.3 Elasticity Imaging 

In the context of the presented system, elasticity imaging (EI) makes it possible to visualize a class of renal tumors that 
are invisible in B-Mode due to their isoechoicity. In particular for laparoscopic ultrasound with a small field-of-view, the 
depiction of internal structures including tumors is important for successful registration with CT. Furthermore, EI images 
are by nature speckle-free and, even more importantly, “tissue-region-based” in a fashion similar to CT (unlike 
ultrasound B-Mode), which makes it possible to register them with CT without any further preprocessing. 

2.3.1 Strain Computation Algorithms 

The computation of static elasticity (or strain) images from ultrasound requires the availability of RF data. While 
performing subtle axial palpation motions, pairs of RF frames (“compressed” and “uncompressed”) are subjected to an 
EI algorithm computing displacement maps first, followed by differentiation to generate strain maps. 

To achieve a frame rate high enough for 2D real-time EI, two algorithms (normalized cross-correlation/NCC and 
dynamic programming/DP) were modified for parallel GPU-based computation. Because NCC is a local method in the 
sense that the computation of displacement for one sample point does not depend on the neighboring ones, it can be 
parallelized in a straightforward fashion along single axial RF lines. DP on the other hand relies on a recursive top-to-
bottom estimation of displacements, where each displacement sample depends on the previous one. Therefore, DP 
cannot be easily parallelized along single lines; however, it offers higher axial resolution. 

Figure 4: 3D EI volume (computed with a dynamic programming algorithm) for ablation monitoring, acquired with a 3D 
wobbler US probe (taken from [Rivaz08]). 

2.3.2 Approaches for Quality Improvement 

In the context of the presented system, three different approaches to improve the quality of the resulting EI stream were 
developed and investigated. Based on the two continuous sequential streams of input RF frames and their tracking 
positions, it possible to observe and modify the strain computation data both on the input and on the output sides. 

Before feeding the raw streams to the EI module, optimal RF frame pairs can be selected based on their relative poses 
[2] (Figure 5). This exploits that evaluation of a large set of possible combinations based on their 6-DoF poses is very 
cheap compared to the actual computation of the corresponding EI frames. For every two poses P1 and P2 available as 
homogeneous 4×4 matrices, their relative displacement can be easily computed as D12 = P1 ⋅P2

−1 . For an existing set of n 

RF frames and their poses, the possible combinations form a set of size f (n) = (i −1)
i=1

n

∑ = i
i=1

n−1

∑ =
n(n −1)
2

, where for each 

new frame/pose the oldest one is dropped and n–1 new pose combinations need to be computed. If the relative 
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displacement of one such combination consists of mainly axial (and possibly lateral) translations, the resulting strain 
images may have a high quality, while elevational or rotational displacement components decrease the quality due to 
speckle decorrelation that cannot be picked up with 2D (or generally slice-based) strain computation algorithms. 

 
Figure 5: Selection of optimal frames for EI computation based on relative pose, using a 6-DoF EM tracker for position 
information (from [2]). Only frame pairs with mainly axial translations between the frames result in high-quality EI frames. 

A second approach to improve the average quality of the strain image stream is to filter out low-quality frames after 
computing them. One possibility that was investigated is based on the NCC algorithm described in the previous 
paragraph. For each displacement sample computation (over search regions along one RF line), the maximum cross-
correlation value is stored, yielding a cross-correlation map. The average over this map (average cross-correlation or 
ACC) can serve as a useful indicator of the average quality of that frame. Regions of the frame corrupted by noise will 
contribute with low values, while continuous matching regions increase it. Dropping frames below a threshold value of 
around tACC = 0.7 effectively filters out noisy images. 

Finally, a third measure to increase the EI stream quality is manual frame selection (“Frame Chooser”, Figure 6). The 
above-mentioned pre-selection steps lessen the negative impact of this otherwise tedious task. The user is presented with 
a collected burst of images from which he chooses “appealing” ones. Those selected frames are then asynchronously 
sent out for further processing, e.g. to the 3D ultrasound reconstruction stage. 

Figure 6: Frame display module, showing a collected 
burst of handheld 2D strain images with one spherical 
lesion, allowing semi-automatic selection of suitable 
frames for further processing. The real-time stream was 
computed using the NCC algorithm. Notice the quality 
indicator underneath the current frame shown on the 
left side. Without ACC filtering, noisy frames are still 
included in the offered selection set (cf. third row). 
 

Figure 7: 2D orthogonal MPR views of a concurrently 
reconstructed 3D-B-mode volume (3DR/B-Mode) of a 
synthetic kidney phantom with internal structures. 
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2.4 3D US Reconstruction 

In this step, the two disparate real-time data streams of EI frames and 6-DoF poses are recombined to allow precise 2D 
frame insertion into a 3D reconstruction volume. The “3D Reconstruction/3DR Module” connects to one source each of 
those two streams to accomplish this. Given the temporal uncertainties of this distributed real-time system, proper 
recombination has to be based on time stamps and pose interpolation. To this end, the reconstruction module caches a 
60-second sequence of pose/time-stamp pairs from which it draws to linearly/slerp-interpolate a 6-DoF pose for each 
new incoming image frame. In particular, this approach allows decoupling of the two streams e.g. by feeding the image 
stream through the above-mentioned frame selection step. 

The digitally acquired 2D images (from either the B-mode or EI modules, both computed directly from the US system’s 
real-time RF data) are projected into voxels of a 3D reconstruction volume according to a pixel-nearest-neighbor (PNN) 
strategy with bin averaging [6]. The single slices are inserted incrementally, i.e. the reconstruction volume is expanded 
on-demand when pose/slice combinations fall outside the current volume. As this amounts to a single-pass real-time 
approach, there is no procedure implemented for concurrent or ex-post hole filling. This approach has amortized linear 
complexity in the pixel size of the input slices, while changes of the reconstruction voxel size have no discernible 
performance effect. Concurrent visualization is provided by 2D orthogonal MPR in the principal planes (Figure 7). 

After this step, an intra-operative dataset is available in tracking coordinates and can be used to pull in the pre-operative 
plan in the next registration step. 

2.5 3D US-CT Registration 

The registration of tracked clinical 3D ultrasound volumes and CT datasets of kidneys allows finding a transformation 
from CT to reference EM coordinates. To test the quality of our registration approach and to allow comparison of the 
properties of EI and B-Mode ultrasound volumes in a more standardized way, the phantoms described above are used for 
registration. 

2.5.1 Metric 

One of the most important characteristics of a registration approach is the metric or cost function used to compute the 
similarity of overlapping regions in the two volumes and therefore the quality of registration. We chose Mattes mutual 
information (Equation 1) as our metric to overcome the problems that might arise when registering different modalities. 
This was necessary as there are differences in tissue representation between B-Mode/EI and CT image data, preventing 
the use of simpler metrics, which work on the image intensity values directly (e.g. mean squares computation). 

It is based on histogram generation for both moving and fixed image. These histograms are built based on sampled voxel 
values and approximate the joint and marginal discrete probability distributions. We initialized the metric computation to 
choose 10,000 samples that were sorted into 24 bins. As the moving image is transformed during the registration 
process, sample values might be taken from non-grid points of the volume. Therefore, linear interpolation was used to 
compute the corresponding sample values. Two representative plots of the metric can be seen in Figure 8. 

S μ( ) = − p ι ,κ ;μ( ) log
p ι ,κ ;μ( )

pT ι;μ( )pR κ( )κ∈LR

∑
ι∈LT

∑  

Equation 1: Similarity metric according to Mattes Mutual Information (MMI) comparing two images with histograms LT, 
LR, with one image experiencing displacement µ, and joint and marginal probability distributions p, pT, and pR. 

2.5.2 Optimizer 

The optimizer evaluates the similarity metric while searching the parameter space of the registration. Given the rough 
cost hypersurface formed by the metric (Figure 8), direct gradient descent procedures could only guarantee to find the 
global optimum if the registration were provided a very good initial transformation. Furthermore the global optimum is 
entrenched in a steep valley, which would necessitate quickly changing the step size. Thus, methods like stochastic 
optimization (e.g. simulated annealing), genetic algorithms, or exhaustive search should be used to search the parameter 
space. A point-based registration allows finding a reproducible initial registration by manually choosing three landmarks 
in each ultrasound and CT dataset. 
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Figure 8: MMI cost function values for 3D-B-Mode/CT (left), 3D-EI/CT (right) registration under translational 
displacement (15 steps of 0.5mm each; function minima projected onto XY plane). Note the smoother function values for 
EI, with one clearly defined optimum. 

As a first attempt, the presented system uses a Nelder-Meade downhill simplex optimization algorithm (“Amoeba” in 
ITK). Like other global optimization algorithms, this optimizer can be trapped in local optima or fail due to early 
convergence of some transformation parameters. Therefore it is usually necessary to adapt the parameterization of the 
optimizer itself to the given registration problem. The Amoeba parameters that can be modified are the initial size of the 
simplex around the origin (simplex delta) and the convergence tolerances for the parameters under investigation as well 
as for the metric values being evaluated. The optimizer is then run for a predefined number of iterations or until 
convergence, whichever comes first. The simplex size was initialized to values between 2 and 6, the parameter 
convergence tolerance set to 0.01, function convergence tolerance to 0.001, and maximum iterations to 200. 

We have extended our registration approach by using the VersorRigid3DTransform optimizer for ITK, which is 
specialized in solving the optimization problem given by 6-DoF registrations that are described using the non-linear 
versor space for rotation. 

2.5.3 Transformation 

The search space of the optimizer for a given registration problem is characterized by the admissible transformations. 
The first attempt at solving the registration problem focused on translation only [Keil09] and is now extended to a six-
DoF parameter space. With the assumption that only minimal deformation occurs, only rigid transformations are applied. 
Nevertheless, one has to keep in mind that possible deformations due to strain application for EI computation cannot be 
compensated only by rigid translation transformations. 

After this registration step, the preparatory steps are completed and data can be passed to the modules running during the 
actual intervention itself (for more details cf. [4]). 

2.6 CT Segmentation and Tumor Model Generation 

Manual pre-operative segmentation of the CT data is performed to define the contour and size of the tumor that is to be 
resected, using two different techniques. Using the first method, the user paints the tumor into the slice using a circular 
brush with adjustable size. The second approach enables the user to outline the tumor by outlining it with the pointer and 
automatically defining the tumor as the area inside the shape. Both techniques are applied on the 2D slice views of the 
volume. The user does not have to define the tumor in all of the slices, as a trilinear interpolation determines the tumor 
shape on intermediate slices. 

After segmentation of the tumor a surface mesh model is generated using the Marching Cubes algorithm. As the 
resection or safety margin is an important guidance feature for the surgeon, a further step automatically scales the tumor 
model by a user-defined distance to create the surface model. Both models can then be stored and used in the navigation 
part of the system. 
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2.7 Intra-operative Tracking and Visualization 

To provide a live “augmented reality” view of the laparoscopic intervention with an overlay of the tumor region, it is 
necessary to track the camera and the tumor itself. For the latter, an EM sensor is inserted into the kidney next to the 
tumor capsule and fixed using an anchor mechanism attached to the sensor itself using biocompatible glue (Figure 9). It 
is important not to puncture the tumor capsule itself; this can be achieved by monitoring the progress of the interstitial 
needle containing the sensor-anchor combination with both handheld B-Mode and EI ultrasound guidance. 

 
Figure 9: Sensor-anchor (left) insertion into a porcine kidney phantom under handheld ultrasound guidance (right). The 
anchor fixates the sensor in the tissue. 

The digital video feed and all position and orientation data of each sensor are collected and sent to a central workstation 
running the real-time visualization module based on the medical imaging interaction toolkit (MITK). 

The tumor model as well as a safety margin that were previously segmented from the pre-operative CT are then loaded 
into the MITK-based module. Each model’s position and orientation in tracking coordinates, known from the registration 
process described before, are stored in a transformation matrix. This matrix describes the basic transformation to the 
models before a tracking rotation or translation can be added. To generate a 3D rendering scene of the models, a 3D 
render window is created by the visualization toolkit (VTK). With each movement the sensors attached to camera and 
tumor update the relative transformations that are applied to the render models. An image that shows the transformed 
models is now rendered and superimposed to the live video feed, thereby creating an augmented reality visualization 
(Figure 10). 

Apart from the 3D tumor model visualization the system also provides an overlay of two concentric circles at the tumor 
position. These circles describe the size and position of both the tumor and the resection margin. The diameter of the 
circles is changed to match the apparent size of tumor and resection margin based on their distance to the camera. 

 
Figure 10: Real-time “augmented reality” overlay of tracked target region onto intra-operative video stream from a tracked 
webcam. An EM sensor (left) was manually inserted under US guidance into the tumor ROI after 3D US acquisition, with 
its position projected back into camera coordinates (left center and right center). The same position can be used to overlay a 
3D surface model of the segmented tumor region (right). 

2.8 System Architecture 

The system follows a modular, distributed architecture. By breaking down the solution into a collection of independent, 
communicating modules, we achieve efficient resource allocation across different computers as well as decoupling of 
modules to minimize the impact of processing performance discrepancies. In its current implementation and 
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configuration, the modules span up a directed, acyclic communications graph as nodes, with communication channels 
like network and shared memory (depending on distribution vs. co-location and one-to-one vs. one-to-many 
configuration) as edges. 

 

Figure 11: Proposed system software architecture, implemented in two different system setups. In the more comprehensive 
Setup A, 2D ultrasound data (left) is combined with position data into a 3D reconstruction (center), which can then be 
registered with CT (right) and visualized. Setup B represents a separate, standalone 2D B-Mode/EI workstation. 

 

 

Figure 12: Process steps (vertical) and procedure/module alternatives (horizontal). All these combinations are possible with 
the proposed architecture. 

While a few constraints were given for the current system configuration (due to ultrasound acquisition hardware and 
various hardware drivers tied to certain operating systems), most of the remaining features had no such restrictions. 
Therefore, a functional decomposition of the system requirements led to the module set and architecture as shown in 
Figure 11. An obvious benefit is the ability to distribute the computation (e.g. for local vs. remote visualization or remote 
strain computation) according to the current application’s needs. Two such implementations are shown in the figure: 
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Setup A includes the components necessary for a complete “tracked freehand 3D ultrasound for CT-based navigation” 
system as described in the previous paragraphs. This system can be easily distributed across different machines to 
accommodate limited space in the operating room (OR), higher computation requirements for online strain computation, 
and the need for more screen real estate during the offline planning phase. As a second system, Setup B uses a subset of 
those modules to provide a stand-alone “2D B-mode/strain imaging” workstation. Tracking data may optionally be 
collected for later 3D reconstructions, if required. A variety of possible procedures and underlying module combinations 
can be seen in Figure 12. 

The architecture is very flexible in the sense that any ultrasound machine can be the imaging source, as long as it can 
export RF data (either in real-time or stored to disk), ideally with associated timestamps. Similarly, different tracking 
mechanisms can be employed, such as EM tracking like in the presented system, but also optical tracking or systems 
based on local sensors such as opto-inertial components as in the BeeSpaceMouse [7]. Strain image computation can be 
achieve through a multitude of different modules – NCC, DP, GPU-based variations of both, but also with the respective 
proprietary modules available in commercial (Siemens, Ultrasonix) systems. Intra-operative 3D-US/CT registration can 
be performed using either B-mode or EI. Most of the components not tied to specific hardware have been ported 
between different operating systems (Windows XP 32-bit, 64-bit, Linux (kernel 2.6), and Mac OS X 10.6, as well as 
several different CUDA GPU devices). 

Finally, we also plan to offer the infrastructure framework as well as particular module implementations available for 
download from our website in the near future. 

3. RESULTS 

3.1 Experimental Results 

A variety of experiment series (with tracked US in breast irradiation planning [2], in ablation monitoring [5], and robot-
based US palpation motion optimization [4]) has each shown an increase in elastography imaging quality. Combined, 
they promise robust handheld laparoscopic EI acquisition. 

EI slice acquisition can be performed either using a 3-DoF robot-based setup (to ensure repeatable palpation motion 
parameters and micrometer-precise slice position information) or in an EM-tracked handheld approach. With the robotic 
setup, EI images were acquired at maximum decompression of a palpation cycle to consistently minimize tissue 
deformations. For ultrasound acquisition, both Ultrasonix Sonix RP/CEP (for B-Mode and RF data) and Siemens 
Antares (for B-Mode and EI data) machines were used. By parallelizing both (NCC and DP) algorithms using CUDA, it 
was possible to increase the frame throughput by a factor of 6…10 as compared to the corresponding C implementations. 
While this amounts to approx. 300fps for NCC-EI and 30fps for DP-EI, these numbers describe “batch-mode” usage, 
where all RF frames are pre-loaded into GPU memory [1]. For real-time usage where RF data and EI frames are 
continually moved between host and device memories, a continuous frame rate of approx. 5…10fps was achievable for a 
non-optimized input/output setup. 

The 3D volume reconstruction operates at a speed of ~24 slices/sec (with a single thread on a 2.66GHz Intel Core 2 
Duo with 6MB L2 cache), independent of the type of the input images, i.e. B-mode or EI. The reconstruction voxel size 
was set to a range of values between 1.0mm and 2.0mm, with little discernible effect on achievable frame rate or on the 
subsequent process steps. 

The final volume is transferred to the rigid registration algorithm to align with CT data (using Mattes Mutual 
Information/MMI as the similarity metric). The registration application is based on the open source development 
toolkits MITK from the German Cancer Research Center (DKFZ), ITK and VTK from Kitware Inc., as well as Qt from 
Nokia/Qt Software. Using these toolkits enables working with standardized, well-established algorithms. The 
registration experiments were performed using subvolumes cropped from the EI, B-Mode, and CT volumes. The region 
of interest was chosen based on the expected amount of data for our clinical application. As only a small portion of the 
kidney is scanned during the operation, the experimental volumes were comprised almost exclusively of kidney tissue. 
In order to facilitate a comparison between the registration properties of strain images and B-Mode images, both datasets 
were registered with CT using different initial offsets for the registration – single displacements along the x and y axes as 
well as all translational perturbations by +/–2mm and +/–4mm in all three dimensions. The last test was perturbation by 
+/–2mm along the x and y axes and 4mm in z direction, respectively. Given the general restrictions in the use of ex-vivo 
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tissue for elasticity imaging, the geometry and availability of features in the physiological porcine kidney phantoms 
approximated in-vivo conditions. 

Registration of the volume of interest takes 5–10 seconds for three translational degrees of freedom (extension of 
registration to six DoF is discussed in an upcoming publication). While the cost function values of MMI between EI and 
CT show a relatively smooth behavior (Figure 8), the capture range is nevertheless fairly small, making pre-registration 
necessary. 

The quality of the registration results was measured using visual examination using the fiducials that were added to the 
phantom. Those fiducials were clearly visible in strain, CT and B-Mode images. For getting correct registration results 
for the B-Mode case, the registration parameters often had to be optimized very specifically to the given problem. As 
there are several local minima having equal of even smaller (i.e., better) values for the metric, it is hard for the Amoeba 
optimizer to find the minimum of interest. The situation is much different for the strain to CT image registration, where 
the cost function has only one very pronounced global optimum. However, this global optimum can also be missed by 
the Amoeba optimizer under certain conditions (e.g. initialization of the simplex fully on the plateau). 

In order to account for the different imaging modalities, preliminary experiments with other metrics were performed as 
well. In particular, noting that B-Mode US shows gradients of acoustic impedance, the gradient of the CT data was 
computed to match this property. Then, both images were registered using a mean-squares error metric. However, this 
approach proved less effective and produced even larger registration errors than the MI-based approach discussed here, 
in spite of the tissue representation being more similar in the two modalities then. 

These results show that the metric used for the chosen registration algorithm is very well-suited for estimating the 
similarity between CT and EI images, even for the small field of view given in our test data. 

The medSAFE tracking system consists of a 9-axis flat magnetic field transmitter and an electronics unit, supporting up 
to four wired 6-DoF sensors simultaneously. Each sensor is connected to the electronics unit via a pre-amplifier. The 
system can acquire up to 200 position measurements per second within a measurement volume of 
400mm × 400mm × 360mm. The sensors attached to camera and tumor are of 1.3mm diameter and 7.7mm length. The 
tracking system can achieve a RMS error <1mm when moving the sensor at <200mm per second. The cable connecting 
the sensor to the electronics unit of the tracking system has a diameter of 1.2mm and measures 2m in length, making the 
cable thin enough to fit through a trocar while being attached to an endoscopic camera. 

Currently a Logitech QuickCam camera provides 640×480-pixel live video footage. In future system designs the video 
source will be replaced by a laparoscope and therefore will meet the requirements for minimally invasive surgery. For a 
smooth and real-time video navigation experience we are calculating at least 25 augmented video images per second. 
The much higher rate of position information from the tracking system enables outlier correction, which will be 
implemented in future system stages. Similar tracking/visualization system designs using both optical and magnetic 
tracking systems are proposed in literature, e.g. in [3]. Nevertheless there are key differences; the most important being 
that the video overlay in the presented system can be done not only in real-time, but also online and not retrospectively. 

3.2 Discussion 

With the proposed system, it will be possible to perform safe partial nephrectomies by leveraging pre-operative planning 
data. The ability to reliably avoid blood and collective vessels while honoring safe resection boundaries, with only a 
small additional hardware footprint, promises good acceptance of the system in clinical environments. 

While the main drawback versus the current standard laparoscopic procedure is the manual acquisition of the 3D 
ultrasound volume, this constitutes a minor time investment in practice. The principal benefit of the system has to be 
seen in the “heads-up display” capability of overlaying the tumor position onto the live endoscopic video stream, 
instructing the surgeon as to where cutting is safe. In particular, this achieves a vast reduction of preparation time while 
clamping the renal artery and interrupting blood flow, because pre-operative planning can be executed directly in the 
OR, allowing the surgeon to concentrate on a quick resection of the tumor mass. 

3.3 Outlook 

The system shows that the main problems – robust real-time elastography and robust 3D-US/CT registration – are 
solvable. What needs to be evaluated is how well the phantom and laboratory results transfer into the animal testing and 
clinical stages. To achieve this, accuracy, reliability, and usability will need to be investigated. 
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With the software module set’s rapid expansion in our group, the software architecture is seeing equally strong 
development. After appropriate preparation of the implementations, we expect to make the discussed modules available 
for public in the near future. 
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