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Abstract— This paper describes a spatial motion constraints
generation approach for human-machine collaborative surg
cal assistant system from registered CT models. We extend
constrained optimization formulation incorporating task goals,
anatomy-based constraints, “no fly zones”, etc. We use a fast
potential collision constraint detection method based on B sur-
face model and covariance tree data structure. These bounda
constraints, along with task behaviors and joint limits, seve
as constraint conditions for constrained robot control. We are
able to follow a complex path inside a human skull phantom
represented by a surface model composed of 99,000 vertices
and 182,000 triangles in real time. Our approach enables rda
time task-based control of surgical robot in a precise inteactive
minimally invasive surgery task.

We illustrate our approach based on two example tasks which
are analogous to the procedures in endoscopic sinus surgeand
analyze the users performance on both teleoperation and cpe
erative control for one of the example tasks. The experimeial
results show that a robotic assistant employing our approdt on
spatial motion constraints can assist user in skilled maniplation
tasks, while maintaining desired properties. Our approachis Fig. 1. An operating room scene of endoscopic sinus surgedyaatypical
equally applicable to teleoperative and cooperative contiled shaver with a bent tip portion for endoscopic sinus surgery.
robots.
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to assist them.
In a minimally invasive approach, such as for throat surgepyy. 2. Geometric relation for spatial motion constrairftae number of tool
or endoscopic sinus surgery, long thin instruments or endiaft boundary constraints changes based on the relataitopobetween the
scope are inserted through anatomic opening reaching {42 e ansory. (ef) i he pariolouing tas, by o & eauired
pathological area. The operating volume is very limitede Thip is kept staying on the target, the orientation of the telwft is changed
instruments or endoscope have some degrees of translatidhaccess the target from different angles.
and rotational freedom but their motions are constrained by
anatomic structure.
Although the primary focus of this paper is development ginatomy while still performing desired motion to accomiplis
techniques for controlling the motion of teleoperated amape  an intended task.
eratively controlled surgical robots in the presence of plax The difficulty of precise surgical manipulation with endo-
geometric constraints associated with patient anatomy, weopic instruments invokes the application of robotic sssi
have chosen endoscopic sinus surgery as a focusing examialets. In robotic assisted procedures, the surgeonstyabdin
Figure 2 conceptually illustrates the relationship betwdee be augmented by techniques such as virtual fixtures (VF). Vir
instrument, target (such as 3D path, inspection target) anl fixtures are algorithms generating motion constrafots
approach aperture to the workspace cavity in endoscopicobotic manipulator perform a task by limiting its movernen
sinus surgery. During such a surgical procedure, the iederinto restricted regions [1], [2], [3], [4], [5] and/or inflaeing
tools should avoid collisions or excessive force on dedicaits movement along desired paths [6], [7], [8]. Virtual firds
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have been discussed previously in the literature for botieural networks for constrained robot motion control. Faeid
telerobots [9], [10], [6], [11] and cooperative robots [[l2], al. [35] presented an optimal motion control method to control
[13], [14], [15]. both redundant and deficient robotic systems in constrained

An important case of virtual fixtures for surgical applicati working volumes.
is forbidden regions, where the surgical tool is restricted Our purpose is to derive spatial motion constraints from a
to certain regions in the workspace. Davies al. [16] set very complex environment and enable the robotic system to
active constraints to constrain the robot to cut the femu aprovide assistance for dexterous procedures in that comple
tibia within a permitted region for prosthetic knee surgergeometric environment in real time. There has been prior
Park et al. [17] developed sensor-mediated virtual fixturework on model-based off-line planning for robotically ased
that constrain the robot’s motion or create haptic feedbaskrgery. For example, Adhami and Coste-Manietral. [36],
directing the surgeon to move the surgical instruments in[37] developed graphical simulation system and algorith-
desired direction. Their work applied a virtual wall based omic approaches to port placement for endoscopic coronary
the location of the internal mammary artery obtained from artery bypass using the daVinci System. Similarly, Canebn
preoperative CT scan to guide a surgeon’s instrument durial [38] have presented a computer-based algorithm using pre-
teleoperated coronary bypass. operative images to provide the surgeon with a list of fdasib

Bettini et al. [7] focused on the techniques for guidanc@ort triplet for coronary artery bypass grafting. Latonsbe’
virtual fixtures. They used vision information to assistgen 9roup [39], [40] used randomized techniques to guess a
tion of virtual fixtures. They examined the hard and softuait Promising initial set of beams for robotic radiosurgerytsys.
fixtures and discussed the application to vitreoretinajsry. Sim et al. [41] proposed a collision free pre-planned path for
Marayonget al. [18] demonstrated motion constraints wittfhe instruments in neurosurgery.
varying compliance that were described for the generalalpat In this paper, we present an on-line collision avoidance
case. These work used admittance control laws to implemépgthod for real time interactive control of a surgical robot
virtual fixtures. geometrically complex environments such as the sinusieavit

Troccazet al. [13], [15], [19] developed a passive armWe extend Funda’s work [35] to generate virtual fixtures for
with dynamic constraints (PADyc) for pericardial puncturéeal-time obstacle avoidance and simultaneously assest th
in cardiac surgery. Their system implements virtual fixsureSurgeon to perform desired tool motion to accomplish inéehd
to constrain surgical tools along desired paths or away frdi@Sks. In our work, 3D anatomic constraints are automayical
some regions by using electrical motors to choose a clugchigénerated from 3D medical images in real time. Our new
system for freewheels. The principal advantage of such gRtential collision searching method based on a covariance
approach is that the robot is entirely dependent on the sargdre€ Qerived from a patient-specific anatomic model enables
to provide motive force, which some authors argue may haf@al-time pertinent anatomic constraints generation. \We a
some safety advantages if one is concerned about the rod@€ to follow a complex path inside a human skull phantom
“running away”. Limitations include mechanical complegxit "ePresented by a surface model composed of 99,000 vertices
and loss of the robot's ability to actively assist in surgicand 182,000 triangles in real time.
procedures. The remainder of the paper is organized as following.

In endoscopic sinus surgery, Wuret al. [20] developed Section Il provides a brief summary of our motivative claic

a robotic system for fully automated paranasal sinus syrgefX@mple. In section ll, we first describe the virtual fixture

This system uses pre-operative CT to direct the robot's aggneration system and the constrained control algorithm we
tonomous motion. It allows the remote control by joysticl?mployed for generating virtual fixtures. Thereafter welaxp

as well. Lueth’s group [21], [22], [23] presented a mechdlow to dgtect spgtial motion.constraints from complex 3[_)
tronic system for functional endoscopic sinus surgery- Pranatomy in real time. In section IV, we analyze and detail
operatively they planned a safe working space based $I¢ implementation of two application tasks: path follogvin
a 3D model from CT data. Intra-operatively, the shaver %nd endoscopm inspection of a target frpm different oaent
automatically turned on/off depending on the position af tHiONS. In section V, we report the experiment results of two
shaver tip. Within the safe area the shaver reacts to signdRpPlication tasks. We present performance comparisons on
from the surgeon. If the tip of the shaver moves outside tg&/" Path-following task using our virtual fixtures with both
predefined working space, the shaver's automatic driverabnt€/€0peration and cooperative control as well as for usgesbi
is interrupted by an electrical pulse. This navigation bas&®€hand manipulation. In section VI, we conclude our work
system has only concerned the position of the shaver tifi.its@nd discuss possible future extension.

Path planning and motion control is a well discussed area
with a wide variety of proposed optimality criteria [24[§p ~ !l- MOTIVATING CLINICAL APPLICATION :ENDOSCOPIC
[26], [27]. Some work has used pseudo-inverse based gradien SINUS SURGERY
projection techniques [28], [29], [30] or extended Jacobia The paranasal sinuses represent a series of pneumatized
techniques [31], [32] to implement constrained control athambers surrounding the nasal cavities. Sinusitis isnmfla
kinematically redundant robots. In [33], [34], the authosed mation of the paranasal sinuses from bacterial, fungadl,vir
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allergic or autoimmune issues. Sinusitis is one of the mdsased on the observation that a maxillary sinus’s ostiagsiab
common health care problems in the United States affecti@gmillimeters in size [45].
approximately 31 million Americans annually. [42] Chronic
sinusitis, a subtype of sinusitis where signs and symptoms I1l. APPROACH
of inflammation persist for greater than twelve weeks, [&
known to significantly impact quality of life and is assoeiet _ o
with substantial functional and emotional impairment [43] In this paper we use endoscopic sinus surgery as a mo-
Benningeret al. [44] estimates that chronic sinusitis result§vation to discuss our spatial motion constraints gememat
in 18 to 22 million physician office visits in the United Stsate approach for robotic surgical assistant system. The anatm

annually, and it is known that all forms of sinusitis resuit i the nasal and sinus cavity is mostly bony tissue. Currewsy,
significant health care expenditures. assume that the anatomy is rigid, and ignore the deformation

ﬁnd motion during the system registration and surgical-inte

of anti-inflammatory and antimicrobial agents. If theserage vention. However, the basic approach is extendable to non-

fail and there is radiographic evidence of disease on Coaubu{igid or moving anatomy, provided that suitable imaging and
Tomography imaging of the paranasal sinuses then surgery I-time modeling is available.
graphy ging P gery he control algorithm we discuss in this paper is a “high

warranted. Surgical therapy includes opening and enlgrgi N . 2
blocked ostia, removing entirety of sinus air cells or marr—ével » model-based method that generates incremental joi

supializing. Currently, a minimally invasive approach teet mr(())tl/(i)dnegrs\t/aetl)ci)lci:tlty Iifctmqotlr?(tesgtoarn?j I%\i/\r/]-tleovfetlhceor;;\rs_l:z\r/;go
paranasal sinuses called functional endoscopic sinuegurgfrol these comr‘r):;amded motions h:ve similar charactesigtic
FESS, is the standard of care for treating medically retalti '

sinus disease. Here a series of instruments under endosc{):%?se that would be found in a conventional teleoperated or

guidance are used to systematically remove diseased ﬁssheis opergtlvely cor:trolled rohbot, a?d stability has no; b_aen'
F'shue. ur control approach readily accommodates theiaddit

bone to enhance the drainage pathways of diseased sinuse . . .
of constraints to ensure feasible, stable motions; example

Endoscopic sinus surgery is associated with severe gng g include limits on joint command, positions, velogi
sometimes catastrophic complications. This is because accelerations

brain, eye, optic nerve, other cranial nerves, and the icarot

artery are all within millimeters of the surgical field. Ifeh ] ] ]

surgeon becomes disoriented or confused, injury to one Bf Virtual Fixture Generation System Diagram

these important structures is possible. A number of impbrta The robotic surgical assistant is a surgical CAD/CAM
technologies have been developed to minimize the chancesydtem [46]. Pre-operatively, the patient with radio-apaq
these injuries such as image guided surgery, intra-operatiiducials attached on the surface is scanned with Computed
imaging, and steady hand motion stabilization; however, Tamography (CT). A 3D surface model around the surgical
strong understanding of surgical anatomy and a systematiea is created from the pre-operative CT images. A surgeon
and methodical surgical technique remain the cornerstodefines the tool-tip target trajectory or target position of
of safe surgical practice. The proximity of these strucurénterest by selecting points in the pre-operative imageesli

to the nasal passage; however, allows for the potential & create a smooth trajectory, we generate a polynomiah(suc
minimally invasive approaches to these extranasal strestfi as a bspline) by interpolating user selected sample points.
they are involved with disease. This has lead to a developingintra-operatively, the system registration procedureps a
field known as endoscopic anterior skull based surgery. Hgrked to correlate the robot, patient and the pre-operatigd-

the confines of the nose and paranasal sinuses are violatadlimages. The registration procedure could be accohmgyis
using endoscopic sinus techniques to address diseasedeywith fiducial marker based method or more sophisticated
the boarders of the nose. These surgeries are technicatlgthod [47], [48]. After the robot is calibrated and registk
challenging, even for experienced sinus surgeons, ana ofteformation from pre-operative planning, which includés t
involve delicate repetitive motions such as using high dpeplanned tool-tip target path or the target position and tbe 3
drills to systematically remove the protective bony cowgri model, is transformed into the robot coordinate frame.
surrounding a nerve embedded deep within the skull. It isIn our robotic assistant system, the surgeon is in the cbntro
thought that steady hand motion stabilization, robotidstéss loop; s/he is able to control the progress of the tool. Th&esys
surgery and spatial motion constraint will play a major roleeads the surgeon’s input, accompanied with the planndd too
in advancing this field and disseminating this approach ¢o ttip trajectory and the current tool-tip position, genesatiee
general population. The accuracy of the constraining o spatial motion constraints for the tool-tip. Meanwhileplto
obviously will depend on the surgical approach; howevarafo shaft boundary motion constraints are generated from the
prototypical procedure of a transnasal endoscopic apprtwac registered 3D geometry model and the current tool position.
the sphenoid sinus, to address a pituitary tumor for exampléhese constraints along with some other constraints, ssich a
or a maxillary antrostomy, to cure an acute maxillary sitisisi joints limitation of the robot, are fed into our constrained
the accuracy should be on the order of a millimeter. This gptimization control algorithm to obtain the desired joint

. Assumptions

Chronic sinusitis is typically treated using a combinatio
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velocities to move the robot. Figure 3 shows the diagram where w; giving the relative importance of minimizing the

our spatial motion constraints generation system. objective function error for different task frames. The eom
bination of a weighted objective function and an additional
Remon et set of task constraints allows us to exploit the geometry of

e ~a particular task space motion and effectively trade off the
‘ i various performance criteria.
‘ Surgical robots often are kinematically redundant for the
— purpose of providing dexterous assistance. At the same time
Mamp@ . task constraints such as the requirement of a tool passghrou
i a cavity restrict dexterity [35]. Indeed, some specialpose
designs for minimally invasive surgery, such as IBM-JHU
77777777777777777777777777777777777777777777777777777777777777 LARS [49] and JHU Steady Hand robot [50], may be kine-
@ @ matically deficient. Other robots such as the daVinci [11d an
i Endorobotics [51] combine a kinematically constrainedatam
center of motion (RCM) mechanism with a kinematically
redundant wrist. The ability to accommodate unique, specia
purpose mechanical designs (such as kinematically rediinda
or deficient) is important as well. Our formulation couldigas
C. Constrained Optimization Control integrate any behaviors, such as asserting joint limiafar
In considering virtual fixtures for a surgical assistantapb Kinematically redundant robot, incorporating haptic mfia-
it is important to be able to place absolute bounds on tfen. to the control strategy.
spatial motion of the different parts of the instrument al we The general form of optimization problem (1) has many
as to specify desired nominal motions. variants, both for the objective function and constrairis.
We define different task frames associated to differentspaffis work we specialize (1) to produce a quadratic optinmrat
of the instrument. For each of the task frames, we define actgoblem with linear constraints [52]. We use linear conistsa

state variables: and desired state variabled. = = z(q, Aq) Pecause of the efficiency and robustness of the computation.
is a function of joint variableg and joint incremental motion The objective function is a two-norm of incremental motion

Agq. error in different task frames. Since the incremental moio
We formulate a constrained optimization problem to genetufficiently small,Az = J(q) - Aq represent a good approx-
ate the constrained motion for a certain task frame. Thergéndmation to the relationship betweehz and Aq. Form (1) is

'
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Fig. 3. Spatial motion constraints generation diagram

formulation for this problem is: then rewritten as
Aqmnd = arg Iglqn C(w(qa Aq)a wd) (1) chmd = arg rglqn HJ(Q) : Aq - Awduz (4)
s.t. A(z(g,Aq)) <b s.t. A-J(@)Ag<b

where C(z(q, Ag), z?) is the objective function associatedAgq..,., is used as set points for low level position/velocity
with the variance between the actual state variablesd the control loop which guarantees stability.
desired state variables’. A(z(q,Aq)) < b represents the  Customized virtual fixtures for complicated surgical tasks
constraint conditions. These constraints are used to fitiee can be treated as the combination of one or more of objects
solution vectorAg..,q to satisfy certain critical requirements assigned on single or multiple task frames. The basic cbntro
such as restricting the motion of the certain part of thgop is shown in Figure 4 and summarized as follows:
instrument within a strict motion envelope. Step @ We assume that the robot is holding the surgical
We combine the constrained motions on different taskstrument. The instrument and all the constraints are know
frames for generating complicated constrained motions. Fg the robot coordinate frame.
an example, assume the virtual fixture for task frafgis Step 1 Describe a desired incremental motion of the
surgical instrumenf\z? based upon (a) surgeon inputs, such
(2) as may be obtained from a joystick or hands-on cooperative
s.l. Ai(zi(g,Aq)) < b; force control; (b) ara priori surgical task description; (c) real-
Then the complicated virtual fixtures generated by constraiime sensor feedback, such as might be obtained from a vision

ing on task framegi, (i = 1, ..., N)} can be formulated S€NsOr.
as Step 2 Analyze and decompose the task into task primitives

on different task frames. It may include both an objective

a = 3) function describing desired outcomes (e.g., move as close

s.t. Ai(xzi(g,Aq)) < b;, as possible to a target) and motion constraints (e.g., avoid
i =1,.., N collisions, avoid exceeding robot joint limits, prevenisjmn

A(ICmd = arg rglqn Ci (ml(qv Aq)7 wg)

N
chmd = arg HAlln Z w7cl (2137 (q7 Aq)7 21)‘?)
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Step 0

‘ models are geometrically complex; generating constramts
Step 1 real time can be a challenge.
{ Describe a desired incremental mot@:ﬂf 1) Covariance K-D Tree - A Structure For Interference De-
! tection: We use a covariance tree data structure [54] to search
Anal dSSED 2: e task for the closest point on the surface to the tool. A covariance
nalyze an ecompose the tas . . . . .
iﬁto'the task prm‘:itives on tree is a variant of a k—dmensmne_tl binary tree (k—D_tredr)eT
different task frames traditional k-D tree structure partitions space recutgiedéong
' the principal coordinate axes. In our covariance tree, sabh
Combi Step3:. space is defined in the orthogonal coordinate frame of the
ombine the objects into a " .
linearized eigenvectors centered at the center of mass of the poirarset,
constrained optimization problem is recursively partitioned along these local coordinatesaxVe
i rotate each local reference frame so thatxkexisis parallel
Step 4: to the eigenvector with the largest eigenvalue andztaxis
Solve the optimization problem, . ) : i
Repose the incremental motion | &P > is parallel to the eigenvector with the smallest eigenvaiure
important advantage of covariance trees is that the bogndin
Fig. 4. Basic control loop boxes tend to be much tighter than those found in converitiona

k-D trees and tend to align with the surfaces, thus producing
a more efficient search.
errors to exceed specified limits, restrict tip motion to a&m  The tree is built recursively as follows. Given a set of psint
within a desired envelope, etc.). {P;} sampled from the surface, we find the centroid and the
Step 3 Use the robot and the task kinematic equations taoments
produce a new linearized optimization problem, in which the

_ N _
instrument motion variables and other task variables haeab P=5YP; P,=P;—P;
projected onto incremental joint variables. This probleas h =y (6)
the general form: M=> P,.PT
i=1
N
AqGema = arg min > w; || Ji(q) - Ag — Aw;’”z We then analyze the principal components bf and
a =1

= (5) determine the rotation matri® = | R, R, R. | with
st Ai- Ji@)Aq < bs, columns R, and R, correspondin[g to theJIargest] and the
i =1,.., N . .
smallest eigenvalues a@ff, respectively. Next, we compute the

where J; is the Jacobian matrix relating different task spaceset of points{ P;} in local frame by rotating{ P;} : P} =
i to the robot joint space. R - P;. Finally, we compute the bounding box ¢#;} and

Step 4 Use known numerical methods, such as LSI dgpartition { P;} about the cutting plane = 0. Each of these
scribed in [53], to compute the set of incremental joint mes  sets is thus recursively subdivided until only a small numbe
Agq, and use these results to move the robot. Form (5) isofipoints remain in each box.
linear least squares problem, its solution reaches theablob We fit a circumsphere about each triangle. We then construct

minimum. a covariance tree of the centers of each circumsphere. The
Step 5 Go back to Step 1. use of circumspheres about triangles is necessary to ensure
The basic loop can be terminated by predefined conditiotie correctness of the algorithm, which is intended to find
or the signal from the operator. the closest point on a triangulated surface. It is possibie f

the vertices of a triangle to be long distances from a target

D. Real-time Constraints Detection from Registered Model Point while there is a point on the edge or interior of the
triangle to be quite close. Although it is theoretically pixe

. The geom_etry_ of the mstrgment wc_>rkmg area such ?Sr an extremely long triangle to degrade the efficiency af ou
in endoscopic sinus surgery is complicated. Fast potenttlla

- . . ata structure, as practical matter this does not occur théh
collision detection between the tool and anatomy is require : .
: . X T image-based anatomical models which we use.
for a real-time robot control. This potential collision isfthed

. : At each node (i.e. for each bounding box) of the tree, we
as the closest point pal?, and P, on the anatomical structure . . : .
. X : o note the maximum radius, ., of all circumspheres associated
and the tool, respectively. This potential collision is dise

to generate instrument boundary constraints. In the curr%\rlwlth that node. We compute the corners of an expanded

) . ounding box
work, we model the surgical tool as one or more cylinders
representing the tip and the tool shaft. We use 3D triangdlat P} = —Tmax + min Pj;
surface models of anatomy to develop real-time constraimts P* = o+ mafx P (7)

the tool motion. Productions of such anatomic models from
3D medical images and registration of the models to the robmhere thenin and themax operations are performed element-
workspaces are well-established technique [47]. Howetlier, wise.
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2) Potential Collision Detection Using K-D Tre€fhe tree tool-tip motion constraints are task related. This commbne
searching for collision detection proceeds as follows.eGia is responsible for relating the defined surgical task (sugh a
line segmentP; P> between two pointd?; and P, we wish moving a surgical tool along a desired path or observe atarge
to find all possible surface patches that may be closer thposition on the patient’s anatomy) with user inputs, whiciym
some threshold distancgy,...s, to the line segment. At eachbe expressed either by hands-on cooperative control ongfhro
level of the tree, we first transform the line segment to thmnventional teleoperation control.
local coordinate frame

P; =R (P~ P); ) A Path-following in Complicated Geometric Environment

* = -1 . —
Py=R (P> —P) 1) Tip Motion Constraints Definition:There are different

If we are at a terminal node of the tree, then for eaalays to implement tip motion constraints [52], [8]. We use th
triangle ¢ in the node, we compute the point pdit; , and method described in [18] to implement tip motion constsint
P; , corresponding to the closest approach between the limed integrate it in our path following task. For the detail of
segment and triangle, wher®; , is on the triangle and this admittance law based method, the reader could refer to
P; , is on the line segment. We retain any such pairs wifti8]. We abbreviate it below.
|1P; , — Py 2 < €thresh- We model the tool tip as a Cartesian device with the position

If we are at a non-terminal node, we first check whethar, € SE(3) and velocityv, = = € R* all expressed in the
its bounding box is penetrated by the line segment or not. WWabot base frame. Our desired three-dimensional curveghwhi
recursively search the left and right sub-trees, if its libhng serves as the reference direction, is described as a bspline
box is penetrated by the line segment. Otherwise, we compptaynomial. At each control loop, the robot encoders read ou
the point of closest approadR; , .. and the correspondingthe current tool tip position. We search the closest point on
point P; . .. on the line segment. If the distance betweethe bspline curve to the current tool tip position, and cotapu
them is small, such a$P; ., .. — P nodell2 < €thresh, We  the tangent direction of the bspline curve on that point.
recursively search the left and right sub-trees for poirfts 0 Assume the vectot = [ ty ty t. ]T represents the

closest approach &7 P;. _ tangent to the curve, and = [ n, n, n. ]T represents
When the search is completed, we transform all point pai§e vector from the current tool tip position to the closesinp
back into the world coordinate frame. If there are no poiRfy the curve, we have the reference direction of mofivand

pairs closer thare,...,, then we claim that there is noe signed distance from the tool tip to the task motion targe
boundary constraints. w as
e

One difficulty with this approach is that it tends to produc
many point pairs from the same patch of an anatomy that
are almost equivalent, thus producing an excessive nunfber o
motion control constraints. Therefore, in practice we myodi e
our search as follows: for any non-terminal node whose u=n= [ Ng Ny Ny }
bounding box is not penetrated by the line segment, if 1)
| P; — P5  aell2 < €nresn @and 2) the bounding box

b_node

~
82

o
)

D=[t 0 0]= tJ 0

~
w
o
o O

The user’s input obtained from a force sensor or from a

. . L . master robot is transformed to producks ®* in the robot
of the node is alg,p very flat (i.e., Wlthax(z) B Pmin(_z) base frame. Following [18], we define two projection openati
less than a specified value), we simply return the point paj[,, span and the kernel of the column space as
P; . .. andP; . without further recursion.

span (D) = [D] = D (DTD)" DT,
V. APPLICATION TASK ANALYSIS kernel (D) = (D) =1 — [D].

9)

We analyze two application tasks which are useful ihe definition and the properties of these two operators are
endoscopic sinus intervention procedure. The “path-fdhg” described in [55]. We decomposg into two components:
task is to guide a surgical tool following a pre-defined traje [D] f along the preferred direction aid®) f perpendicular to
tory. The “target-inspection” task is to move a high-degrete preferred direction. We apply an admittance ratiq0 <
endoscope to observe a target from different angles. In bdth< 1) to attenuate the non-preferred component of the force
tasks, the tool works in a complicated geometric envirortmeinput. Then we compute the desired tool tip veloaiyby an
collision avoidance between the tool shaft and anatomy asimittance control law:
required. 4

Our constrained robot motion control bases on two im- vy = k([De] + ks (De)) f (10)

portant components: tool-tip motion constraint generafiod |, 1are 1 is the admittance gainD, is the new preferred

the tool shaft boundary constraint generation. These @&wr yire tion, which adjusts the tool tip toward and follows the
constraints along with some other constraints, such a$SJO|Brigma| preferred direction

limitation of the robot, are fed into the constrained quédra
optimization algorithm to obtain the desired robot motidhe D.= (1 —-kg)[D]f +kallfl5(D)u (11)
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whereky (0 < kg < 1) is a blending coefficient with which where A, = —m, 0 0 0 ]7 andby = —eppg + 13~ -
governs how quickly the tool tip is moved toward the refeeeng P, — Py).
direction. We can use very low values fap, and rely mainly on
2) Task ImplementationAt each time step, the goal is tothe inequality constraints. An alternative approach isitea
compute incremental joint motion&q, which then are fed to the ¢;, term out of the optimization altogether. The number
the low-level position servos. We compute the desired ipol tof constraints in this class changes dynamically and depend
velocity using the admittance law described above, ande®nvon how many closest-point pairs we generate based on the
this to an incremental 6-DoF tool motiah P¢: relative position of the tool and the geometric environment
APY =[ (vd), - At (vd), At (). At 0 0 0]T _c) Jo'int' limits:: Finally, we want to ensure that none of.
(12) the joint limits are exceeded as a result of the motion. This

where At is the sample interval. requirement can be stated as

We identify three classes of requirements: in the tool tip
frame, the tool boundary frame(s), and in the joint spaces. F
each, we define an objective functignto be minimized and where g is the vector of the current values of the joint
a set of linearized constraints. variables, andy.,;, andgm.x denote the vectors of the lower

a) Tool tip motion:: We require an incremental tool tipand the upper bounds on the joint variables, respectivety. W
motion AP; to be as close as possible to some desired valago want to minimize the total motion of the joints. These
AP¢. We express this as: can be rewritten in the form

_ B 1|2 - - Agq)?
G =||AP, — APY (13) G =1W;-Aql;,
= AP, il e Ag, (19)

gmin — 4 S Aq S gmax — 4 (18)

In order to enforce tip motion along that preferred direatio

we approximate the direction gk P; to be same ad\ P¢ where
APIT AP > (1-q)APE G4 A
wheree, is a small positive number. We relate the tool tip ) e o
frame motion to the joint motion via the JacobidnP, — Again, we setw; to low values for all of the joints and
Ji(q)Agq. We rewrite (13) and (14) as simply enfo_rce the inequality constraln_ts.
) d) Putting it together:: We combine all of the task
G = [[We - (e(@)Ag — AP, (15) constraints and objective functions, and then obtain thezal
st. A J(q@)Aq < b, optimization problem:
where A, = ~AP¢ T andb, = —(1 — &) |AP|2. W, = W, 1 ([ 7@ art I\ |I°
diag {w;} denotes a diagonal matrix of weighting factors argmin Wi : Ji(a) | Ag— 0
specifying the relative importance of each componenk &f,. o W, I 0
Since we want to track the path tightly, we set the transtatio ) fO)
components ofv; to a fairly high value and let the rotationalsubject to
components to a low value. " " e .
b) Boundary constraints::We want to ensure that the ‘ N _ Jt A< ¢ (21)
instrument itself will not collide with the cavity boundaas " , k;") (Ag)< Z’“

a result of the motion. For each potential contact point pair -
we get a constraint of the general form

- B. Target-inspection in Complicated Geometric Environtnen
ny ' - (P + APy — Py) > €pna (16)

Another useful procedure in endoscopic sinus surgery is to
where P, and P, are the position of the potential collisionmanipulate an endoscope to observe a target anatomy from
point pair on the surface and tool, respectively, is the different view. Our target-inspection task is then defined a
normalized normal vector at the contact point on the SWeeping a virtual positiorP,,, which is along the endoscope
face, andey,q is a small positive number. The constraingptical axis and-mm away from the lens, staying on a given
described in equation (16) indicates that the angle betwe@Rget positionP,, while approaching the target position from
(Pr+ APy — Py) andn, is less thard0 deg. Indeed, this ifferent angles based on a user’s input.
constraint prevents the tool shaft from penetrating a plane 1) Task Implementation:

We can also define an objective function= |[W} - AP|3 a) Tip constraints:: Once P, reaches on the target

expressing the desirability of minimizing extraneous mo®f position P,, we require the virtual poinP,, to stay onP;:
the tool near the boundary. We again rewrite these formulae
in terms of Ag. [Py — Pf| < e (22)

G = Wi - APy]3,
s.t. A - Jk(q)Aq < by

where ¢; is a small positive number. We further approxi-

(17) mate (22) using method described in [52] as



ArJi(q)Aq < by

cos «vq cos 31 cos o sin 81 sinagy 0 0 O
A= : ;
cos an cos By,  cosapsinB,, sina, 0 0 O
€t
Pvfpt
’ 0 Fig. 6. (left) phantom skull and wire serving as path, (rjgteiconstructed
€t 3D skull model and path
. (23)
wherea; = QT” B = %T ¢; is the tool tip distance error
tolerance. . . . i . .
We require our tool rotational motion proportional to th&0POt is ergonomically appropriate for minimally invasive
user's inputr, then we set the cost function as m|crosurg|cal tasks and providedum scale, tremor free
motion.
5 . . - .
G= Wi (Je(@)Aq —k-7)|2 The experimental setup is shown in Figure 5. A commercial

o . 6-DOF force sensor (Nano43, ATI Industrial Automation,
b) Task constraints:The other constraints, such as 00 th carolina, USA) was mounted to the robots tool holder.
shaft boundary constraints and joint limitation consti®iare g handie of the tool was mounted co-axially with the sensor
the same as we described in the “path-following” task. We, g the operator manipulates the tool by exerting forcesien t
combine all of the task constraints and objective functiong,,qie. In Steady Hand collaborative control, forces exsioly
and then obtain the overall optimization problem, which is: o operator on the handle are measured and equation (10) is

W, Je(q) kT ’ used to compute the desired motion of the robot. In the alesenc
arg min Wi . Je@ |2a—| o of other constraints, the robots’ motions simply complyhwit
ad w, I 0 the operator’s hand forces. This feels to the operator like h
(24) or she is manipulating the tool in a viscous medium.
subject to A tool with a bent tip was attached to the end-effector of

the Steady Hand robot. The purpose of the bent part is 1)

A \ jt(q) N b o5 to simulate the shape of the sinus surgery instrument; 2) to
* N ’“;q) 9= Z’“ (25) simulate the angular view of a high degree endoscope. In the
J J

experiments, we constrained motion to avoid collisionshwit
any portion of the tool shaft (i.e., either with the “stratigbr
“bent” portions). Motion constraints for the tool tip varyitiv
A. Experimental System Setup the specific experiment, as discussed elsewhere.

Our results were based on experiments with a phantom
skull. Five small spherical fiducials were attached to the
skull, which was then CT scanned. 3D-SLICER’s [56] built-
in segmentation functionality was used to threshold, segme
and render the skull CT dataset to create a triangulated Imode
of the skull surface. Figure 6 shows the phantom and the
constructed 3D model.

An optical tracking system Optotr&3020 (Northern Dig-
ital, Inc. Waterloo, Canada) was employed for the robot-cali
bration, system registration and the validation for expental
results. A 2GHz Pentium IV IBM PC-compatible machine
running Windows 2000 was used for robot control and registra
tion. The basic control loop (shown in Figure 4) was operated
at a rate around 30Hz. PID controller for servoing the robot
position runs on-board at a much higher rate (around 1000Hz)

V. EXPERIMENTS AND RESULTS

Fig. 5. (left) experimental setups, (right) the tool with enbtip portion

Our current implementation used the Johns Hopkins Uni- ) .
versity Steady Hand robot (JHU SHR) [50]. The JHU SHR i8: System Registration Accuracy
an admittance-controlled non-backdrivable 7-DoF robdhwi The positions of the fiducials in CT coordinate frame were
a remote-center-of-motion (RCM) kinematic structure. Theetermined by a fiducial finding algorithm. The algorithm



marches through consecutive CT slices gathering pixelsdbas
on a threshold input and collecting adjacent hyperdensaix
into consolidated objects representing fiducials. The falsic
positions in Optotrak coordinate frame were gathered by
calibrated pointers. We computed the transformation froen t
skull to the pre-operative CT coordinate frame by least sgjua
fitting method [57]. To evaluate the registration accuraey,
computed the residual error across the fiducials. The agerag
residual registration error measured across the five fithucia
upon five trails is0.473 £+ 0.07 mm.

-49.7

C. Surface Model Representation 179
We used a triangulated surface mesh to represent the phan-

tom skull. In our experiment, we only used the nose and §”8

sinus portion of the resulting skull model. There are about N

99,000 vertices and 182,000 triangles in this surface model 17
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The average area of the triangles is around mm?. The
average length of the triangle sides is aroun@mm. The
time used for building a tree from this surface model is atbun
60 seconds.

There is some trade-off between mesh resolution, model Y:mm
fidelity, and computational efficiency, although the hiehgr X: mm
pature of our covariapce tree data structure limits thisiﬁqn Fig. 7. The tool tip position measured by (top) the robot elecs and
ity. It would be a straightforward matter to vary the georigetr (hottom) the Optotrak in a target-inspection task. The mrees are the
tightness of collision constraints simply by stopping theet measured positions, the red ‘o’ is the target position.
search at a coarse level of detail.

D. Results of Target-Inspection

We marked a position at the bottom of the phantom skull as
the target. This target position with respect to CT space was
determined using an Optotrak pointer. We used the bent tip
tool (shown in Figure 5) to represent a high degree endoscope
The tool was inserted through the phantom nasal cavity. The
tool tip represented the virtual positiaR,,.

A user held the handle to manipulate the tool. The robot
read the applied forcg € i3 and provided assistance to avoid

collisions between the tool shaft and the phantom, measwhil

; ; ; ; it Fig. 8. Trajectories of the tool during a target-inspectioial from two
maintain the. tool tip at the given pOSItlon. different views. (left) the swept volume of the tool pathiglit) the relative
We set distance error toleraneg in (23) as0.1 mm t0 rejation between the tool and the nasal part of the plastidl sk

generate stiff tip motion constraints. in equation (24) was

set ag).01. We used both the robot encoders and the Optotrak

to record the tool tip position. The average distance ofdlo¢ t CT space was defined by tracing the wire with an Optotrak
tip P, to targetP; for ten trials is0.02 + 0.02mm measured pointer. A 5-th degree bspline curve, which interpolatee th
by robot encoders, while the average distance measuredgathered sample points, represented the target path. @ths p
the Optotrak i9.34 4 0.15 mm. The maximum distance from was transformed to robot coordinate frame after registnati
P, to P; is 0.08 mm and0.81 mm measured by the robot The tool was inserted through the phantom skull nasal
encoder and the Optotrak respectively. Figure 7 shows thle teavity. In the path-following experiment, a user was asked
tip position measured by the robot encoders and the Optotragk manipulate the tool to move along the wire as close as
During the user operation, the tool shaft did not collidetwitpossible while avoiding the collision between the toolfsha
the plastic skull. Figure 8 shows the relative position a# thand the phantom.

tool and the plastic skull from two different views. We first applied force on the handle and performed com-
) ] ] puter simulation to check the feasibility of motion for path
E. Results of path-following simulation following task given the constraints and robot kinematics.

A thin wire attached inside the nasal cavity of the plastid/e chose the admittance ratig in equation (10) as 0 to
skull served as the target path. The target path with respecenforce the tool-tip motion only along the preferred dii@tt
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The control gaink,; in equation (11) was set as 0.2. The 1) Protocol: The experimental system setup is described in
components ofuy, in (17) andw; in (19) were set a$.01. section V-A and V-E. A tool was inserted through the phantom
Figure 9 shows tool trajectories and the relative positiggkull nasal cavity. The length of the tool was arouridmm
of the tool with the phantom skull model. The result of ouand the weight was arourdb kg. It was based closely on real-
simulation suggests that the robot can exactly track thb pdife practice. The experiments required subjects to mdatpu
while avoiding the collision between the tool-shaft and tha tool to move along the wire attached to the bottom of
skull. phantom nasal cavity as close as possible while avoiding the
collision between the tool-shaft and the phantom. We tested
tip peint path  pent tip portion the user’s performance in three modes.

o Freehand mode:The user held the tool and manipulated
it without any assistance. No robot was involved.

» Steady Hand robot guidance in_hands-orcooperative
operation mode: We attached the tool handle to the force
sensor. Both of the tool handle and the force sensor were
mounted on the SHR end-effector. The user held the tool
handle to manipulate the tool. The robot read the applied
force f € R3, provided assistance to avoid collisions
between the tool shaft and the phantom and move the

Fig. 9. Trajectories of the tool in a path-following simutet. (left) the tool tip along the desw_ed path. as well. .
swept volume of the tool path, (right) the relative positisetween the tool o Steady Hand robot guidance in_remoteteleoperation

tool shaft portion

and the nasal part of the phantom skull model mode: We employed a SpaceBHﬂ mouse (3D Con-
nexion, Germany) to implement a simple teleoperator
In our experiment, the size dfq in (20) and (21) wag x 1. interface. The SpaceB&M is a 6-DoF (three translational
The size ofA-J in (21) varied from20 x 7 to 39 x 7; the size components and three rotational components) force sen-
of W - J in (20) varied from13 x 7 to 37 x 7 according to the sor commonly used as a joy stick or mouse in computer

number of boundary constraints. With our 2GHz Pentium IV graphics or gaming application. The user controlled the
PC, the average time in each control interval for the boundar  tool tip motion through the SpaceBall three translational
search and optimization problem solution6isns. componentst € 2. The translational components were
According to [53], LSI problem is eventually reduced to aligned with the robot base frame. The robot read the
NNLS problem. NNLS is solved iteratively and the algorithm ~ output of the SpaceBatt € R*, provided assistance to
always converges in a finite number of iteration. Based on avoid collisions and move the tool tip along the desired
the implementation of [53], NNLS returns with a feasible  path. The desired tool tip velocity/ then was determined
(approximated) solution if it fails to converge aftgrx n (n by replacef by = in (10) and (11).
is the number of decision variable, which sin our case)
iterations. In our experiments, the numbers of iteration o
NNLS were less thafl. In other words, we obtained the exact
solution, instead of approximated solution to the consédic
optimization problem.

F. Performance comparison of cooperative and teleopegativ
control in path-following task

The main purpose of the experiments is to evaluate th®. 10. (left) Hands-on cooperative control, and (righ#)ébperative control.

improvement of users’ performance of manipulating instrd@ hands-on cooperative _coptrol,_a force"sensor and toohemented on the
i . . . . . robot end-effector. Tool is “manipulated” by an operatoidditg a handle

ment with robot guidance using virtual fixtures derived fromgiached to the force sensor. The robot read the applie@ fand provided
complex geometry compared to free-hand instrument manipgsistance. In remote teleoperative control we use 3D mioutge- control
lation. Our constrained control method works for both hand&® oot
on cooperative control operation and more traditional erast
slave teleoperation. We evaluated users’ performancedibr-p A 3D visualization interface provided the user with visual
following task with both operation modes, and free hanidformation about 3D geometry, the tool position, orieitat
as well. We simply used an available 3D joystick as thand the reference target path around the working site.
teleoperation master hand controller. No attempt was madeTen subjects participated in the experiment. These suject
to produce an optimized ergonomic design. Different specifivere varied in experience with the Steady Hand robot from
designs could significantly improve the overall perform@anaovice to expert. The subjects were asked to perform fivkstria
of either mode. for each of three different modes. Between every two trials,
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the subjects were given one or two minutes for rest.

An Optotrak rigid body was fixed to the tool. We recorded e
the tip position error of each trial during the path-folloi
task both from the robot encoders and Optotrak tracking
system. The tip position error is the distance from tool tip
position to the reference curve in a coordinate frame. The
average error is defined as the total error divided by the mumb
of samples throughout the task. The execution times for each
trial were recorded on the computer. The average execution
time and average error for all ten subjects were tested to
determine the statistical difference between differentieso Fig. 11. Error profiles of a path-following task measured bg tobot. In

We compared the performance of different operation modi#s robot context, there is no significant difference betwtee robot-assisted
in both robot context and Optotrak context. In robot contexfedes-
we evaluated subjects’ performance based on the amourd of th
error inside robot envelope. All constraints were transfed
into the robot coordinate frame, and the tool tip position
was measured using the robot encoders and its kinematics. In
this case, we assumed that there was no other external error:
error was only caused by the control algorithms and the robot
controller. In Optotrak context, the tracking system pded
an independent measurement of tool tip position relatiibeo
target path. In this case, we measured the error on the system
level.

2) Results: For all trials of ten subjects in robot-assisted
modes (hands-on cooperative and teleoperative modepgluri
the path following task execution, we found the tool shatlit
did not hit the skull phantom by observation.

a) Robot Context: The error profiles and trajectories ‘\‘;‘

of tip during task execution of the two Steady Hand robot
guidance modes in robot context are shown in Figure 11 YA
and 12. Although the error in hands-on cooperative mode  hends-on
(0.204+0.01mm) is slightly better than the error performance - N

L
o

in teleoperative modé)(219-+0.02mm), there is no significant “-"}mme Ny
difference between two modes (paired t-tgst= 0.31) as

shown in Table I. However the execution time in hands-on AN
cooperative model0.00 + 2.31 s) is significantly better than RN
in teleoperative mode2¢.17 + 4.14 s). All subjects moved

faster in hands-on Cooperative mode. Fig. 12. (top) Trajectory of the tool tip in “path-followifigask measured
by the robot. (bottom) close-up of the highlighted part.

Time (s)

TABLE |
ERROR AND TIME IN HANDS-ON COOPERATIVE MODE AND

TELEOPERATIVE MODE FOR PATHFOLLOWING TASK MEASURED BY THE ~ Was used to calculate the joint velocities was not as smooth

ROBOT as the force input. The teleoperative control via Spacei3all
AVg Error | pvalue | Time (5) pvalue harder than hands-on cooperative control. The subjects als
(mm) commented that the task was easier to perform in hands-on
Hands-on | 0.204-+ 0.01 | 0.3065 | 19.00£231 |0 cooperative mode. This can provide some explanation on why
Remote 0.219+ 0.02 2417+ 4.14

execution time of the hands-on cooperative mode is less.
b) Optotrak Context:We compared the errors in hands-

In both modes, our control optimization solved practicallpn cooperative mode, the remote teleoperative mode, as well
identical problems to determine commanded joint velcgiti@s the free hand mode in the Optotrak tracking coordinate
— i.e., the only differences in the constraints and objectisystem. As shown in Table Il, errors in both robot-assisted
functions were those relating to the user command interfac®des (.99 +0.14mm in hands-on cooperative mode72 +
(i.e., force compliances. SpaceBall input). Velocity profiles 0.11mm in remote teleoperative mode) are significantly better

in Figure 13 and 14 show that commanded joint velocitighan in free hand mode {47 + 0.98 mm). Similarly, the exe-
change more smoothly in hands-on cooperative mode thancition times in robot-assisted modd$.00 + 2.31 s in hands-
our simple teleoperative mode. The users SpaceBall injit tlon cooperative mode4.17 + 4.14 s in remote teleoperative
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Fig. 13. Commanded velocity profiles of prismatic joints I Steady Hand
robot (joint No. 1,2,3,6) in path-following task (left) h@sron mode (right)
remote mode. The labels of y-axis are Velocity(mm/s) anelialof x-axis
are Time(s).

715

2

- W ! Fig. 16. Trajectory of the tool tip in “path-following” taskeasured by the

Optotrak. Errors in both robot-assisted modes are significdetter than in
. free hand mode.
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Although hands-on cooperative mode shows almost same
error as teleoperative mode when the robot is used to measure
its own performance, the relative accuracy of the teledjpera

mode is better than that of the hands-on cooperative mode
when an independent means (the Optotrak) is used to measure
path tracking (paired t-tesp < 0.000001). We believe that

the main reason for this is the robot stiffness. In hands-on
cooperative mode, subjects held the tool that is mounted on
Fig. 14. Commanded velocity profiles of revolute joints of tBteady Hand the robot end-effector. The hand forces used to command
robot (joint No. 4,5,7) in path-following task (left) hands mode (right) oot motion themselves produced some robot deflectiors Thi
remote mode. The labels of y-axis are Velocity(deg/s) abdltaof x-axis are
Time(s). factor was perhaps exacerbated by a tendency of users to push
harder than was necessary to cause the desired motions. In
teleoperation mode, of course, the users exerted no forces o
mode) are better than free hand mode.§6 + 8.82 s). The the tool.
error profiles and the trajectories of tip of three modesrduri  As noted below, we are currently adapting our constrained
task execution are shown in Figure 15 and Figure 16. control paradigm to full 6-DOF master-slave systems such as
c) Discussion:As might be expected, the error of boththe daVinci, although the daVinci would not necessarily be a
robot-assisted modes in Optotrak context is much larger thparticularly appropriate robot for sinus surgery. Althbuge
in robot context. In the former case, in addition to thé@ave not done an exhaustive comparative study, our anécdota
control algorithm and robot controller, the robot caliimat experience leads us to believe that the major effect of dhgng
and system registration errors are other two main sourcesnedister devices is likely to be on the time, rather than on the
the tip motion error. Moreover, the accuracy of the Optotrakccuracy of path performance. The choice of hands-on guidin
tracking system< 0.2 mm in space) also contributes to thevs.teleoperation, in any case, is likely to be dictated by other
overall error. ergonomic and economic considerations which will vary with

!
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paradigms in general. Different specific designs could sig-
nificantly improve the overall performance of either mode.
Nevertheless, the experiments show that it is possible pyap

TABLE Il
ERROR AND TIME IN THREE DIFFERENT MODE FOR PATH-FOLLOWING”
TASK MEASURED BY OPTOTRAK

Avg Error (mm Time (s . . . .

megan ( =3 )dev_ mean( ) ST dev. our control formulation to either paradigm and to achievedjo
Hands-on | 0.993 0.136 19.00 2.31 performance while doing so.
Remote 0.720 0.112 24.17 4.14 As discussed above, the primary focus of this paper has
Free hand | 2.468 0.981 2756 8.82

been development of techniques for controlling the motion
of teleoperated and cooperatively controlled surgicalotsb
in the presence of complex geometric constraints assdciate
clinical application. with patient anatomy, using endoscopic sinus surgery as a
As mentioned, the visualization interface only provides thmotivating application.
user geometric information around the working site (theaare Further work will be required before this work can be
around the tool tip). There is no further feedback other thaipplied clinically. In addition to the obvious progression
user's awareness of the relative position between the t@dt s through animal model and cadaver testing and development of
and phantom. The reader may notice that the position er@lstomized instruments for the robot to hold, importantifer
shown in Figure 15 is much larger in the second half of the taglnsiderations are: extension of our methods to work with
in the free hand mode. That is because the relative positionstraints associated with soft tissues, registraticmésn
of the second part of the path with respect to the cavity i8bot, patient, and image coordinates; and accommodating
complicated. With the free hand mode, the subjects neededptgtient motion.
tilt and rotate the tool simultaneously to keep the tool tittee  The current experiment used rigid models derived from CT
path and manage to avoid collision based on his awarenesgages of a plastic skull. Clinical application would regui
CT or MRI images of an actual patient, including soft tissues
VI. CONCLUSION AND FUTURE WORK Usually CT scans are used to plan and to perform sinus

We have developed a real time task-based control meth®#gery. An MRI scan is only used to understand what type
of surgical robot in a precise interactive minimally inwasi Of disease process is going on, i.e., to form a differential
surgical environment equally applicable to teleoperatiod diagnosis. Our entire paradigm for performing safe surgery
hands-on cooperative control. Robot-guidance (both handsbased on understanding the bony anatomy, because it is so
on cooperative and remote teleoperative control) emptpyifmportant for identifying surgical landmarks. For sinusgery
spatial motion constraints generated by virtual fixturesvee the bony anatomy is what is altered; the exception will be
from complex geometry can assist users in skilled manipRolyp disease which is beyond the scope of this paper. As for
lation tasks, while maintaining desirable properties sash the remaining soft tissue structures, they would be amenabl
collision avoidance and safety. to our approach. In treatment planning, the surgeon would

The experimental results show significant improvement iteed to determine how much impingement into soft tissue
both accuracy and execution time, compared to free hand if-permitted at different places and could also specify othe
strument manipulation. The results suggest that the czinsti  Constraints on permissible tool motion. Especially whesk s
optimization robot control can release the surgeon’s tensh tissue is involved, it is desirable to provide some comuiéaim
avoiding collision of the instrument to the anatomic stanet the corresponding constraints. Similarly, some compbaarud
during precision instrument manipulation in minimally @y adaptation is important to permit the surgeon to accomneodat
sive surgical procedure. registration uncertainty. To address these issues, we have

We have compared the performance of hands-on cooperafd@en exploring extensions to our formulation, using neain
operation and teleoperation to control a tool manipulated ¢onstraints and objective functions to implement “softtwal
a complicated working volume. The performance comparisditures. [58].
experiment results show that hands-on cooperative oparati Registration and patient motion accommodation could be
is more intuitive for people to use. The execution time witherformed in a manner similar to existing surgical navigati
hands-on cooperative operation is shorter than that wigope Systems [21], [23], [59], [60] possibly with some additibna
eration. Without considering external errors, the perfamoe physical supports to prevent very fast head motions. We have
of cooperative mode is identical to that of teleoperativelmo also been investigating alternative direct registraticethrods
The contact between the user and the tool that are mountedi@m endoscopic video [48].
the robot end-effector introduces perturbations into gstesn Finally, clinical application of this work will require de-
for hands-on cooperative control. velopment of a clinically qualified version of our robot and

The performance comparison experiments reported hémstrumentation to replace the engineering prototype ntedo
are primarily intended to demonstrate the performance bére. Although these considerations are beyond the scope
our constrained control method in both standard teleoper- this paper, we note that our basic control methods are
tion and hands-on cooperative control paradigms. They anelependent of the particular robot used. For example lierot
not designed as definitive experiments comparing these twork, we have applied our approach to control of a modified



daVinci robot, as well as an experimental “snake” robgis]
controlled from a modified daVinci master controller [61],
rather than the simple 3D joystick used in the experiments
reported here. Most probably, we will develop an appropriati9]
industry collaboration to develop a clinically deployedsien,
although we are also considering appropriate next steggsn t[zo]
direction to be taken internally.
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