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ABSTRACT

Ultrasound and computed tomography registration is a valuable
tool for interventional imaging and navigation, but current meth-
ods are limited in reliability or usefulness, requiring large fields of
view, large ultrasound penetration depth, distinct image features, or
contours of the investigated organs. Computationally cheap, small-
field-of-view registration proved elusive so far. We propose the
use of interventional ultrasound elastography imaging to perform
limited-field-of-view, limited-features registration reliably, examin-
ing the image acquisition and registration in the example application
of partial nephrectomies. Furthermore, the benefits of elastography
vs. conventional B-Mode ultrasound imaging are investigated.

Index Terms— computed tomography, elastography, B-Mode
ultrasound, kidney, rigid registration

1. INTRODUCTION

Multi-modality ultrasound (US) and computed tomography (CT)
registration is a valuable tool for interventional imaging and naviga-
tion. However, current methods suffer from a number of limitations
reducing the registration’s reliability or usefulness. To yield reliable
results, requirements include a large field of view (FOV), a large
ultrasound penetration depth (around 10cm), many distinct image
features, and possibly outer contours of the organs to be imaged.
Furthermore, US and CT “don’t speak the same language”, i.e. while
one shows acoustic impedance gradients, the other yields radiation
opacities. One approach to overcome this second problem is to adapt
one modality to the other, e.g. by computing pseudo-US from CT
data to register it to the original US [1], [2]. However, small-FOV
registration proved to be a challenging and exigent task so far.

In the present work, we propose to use elastography imaging
(EI) as a tool to enable limited-FOV, limited-features US-to-CT reg-
istration without expensive computations. The application under in-
vestigation is partial nephrectomy, as this intervention does not al-
low the acquisition of a large FOV, surrounding features are unstable
due to kidney motion during the operation, and thus one has to rely
on internal structures and use EI to acquire these. Here, we aim to
show that, compared with B-Mode US, EI is a promising approach
for solid organ registration with CT.
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Fig. 1: Cross section of a porcine kidney embedded in gelatin, ex-
hibiting the relevant internal structures (renal pelvis, calyces, sur-
rounding tissue)

After describing the phantoms and data acquisition procedures
(sec. 2), the registration approach is broken down into its algorithmic
components (sec. 3). A series of registration experiments (sec. 4)
together with its results (sec. 5) is concluded with a discussion of
their relevancy and future work (sec. 6).

2. DATA ACQUISITION

For the registration experiments, three distinct datasets based on kid-
ney phantoms had to be acquired. These included CT (contrast-
enhanced), ultrasound B-Mode, and ultrasound elastography (EI).

2.1. Phantoms

For these preliminary investigations, ex-vivo phantoms (animal tis-
sue preparations exhibiting structures resembling actual in-vivo con-
ditions) were chosen as experiment materials. These phantoms were
based on porcine kidneys (extracted shortly after exitus) due to their
similarity to the human organs. The kidneys were partially treated
with arterially and per urethra applied CT contrast agent (5% sus-
pension of TiO powder (5um) in agar solution). Embedded in a
stabilizing porcine gelatin mold, the kidneys could then be subjected
to the CT and US scanning protocols.

Additional fiducials — from synthetic alginate injections (Kro-
mopan 100) — were inserted into the phantoms to facilitate later reg-
istration. However, they were only used to visually validate the reg-
istration correctness in the presented experiments.

2.2. Ultrasound Elastography

Ultrasound elastography is a non-invasive imaging method in which
the elastic properties of tissues can be used to detect or classify le-
sions [3]. Since cancerous lesions are up to 30 times stiffer than
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Fig. 2: US scan setup, with probe (white) held by the robot

normal soft tissues, this elastic property can be used in EI to differ-
entiate tumors from surrounding normal tissues. By comparing the
US radio-frequency (RF) data of kidney phantoms before and after
compression, strain images can be generated using cross-correlation
algorithms. Stiffer lesions tend to generate lower strain values when
compared to the softer surrounding tissues. Thus, this mode of imag-
ing provides a novel view of the tissue that is otherwise not available
using the traditional B-Mode ultrasound.

To collect ultrasound data, we used an Antares ultrasound sys-
tem (Siemens Medical Solutions, USA) with a high frequency ultra-
sound transducer (VF13-5). The ultrasound images were obtained
with depth of 6 cm and pixel size of 0.1132 mm. Access to RF
data was obtained through a User Research Interface provided by
Siemens. Also, access to Siemens real-time elasticity imaging (eSie
Touch) was granted.

In order to provide reliable and reproducible volume informa-
tion, the ultrasound data was sampled with a robot-based system,
yielding a series of planar-parallel B-Mode and strain slices through
the respective phantom (fig. 3). This setup should be similar to
3D probes. After manual selection of the scanning region (to con-
tain sufficiently descriptive features), the phantoms were positioned
within the workspace of a high-precision three degrees-of-freedom
(DOF') cartesian robot (DMC-21x3 with three servo motor stages,
by Galil Motion Control; repeatability better 0.01 mm). Balanc-
ing dense data requirements and low elevational resolution of the
ultrasound probe, the stage translated the probe to new positions ev-
ery Ay = 2 mm apart, then performed five repeated compression-
decompression cycles (amplitude dz = 3 mm (approx. 5% strain),
period 7' = 2 s), during which ultrasound data was sampled (at
16 Hz). From these, one representative maximum decompression
pair was chosen manually to obtain slice data.

2.3. Computer Tomography

In actual image-based renal interventions, contrast-enhanced CT can
be performed at different times after contrast agent injection, yield-
ing different information about the region of interest: within a few
minutes after arterial injection (“early phase” with highlighting of
the renal cortex), after a few minutes more (“delayed phase” after
the contrast agent has been diffused into the collective system, high-
lighting the calyces), or in-between (showing the venous system).

968

Fig. 3: B-Mode ultrasound (left) and elastography (right) slice of
kidney phantom. Note the different definition of markers and renal
structures.

For these experiments, contrast agent was injected so it filled both
the arterial and the collective vasculature.

We have access to a Toshiba CT scanner (Aquilion 320) that can
provide a full scan with 0.5 mm resolution in less than a second.

3. REGISTRATION APPROACH

The goal of our work is to register clinical ultrasound and CT
datasets of kidneys. To test the quality of our registration approach
and to enable us in comparing the properties of USEI and B-Mode
ultrasound volumes in a more standardized way, we are using the
phantoms mentioned above for registration.

Our registration application is based on the open source devel-
opment toolkits MITK from the German Cancer Research Center
(DKFZ), ITK and VTK from Kitware Inc., as well as Qt from Qt
Software. Using these toolkits enables working with standardized,
well established algorithms.

The registration approach can by classified according to the met-
ric, the optimizer and the transformations being used for registration
of the datasets [4]. Based on this information we describe the exper-
iments that were performed.

3.1. Metric

One of the most important characteristics of a registration approach
is the metric or cost function that is being used to compute the sim-
ilarity of overlapping regions in the two volumes and therefore the
quality of registration.

We chose Mattes mutual information [5] as our metric to
overcome the problems that might arise when registering differ-
ent modalities. This was necessary as there are big differences in
tissue representation between B-Mode/USEI and CT image data.
This characteristic prevents simpler metrics, which work on the
image intensity values directly (e.g. mean squares computation), in
giving accurate and representative estimates for the possible tissue
combinations.

The similarity measure S computation with Mattes mutual in-
formation is a function of the transformation parameters /.
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It is based on histogram generation for both moving and fixed
image. These histograms are built based on sampled voxel values
and approximate the joint and marginal discrete probability distribu-
tions p, pr and pr. We initialized the metric computation to choose
10,000 samples that were sorted into 24 bins. As the moving image
is transformed during the registration process, linear interpolation
was used to compute non-grid sample values.

Two representative metric plots can be seen in figs. 6 and 5.

3.2. Optimizer

The optimizer evaluates the similarity metric while searching the
parameter space of the registration. Given the rough cost hyper-
surface formed by the metric (cf. figs. 6 and 5), no direct gradient
descent procedure could be guaranteed to find the global optimum.
Furthermore the global optimum is entrenched in a steep valley, so
would necessitate quickly changing the stepsize. Thus, methods
like stochastic optimization (e.g. simulated annealing), genetic algo-
rithms, or exhaustive search should be used to search the parameter
space.

In the first instance we chose a Nelder-Meade downhill simplex
optimization algorithm (“Amoeba” in ITK). Like other global opti-
mization algorithms, this optimizer can be trapped in local optima
or fail due to early convergence at one of the transformation parame-
ters. Therefore it is usually necessary to adapt the parametrization of
the optimizer itself to the given registration problem and the strategy
that is implemented.

The Amoeba parameters that can be modified are the initial size
of the simplex around the origin (simplex delta) and the convergence
tolerances for the parameters under investigation as well as for the
metric values being evaluated. The optimizer is then run for a pre-
defined number of iterations or until convergence, whichever comes
first.

The simplex size was initialized to values between 2 and 6 (cf.
section 4), the parameter convergence tolerance set to 0.01, function
convergence tolerance to 0.001, and maximum iterations to 200.

3.3. Transformation

The parameter or search space of the optimizer for a given regis-
tration problem is defined by the admissible transformation type M
that has been chosen. The image data acquisition described in sec-
tions 2.2 and 2.3 constrained the orientation of the phantoms, so that
only translational differences occur in the datasets. This defines a
search space M C R>.

The main advantage of translational registration is that it is easy
to keep track of the steps being taken by the optimizer to explore the
search space. This makes a comparison between USEI and B-Mode
registration possible.

Nevertheless, we have to admit and keep in mind that possible
deformations due to strain application for USEI computation cannot
be compensated just by rigid translation transformations.

4. EXPERIMENTS

The experiments described in this section were performed using
subvolumes cropped from the EI, B-Mode, and CT volumes. The
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Fig. 4: Cross section showing the initial alignment of the EI (left)
and CT volume (right). Note that the medulla as an internal structure
of the kidney can be clearly seen in both modalities. To emphasize
the structures in the respective modality, in each case the opacity of
one of the datasets was reduced.

Global Optimum Mean Variance
El —0.0128 —0.0027  1.5487¢~°
B-Mode —0.0064 —0.0016  4.6642¢~"

Table 1: Comparison of the Mattes mutual information metric for
registration of CT and EI vs. B-Mode. The mean and variance mea-
sures were computed on the cost function (fig. 5 and 6)

subvolumes had a size of 34z29x64 mm® for ultrasound and
72229290 mm? for CT, with the US subvolumes contained in the
CT subvolume. We chose the region of interest based on the ex-
pected amount of data for our clinical application. As only a small
portion of the kidney is scanned during the operation, the volume is
comprised of almost only kidney tissue. A cross section through the
overlapping strain and CT volumes can be seen in fig. 4.

In order to facilitate a comparison between the registration prop-
erties of strain images and B-Mode images, we chose to register both
datasets with our CT volume using different initial offsets from a
manually defined gold standard based on the fiducials and kidney
boundary. We tested single displacements along the x and y axes as
well as all pertubations of translation by 2 mm and 4 mm in positive
and negative directions in all three dimensions. The last test was per-
tubing by a positive and negative displacement of 2 mm along the x
and y axes and a 4 mm displacement in the z direction, respectively.

With the general restrictions for the use of ex-vivo tissue for
elasticity imaging, the porcine kidney phantoms exhibited both very
imaging-friendly properties (clearly distinct surrounding material,
stable geometry) and non-natural behavior (little to no temporal or
repetition elasticity phenomena due to missing tissue perfusion and
turgor) at the same time. Still, the geometry and availability of fea-
tures in these physiological phantoms approximated the in-vivo case.

5. RESULTS

Registration success was measured by visual examination using the
fiducials that were added to the phantom. These were clearly visi-
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Fig. 5: Cost function surfaces for B-Mode/CT registration. Note the
multitude of local minima.

Fig. 6: Cost function surfaces for strain/CT registration intersecting
at the global optimum (15, 15, 16)

ble in strain, CT and B-Mode images. Besides the fiducials a com-
parison with the information about the similarity measure and the
transformation output of the optimization algorithm were used for
monitoring.

For getting correct registration results for the B-Mode case, the
registration parameters often had to be optimized very specifically
to the given problem. For example, in testing the possible transla-
tions in y direction, the Amoeba simplex had to be initialized with
delta values (sizes) of 0 except for the y direction, otherwise the op-
timizer failed and got stuck in local optima. Limiting the delta of
the optimizer so radically narrows down the search space to one di-
mension and is very unrealistic. This behavior can be explained by
having a look at the cost function plot of the B-Mode data (cf. fig. 5)
and table 1. As there are several local minima having equal of even
smaller (i.e., better) values for the metric, it is hard for the Amoeba
optimizer to find the minimum of interest.

The situation is much different for the strain to CT image reg-
istration. As can be seen in fig. 6, the cost function has only one
very pronounced global optimum. It is therefore much easier for the
optimizer to find this optimum. However, we have to admit that this
global optimum can also be missed by the Amoeba optimizer un-
der certain conditions (e.g. intialization of the simplex fully on the
plateau).

In order to account for the different imaging modalities, pre-
liminary experiments with other metrics were performed as well.
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In particular, noting that B-Mode US shows gradients of acoustic
impedance, the gradient of the CT data was computed to match this
property. Then, both images were registered using a mean-squares
error metric. However, this approach proved less effective and pro-
duced even larger registration errors than the MI-based approach dis-
cussed in the present paper, in spite of the tissue representation being
more similar in the two modalities then.

These results show that the metric used for the chosen registra-
tion algorithm is very well-suited for estimating the similarity be-
tween CT and EI images, even for the small field of view given in
our test data.

6. DISCUSSION

We identified a metric that successfully measures the similarity be-
tween EI and CT images. It can be used for further investigations of
the registration properties of EI and CT. We showed that the tissue
representation between EI and CT is more similar and therefore EI
registration outperforms B-Mode. For future work we are planning
to evaluate more similarity measures using our protocols and to use
an optimizer that has the ability to find the global optimum with a
higher probability. Using this new optimizer we will approach non-
rigid registration, to overcome the resulting registration errors that
are due to possible tissue deformations from strain application. The
goal of this paper was to show that it is possible to register EI and
CT image data, which we did by comparing the registration results
using well accepted registration techniques.
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