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Abstract— This paper describes a spatial motion constraints
generation approach for human-machine collaborative surgi-
cal assistant system from registered CT models. We extend
constrained optimization formulation incorporating task goals,
anatomy-based constraints, “no fly zones”, etc. We use a fast
potential collision constraint detection method based on 3D sur-
face model and covariance tree data structure. These boundary
constraints, along with task behaviors and joint limits, serve
as constraint conditions for constrained robot control. We are
able to follow a complex path inside a human skull phantom
represented by a surface model composed of 99,000 vertices
and 182,000 triangles in real time. Our approach enables real-
time task-based control of surgical robot in a precise interactive
minimally invasive surgery task.

We illustrate our approach based on two example tasks which
are analogous to the procedures in endoscopic sinus surgeryand
analyze the users performance on both teleoperation and coop-
erative control for one of the example tasks. The experimental
results show that a robotic assistant employing our approach on
spatial motion constraints can assist user in skilled manipulation
tasks, while maintaining desired properties. Our approach is
equally applicable to teleoperative and cooperative controlled
robots.

Index Terms— virtual fixtures, anatomy-based constraint, op-
timization robot control, surgical robot assistant

I. I NTRODUCTION

M INIMALLY invasive surgery, compared to open
surgery, offers many benefits to patients. However

minimally invasive surgery presents a constrained workingen-
vironment for both surgeons and mechanical devices designed
to assist them.

In a minimally invasive approach, such as for throat surgery
or endoscopic sinus surgery, long thin instruments or endo-
scope are inserted through anatomic opening reaching the
pathological area. The operating volume is very limited. The
instruments or endoscope have some degrees of translational
and rotational freedom but their motions are constrained by
anatomic structure.

Although the primary focus of this paper is development of
techniques for controlling the motion of teleoperated and coop-
eratively controlled surgical robots in the presence of complex
geometric constraints associated with patient anatomy, we
have chosen endoscopic sinus surgery as a focusing example.
Figure 2 conceptually illustrates the relationship between the
instrument, target (such as 3D path, inspection target) and
approach aperture to the workspace cavity in endoscopic
sinus surgery. During such a surgical procedure, the inserted
tools should avoid collisions or excessive force on delicate

Fig. 1. An operating room scene of endoscopic sinus surgery and a typical
shaver with a bent tip portion for endoscopic sinus surgery.
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Fig. 2. Geometric relation for spatial motion constraints.The number of tool
shaft boundary constraints changes based on the relative position between the
tool and the anatomy. (left) In the path-following task, thetool tip is required
to move along the given 3d path. (right) In the target-inspection task, the tool
tip is kept staying on the target, the orientation of the toolshaft is changed
to access the target from different angles.

anatomy while still performing desired motion to accomplish
an intended task.

The difficulty of precise surgical manipulation with endo-
scopic instruments invokes the application of robotic assis-
tants. In robotic assisted procedures, the surgeons’ ability can
be augmented by techniques such as virtual fixtures (VF). Vir-
tual fixtures are algorithms generating motion constraintsfor
a robotic manipulator perform a task by limiting its movement
into restricted regions [1], [2], [3], [4], [5] and/or influencing
its movement along desired paths [6], [7], [8]. Virtual fixtures
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have been discussed previously in the literature for both
telerobots [9], [10], [6], [11] and cooperative robots [7],[12],
[13], [14], [15].

An important case of virtual fixtures for surgical application
is forbidden regions, where the surgical tool is restricted
to certain regions in the workspace. Davieset al. [16] set
active constraints to constrain the robot to cut the femur and
tibia within a permitted region for prosthetic knee surgery.
Park et al. [17] developed sensor-mediated virtual fixtures
that constrain the robot’s motion or create haptic feedback
directing the surgeon to move the surgical instruments in a
desired direction. Their work applied a virtual wall based on
the location of the internal mammary artery obtained from a
preoperative CT scan to guide a surgeon’s instrument during
teleoperated coronary bypass.

Bettini et al. [7] focused on the techniques for guidance
virtual fixtures. They used vision information to assist genera-
tion of virtual fixtures. They examined the hard and soft virtual
fixtures and discussed the application to vitreoretinal surgery.
Marayonget al. [18] demonstrated motion constraints with
varying compliance that were described for the general spatial
case. These work used admittance control laws to implement
virtual fixtures.

Troccaz et al. [13], [15], [19] developed a passive arm
with dynamic constraints (PADyc) for pericardial puncture
in cardiac surgery. Their system implements virtual fixtures
to constrain surgical tools along desired paths or away from
some regions by using electrical motors to choose a clutching
system for freewheels. The principal advantage of such an
approach is that the robot is entirely dependent on the surgeon
to provide motive force, which some authors argue may have
some safety advantages if one is concerned about the robot
“running away”. Limitations include mechanical complexity
and loss of the robot’s ability to actively assist in surgical
procedures.

In endoscopic sinus surgery, Wurmet al. [20] developed
a robotic system for fully automated paranasal sinus surgery.
This system uses pre-operative CT to direct the robot’s au-
tonomous motion. It allows the remote control by joystick
as well. Lueth’s group [21], [22], [23] presented a mecha-
tronic system for functional endoscopic sinus surgery. Pre-
operatively they planned a safe working space based on
a 3D model from CT data. Intra-operatively, the shaver is
automatically turned on/off depending on the position of the
shaver tip. Within the safe area the shaver reacts to signals
from the surgeon. If the tip of the shaver moves outside the
predefined working space, the shaver’s automatic drive control
is interrupted by an electrical pulse. This navigation based
system has only concerned the position of the shaver tip itself.

Path planning and motion control is a well discussed area
with a wide variety of proposed optimality criteria [24], [25],
[26], [27]. Some work has used pseudo-inverse based gradient
projection techniques [28], [29], [30] or extended Jacobian
techniques [31], [32] to implement constrained control of
kinematically redundant robots. In [33], [34], the authorsused

neural networks for constrained robot motion control. Fundaet
al. [35] presented an optimal motion control method to control
both redundant and deficient robotic systems in constrained
working volumes.

Our purpose is to derive spatial motion constraints from a
very complex environment and enable the robotic system to
provide assistance for dexterous procedures in that complex
geometric environment in real time. There has been prior
work on model-based off-line planning for robotically assisted
surgery. For example, Adhami and Coste-Maniereet al. [36],
[37] developed graphical simulation system and algorith-
mic approaches to port placement for endoscopic coronary
artery bypass using the daVinci System. Similarly, Cannonet
al. [38] have presented a computer-based algorithm using pre-
operative images to provide the surgeon with a list of feasible
port triplet for coronary artery bypass grafting. Latombe’s
group [39], [40] used randomized techniques to guess a
promising initial set of beams for robotic radiosurgery system.
Sim et al. [41] proposed a collision free pre-planned path for
the instruments in neurosurgery.

In this paper, we present an on-line collision avoidance
method for real time interactive control of a surgical robotin
geometrically complex environments such as the sinus cavities.
We extend Funda’s work [35] to generate virtual fixtures for
real-time obstacle avoidance and simultaneously assist the
surgeon to perform desired tool motion to accomplish intended
tasks. In our work, 3D anatomic constraints are automatically
generated from 3D medical images in real time. Our new
potential collision searching method based on a covariance
tree derived from a patient-specific anatomic model enables
real-time pertinent anatomic constraints generation. We are
able to follow a complex path inside a human skull phantom
represented by a surface model composed of 99,000 vertices
and 182,000 triangles in real time.

The remainder of the paper is organized as following.
Section II provides a brief summary of our motivative clinical
example. In section III, we first describe the virtual fixture
generation system and the constrained control algorithm we
employed for generating virtual fixtures. Thereafter we explain
how to detect spatial motion constraints from complex 3D
anatomy in real time. In section IV, we analyze and detail
the implementation of two application tasks: path following
and endoscopic inspection of a target from different orienta-
tions. In section V, we report the experiment results of two
application tasks. We present performance comparisons on
our path-following task using our virtual fixtures with both
teleoperation and cooperative control as well as for unassisted
freehand manipulation. In section VI, we conclude our work
and discuss possible future extension.

II. M OTIVATING CLINICAL APPLICATION :ENDOSCOPIC

SINUS SURGERY

The paranasal sinuses represent a series of pneumatized
chambers surrounding the nasal cavities. Sinusitis is inflam-
mation of the paranasal sinuses from bacterial, fungal, viral,
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allergic or autoimmune issues. Sinusitis is one of the most
common health care problems in the United States affecting
approximately 31 million Americans annually. [42] Chronic
sinusitis, a subtype of sinusitis where signs and symptoms
of inflammation persist for greater than twelve weeks, is
known to significantly impact quality of life and is associated
with substantial functional and emotional impairment [43].
Benningeret al. [44] estimates that chronic sinusitis results
in 18 to 22 million physician office visits in the United States
annually, and it is known that all forms of sinusitis result in
significant health care expenditures.

Chronic sinusitis is typically treated using a combination
of anti-inflammatory and antimicrobial agents. If these agents
fail and there is radiographic evidence of disease on Computed
Tomography imaging of the paranasal sinuses then surgery is
warranted. Surgical therapy includes opening and enlarging
blocked ostia, removing entirety of sinus air cells or mar-
supializing. Currently, a minimally invasive approach to the
paranasal sinuses called functional endoscopic sinus surgery,
FESS, is the standard of care for treating medically recalcitrant
sinus disease. Here a series of instruments under endoscopic
guidance are used to systematically remove diseased tissueand
bone to enhance the drainage pathways of diseased sinuses.

Endoscopic sinus surgery is associated with severe and
sometimes catastrophic complications. This is because the
brain, eye, optic nerve, other cranial nerves, and the carotid
artery are all within millimeters of the surgical field. If the
surgeon becomes disoriented or confused, injury to one of
these important structures is possible. A number of important
technologies have been developed to minimize the chances of
these injuries such as image guided surgery, intra-operative
imaging, and steady hand motion stabilization; however, a
strong understanding of surgical anatomy and a systematic
and methodical surgical technique remain the cornerstone
of safe surgical practice. The proximity of these structures
to the nasal passage; however, allows for the potential of
minimally invasive approaches to these extranasal structures if
they are involved with disease. This has lead to a developing
field known as endoscopic anterior skull based surgery. Here
the confines of the nose and paranasal sinuses are violated
using endoscopic sinus techniques to address disease beyond
the boarders of the nose. These surgeries are technically
challenging, even for experienced sinus surgeons, and often
involve delicate repetitive motions such as using high speed
drills to systematically remove the protective bony covering
surrounding a nerve embedded deep within the skull. It is
thought that steady hand motion stabilization, robotic assisted
surgery and spatial motion constraint will play a major role
in advancing this field and disseminating this approach to the
general population. The accuracy of the constraining procedure
obviously will depend on the surgical approach; however, for a
prototypical procedure of a transnasal endoscopic approach to
the sphenoid sinus, to address a pituitary tumor for example,
or a maxillary antrostomy, to cure an acute maxillary sinusitis,
the accuracy should be on the order of a millimeter. This is

based on the observation that a maxillary sinus’s ostia is about
2 millimeters in size [45].

III. A PPROACH

A. Assumptions

In this paper we use endoscopic sinus surgery as a mo-
tivation to discuss our spatial motion constraints generation
approach for robotic surgical assistant system. The anatomy of
the nasal and sinus cavity is mostly bony tissue. Currently,we
assume that the anatomy is rigid, and ignore the deformation
and motion during the system registration and surgical inter-
vention. However, the basic approach is extendable to non-
rigid or moving anatomy, provided that suitable imaging and
real-time modeling is available.

The control algorithm we discuss in this paper is a “high
level”, model-based method that generates incremental joint
motion or velocity set points for a low-level controller which
provides stability. From the standpoint of the low-level con-
trol, these commanded motions have similar characteristics to
those that would be found in a conventional teleoperated or
cooperatively controlled robot, and stability has not beenan
issue. Our control approach readily accommodates the addition
of constraints to ensure feasible, stable motions; examples
would include limits on joint command, positions, velocities
and accelerations.

B. Virtual Fixture Generation System Diagram

The robotic surgical assistant is a surgical CAD/CAM
system [46]. Pre-operatively, the patient with radio-opaque
fiducials attached on the surface is scanned with Computed
Tomography (CT). A 3D surface model around the surgical
area is created from the pre-operative CT images. A surgeon
defines the tool-tip target trajectory or target position of
interest by selecting points in the pre-operative image slices.
To create a smooth trajectory, we generate a polynomial (such
as a bspline) by interpolating user selected sample points.

Intra-operatively, the system registration procedure is ap-
plied to correlate the robot, patient and the pre-operativemed-
ical images. The registration procedure could be accomplished
with fiducial marker based method or more sophisticated
method [47], [48]. After the robot is calibrated and registered,
information from pre-operative planning, which includes the
planned tool-tip target path or the target position and the 3D
model, is transformed into the robot coordinate frame.

In our robotic assistant system, the surgeon is in the control
loop; s/he is able to control the progress of the tool. The system
reads the surgeon’s input, accompanied with the planned tool-
tip trajectory and the current tool-tip position, generates the
spatial motion constraints for the tool-tip. Meanwhile, tool-
shaft boundary motion constraints are generated from the
registered 3D geometry model and the current tool position.
These constraints along with some other constraints, such as
joints limitation of the robot, are fed into our constrained
optimization control algorithm to obtain the desired joint
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velocities to move the robot. Figure 3 shows the diagram of
our spatial motion constraints generation system.
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Fig. 3. Spatial motion constraints generation diagram

C. Constrained Optimization Control

In considering virtual fixtures for a surgical assistant robot,
it is important to be able to place absolute bounds on the
spatial motion of the different parts of the instrument as well
as to specify desired nominal motions.

We define different task frames associated to different parts
of the instrument. For each of the task frames, we define actual
state variablesx and desired state variablesxd. x = x(q, ∆q)
is a function of joint variablesq and joint incremental motion
∆q.

We formulate a constrained optimization problem to gener-
ate the constrained motion for a certain task frame. The general
formulation for this problem is:

∆qcmd = arg min
∆q

C(x(q, ∆q), xd)

s.t. A(x(q, ∆q)) ≤ b
(1)

where C(x(q, ∆q), xd) is the objective function associated
with the variance between the actual state variablesx and the
desired state variablesxd. A(x(q, ∆q)) ≤ b represents the
constraint conditions. These constraints are used to forcethe
solution vector∆qcmd to satisfy certain critical requirements,
such as restricting the motion of the certain part of the
instrument within a strict motion envelope.

We combine the constrained motions on different task
frames for generating complicated constrained motions. For
an example, assume the virtual fixture for task frame{i} is

∆qcmd = argmin
∆q

Ci(xi(q, ∆q), xd
i )

s.t. Ai(xi(q, ∆q)) ≤ bi

(2)

Then the complicated virtual fixtures generated by constrain-
ing on task frames{i, (i = 1, ..., N)} can be formulated
as

∆qcmd = arg min
∆q

N
∑

i=1

wiCi(xi(q, ∆q), xd
i )

s.t. Ai(xi(q, ∆q)) ≤ bi,

i = 1, ..., N

(3)

where wi giving the relative importance of minimizing the
objective function error for different task frames. The com-
bination of a weighted objective function and an additional
set of task constraints allows us to exploit the geometry of
a particular task space motion and effectively trade off the
various performance criteria.

Surgical robots often are kinematically redundant for the
purpose of providing dexterous assistance. At the same time,
task constraints such as the requirement of a tool pass through
a cavity restrict dexterity [35]. Indeed, some special-purpose
designs for minimally invasive surgery, such as IBM-JHU
LARS [49] and JHU Steady Hand robot [50], may be kine-
matically deficient. Other robots such as the daVinci [11] and
Endorobotics [51] combine a kinematically constrained remote
center of motion (RCM) mechanism with a kinematically
redundant wrist. The ability to accommodate unique, special
purpose mechanical designs (such as kinematically redundant
or deficient) is important as well. Our formulation could easily
integrate any behaviors, such as asserting joint limitation for
kinematically redundant robot, incorporating haptic informa-
tion, to the control strategy.

The general form of optimization problem (1) has many
variants, both for the objective function and constraints.In
this work we specialize (1) to produce a quadratic optimization
problem with linear constraints [52]. We use linear constraints
because of the efficiency and robustness of the computation.
The objective function is a two-norm of incremental motion
error in different task frames. Since the incremental motion is
sufficiently small,∆x = J(q) · ∆q represent a good approx-
imation to the relationship between∆x and∆q. Form (1) is
then rewritten as

∆qcmd = arg min
∆q

∥

∥J(q) · ∆q − ∆xd
∥

∥

2

2

s.t. A · J(q)∆q ≤ b
(4)

∆qcmd is used as set points for low level position/velocity
control loop which guarantees stability.

Customized virtual fixtures for complicated surgical tasks
can be treated as the combination of one or more of objects
assigned on single or multiple task frames. The basic control
loop is shown in Figure 4 and summarized as follows:

Step 0: We assume that the robot is holding the surgical
instrument. The instrument and all the constraints are known
in the robot coordinate frame.

Step 1: Describe a desired incremental motion of the
surgical instrument∆xd based upon (a) surgeon inputs, such
as may be obtained from a joystick or hands-on cooperative
force control; (b) ana priori surgical task description; (c) real-
time sensor feedback, such as might be obtained from a vision
sensor.

Step 2: Analyze and decompose the task into task primitives
on different task frames. It may include both an objective
function describing desired outcomes (e.g., move as close
as possible to a target) and motion constraints (e.g., avoid
collisions, avoid exceeding robot joint limits, prevent position
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Fig. 4. Basic control loop

errors to exceed specified limits, restrict tip motion to remain
within a desired envelope, etc.).

Step 3: Use the robot and the task kinematic equations to
produce a new linearized optimization problem, in which the
instrument motion variables and other task variables have been
projected onto incremental joint variables. This problem has
the general form:

∆qcmd = arg min
∆q

N
∑

i=1

wi

∥

∥Ji(q) · ∆q − ∆xd
i

∥

∥

2

2

s.t. Ai · Ji(q)∆q ≤ bi,

i = 1, ..., N

(5)

whereJi is the Jacobian matrix relating different task spaces
i to the robot joint space.

Step 4: Use known numerical methods, such as LSI de-
scribed in [53], to compute the set of incremental joint motions
∆q, and use these results to move the robot. Form (5) is a
linear least squares problem, its solution reaches the global
minimum.

Step 5: Go back to Step 1.
The basic loop can be terminated by predefined conditions

or the signal from the operator.

D. Real-time Constraints Detection from Registered Model

The geometry of the instrument working area such as
in endoscopic sinus surgery is complicated. Fast potential
collision detection between the tool and anatomy is required
for a real-time robot control. This potential collision is defined
as the closest point pairP b andP k on the anatomical structure
and the tool, respectively. This potential collision is used
to generate instrument boundary constraints. In the current
work, we model the surgical tool as one or more cylinders
representing the tip and the tool shaft. We use 3D triangulated
surface models of anatomy to develop real-time constraintson
the tool motion. Productions of such anatomic models from
3D medical images and registration of the models to the robot
workspaces are well-established technique [47]. However,the

models are geometrically complex; generating constraintsin
real time can be a challenge.

1) Covariance K-D Tree - A Structure For Interference De-
tection: We use a covariance tree data structure [54] to search
for the closest point on the surface to the tool. A covariance
tree is a variant of a k-dimensional binary tree (k-D tree). The
traditional k-D tree structure partitions space recursively along
the principal coordinate axes. In our covariance tree, eachsub-
space is defined in the orthogonal coordinate frame of the
eigenvectors centered at the center of mass of the point set,and
is recursively partitioned along these local coordinate axes. We
rotate each local reference frame so that thex-axis is parallel
to the eigenvector with the largest eigenvalue and thez-axis
is parallel to the eigenvector with the smallest eigenvalue. An
important advantage of covariance trees is that the bounding
boxes tend to be much tighter than those found in conventional
k-D trees and tend to align with the surfaces, thus producing
a more efficient search.

The tree is built recursively as follows. Given a set of points
{P i} sampled from the surface, we find the centroid and the
moments

P̄ = 1
N

N
∑

i=1

P i; P ′
i = P i − P̄ ;

M =
N
∑

i=1

P ′
i · P

′T
i

(6)

We then analyze the principal components ofM and
determine the rotation matrixR =

[

Rx Ry Rz

]

with
columns Rx and Rz corresponding to the largest and the
smallest eigenvalues ofM , respectively. Next, we compute the
set of points{P ∗

i } in local frame by rotating{P i} : P ∗
i =

R · P i. Finally, we compute the bounding box of{P ∗
i } and

partition {P ∗
i } about the cutting planex = 0. Each of these

sets is thus recursively subdivided until only a small number
of points remain in each box.

We fit a circumsphere about each triangle. We then construct
a covariance tree of the centers of each circumsphere. The
use of circumspheres about triangles is necessary to ensure
the correctness of the algorithm, which is intended to find
the closest point on a triangulated surface. It is possible for
the vertices of a triangle to be long distances from a target
point while there is a point on the edge or interior of the
triangle to be quite close. Although it is theoretically possible
for an extremely long triangle to degrade the efficiency of our
data structure, as practical matter this does not occur withthe
image-based anatomical models which we use.

At each node (i.e. for each bounding box) of the tree, we
note the maximum radiusrmax of all circumspheres associated
with that node. We compute the corners of an expanded
bounding box

P ∗
min = −rmax + min

i
P ∗

i ;

P ∗
max = rmax + max

i
P ∗

i

(7)

where themin and themax operations are performed element-
wise.
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2) Potential Collision Detection Using K-D Tree:The tree
searching for collision detection proceeds as follows. Given a
line segmentP 1P 2 between two pointsP 1 andP 2, we wish
to find all possible surface patches that may be closer than
some threshold distanceǫthresh to the line segment. At each
level of the tree, we first transform the line segment to the
local coordinate frame

P ∗
1 = R−1 · (P 1 − P̄ );

P ∗
2 = R−1 · (P 2 − P̄ )

(8)

If we are at a terminal node of the tree, then for each
triangle t in the node, we compute the point pairP ∗

b t and
P ∗

k t corresponding to the closest approach between the line
segment and triangle, whereP ∗

b t is on the triangle and
P ∗

k t is on the line segment. We retain any such pairs with
‖P ∗

b t − P ∗
k t‖2 < ǫthresh.

If we are at a non-terminal node, we first check whether
its bounding box is penetrated by the line segment or not. We
recursively search the left and right sub-trees, if its bounding
box is penetrated by the line segment. Otherwise, we compute
the point of closest approachP ∗

b node and the corresponding
point P ∗

k node on the line segment. If the distance between
them is small, such as‖P ∗

b node − P ∗
k node‖2 < ǫthresh, we

recursively search the left and right sub-trees for points of
closest approach toP ∗

1P
∗
2.

When the search is completed, we transform all point pairs
back into the world coordinate frame. If there are no point
pairs closer thanǫthresh, then we claim that there is no
boundary constraints.

One difficulty with this approach is that it tends to produce
many point pairs from the same patch of an anatomy that
are almost equivalent, thus producing an excessive number of
motion control constraints. Therefore, in practice we modify
our search as follows: for any non-terminal node whose
bounding box is not penetrated by the line segment, if 1)
‖P ∗

b node − P ∗
k node‖2 < ǫthresh and 2) the bounding box

of the node is also very flat (i.e., withP ∗
max(z) − P ∗

min(z)
less than a specified value), we simply return the point pair
P ∗

b node andP ∗
k node without further recursion.

IV. A PPLICATION TASK ANALYSIS

We analyze two application tasks which are useful in
endoscopic sinus intervention procedure. The “path-following”
task is to guide a surgical tool following a pre-defined trajec-
tory. The “target-inspection” task is to move a high-degree
endoscope to observe a target from different angles. In both
tasks, the tool works in a complicated geometric environment,
collision avoidance between the tool shaft and anatomy is
required.

Our constrained robot motion control bases on two im-
portant components: tool-tip motion constraint generation and
the tool shaft boundary constraint generation. These generated
constraints along with some other constraints, such as joints
limitation of the robot, are fed into the constrained quadratic
optimization algorithm to obtain the desired robot motion.The

tool-tip motion constraints are task related. This component
is responsible for relating the defined surgical task (such as,
moving a surgical tool along a desired path or observe a target
position on the patient’s anatomy) with user inputs, which may
be expressed either by hands-on cooperative control or through
conventional teleoperation control.

A. Path-following in Complicated Geometric Environment

1) Tip Motion Constraints Definition:There are different
ways to implement tip motion constraints [52], [8]. We use the
method described in [18] to implement tip motion constraints
and integrate it in our path following task. For the detail of
this admittance law based method, the reader could refer to
[18]. We abbreviate it below.

We model the tool tip as a Cartesian device with the position
xt ∈ SE(3) and velocityvt =

.
x ∈ ℜ3 all expressed in the

robot base frame. Our desired three-dimensional curve, which
serves as the reference direction, is described as a bspline
polynomial. At each control loop, the robot encoders read out
the current tool tip position. We search the closest point on
the bspline curve to the current tool tip position, and compute
the tangent direction of the bspline curve on that point.

Assume the vectort =
[

tx ty tz
]T

represents the

tangent to the curve, andn =
[

nx ny nz

]T
represents

the vector from the current tool tip position to the closest point
on the curve, we have the reference direction of motionD and
the signed distance from the tool tip to the task motion target
u as

D =
[

t 0 0
]

=





tx 0 0
ty 0 0
tz 0 0



 ,

u = n =
[

nx ny nz

]T
.

The user’s input obtained from a force sensor or from a
master robot is transformed to producesf ∈ ℜ3 in the robot
base frame. Following [18], we define two projection operation
the span and the kernel of the column space as

span (D) ≡ [D] = D
(

DT D
)+

DT ;
kernel (D) ≡ 〈D〉 = I − [D] .

(9)

The definition and the properties of these two operators are
described in [55]. We decomposef into two components:
[D] f along the preferred direction and〈D〉f perpendicular to
the preferred direction. We apply an admittance ratiokτ (0 ≤
kτ ≤ 1) to attenuate the non-preferred component of the force
input. Then we compute the desired tool tip velocityvd

t by an
admittance control law:

vd
t = k([Dc] + kτ 〈Dc〉)f (10)

where k is the admittance gain.Dc is the new preferred
direction, which adjusts the tool tip toward and follows the
original preferred direction,

Dc = (1 − kd)[D]f + kd ‖f‖2 〈D〉u (11)
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wherekd (0 ≤ kd ≤ 1) is a blending coefficient with which
governs how quickly the tool tip is moved toward the reference
direction.

2) Task Implementation:At each time step, the goal is to
compute incremental joint motions∆q, which then are fed to
the low-level position servos. We compute the desired tool tip
velocity using the admittance law described above, and convert
this to an incremental 6-DoF tool motion∆P d

t :

∆P d
t = [ (vd

t )x · ∆t (vd
t )y · ∆t (vd

t )z · ∆t 0 0 0 ]T

(12)
where∆t is the sample interval.

We identify three classes of requirements: in the tool tip
frame, the tool boundary frame(s), and in the joint spaces. For
each, we define an objective functionζ to be minimized and
a set of linearized constraints.

a) Tool tip motion:: We require an incremental tool tip
motion∆P t to be as close as possible to some desired value
∆P d

t . We express this as:

ζt =
∥

∥∆P t − ∆P d
t

∥

∥

2

2
(13)

In order to enforce tip motion along that preferred direction,
we approximate the direction of∆P t to be same as∆P d

t

∆P d
t

T · ∆P t ≥ (1 − ǫt)
∥

∥∆P d
t

∥

∥

2

2
(14)

where ǫt is a small positive number. We relate the tool tip
frame motion to the joint motion via the Jacobian∆P t =
Jt(q)∆q. We rewrite (13) and (14) as

ζt =
∥

∥Wt · (Jt(q)∆q − ∆P d
t )

∥

∥

2

2
,

s.t. At · Jt(q)∆q ≤ bt

(15)

whereAt = −∆P d
t

T and bt = −(1 − ǫt)
∥

∥∆P d
t

∥

∥

2

2
. Wt =

diag {wt} denotes a diagonal matrix of weighting factors
specifying the relative importance of each component of∆P t.
Since we want to track the path tightly, we set the translational
components ofwt to a fairly high value and let the rotational
components to a low value.

b) Boundary constraints::We want to ensure that the
instrument itself will not collide with the cavity boundaryas
a result of the motion. For each potential contact point pair
we get a constraint of the general form

nb
T · (P k + ∆P k − P b) ≥ ǫbnd (16)

whereP b and P k are the position of the potential collision
point pair on the surface and tool, respectively.nb is the
normalized normal vector at the contact point on the sur-
face, andǫbnd is a small positive number. The constraint
described in equation (16) indicates that the angle between
(P k + ∆P k − P b) and nb is less than90 deg. Indeed, this
constraint prevents the tool shaft from penetrating a plane.
We can also define an objective functionζk = ‖Wk · ∆P k‖

2
2

expressing the desirability of minimizing extraneous motion of
the tool near the boundary. We again rewrite these formulae
in terms of∆q.

ζk = ‖Wk · ∆P k‖
2
2 ,

s.t. Ak · Jk(q)∆q ≤ bk
(17)

whereAk = [ −nb 0 0 0 ] T andbk = −ǫbnd + nb
T ·

(P k − P b).
We can use very low values forwk and rely mainly on

the inequality constraints. An alternative approach is leaving
the ζk term out of the optimization altogether. The number
of constraints in this class changes dynamically and depends
on how many closest-point pairs we generate based on the
relative position of the tool and the geometric environment.

c) Joint limits:: Finally, we want to ensure that none of
the joint limits are exceeded as a result of the motion. This
requirement can be stated as

qmin − q ≤ ∆q ≤ qmax − q (18)

where q is the vector of the current values of the joint
variables, andqmin andqmax denote the vectors of the lower
and the upper bounds on the joint variables, respectively. We
also want to minimize the total motion of the joints. These
can be rewritten in the form

ζj = ‖Wj · ∆q‖
2
2 ,

s.t. Aj · ∆q ≤ bj
(19)

where

Aj =

[

−I

I

]

, bj =

[

q − qmin

qmax − q

]

Again, we setwj to low values for all of the joints and
simply enforce the inequality constraints.

d) Putting it together:: We combine all of the task
constraints and objective functions, and then obtain the overall
optimization problem:

arg min
∆q

∥

∥

∥

∥

∥

∥





Wt

Wk

Wj



·









Jt(q)

Jk(q)

I



∆q−





∆P d
t

0

0









∥

∥

∥

∥

∥

∥

2

2

(20)
subject to





At

Ak

Aj



 ·





Jt(q)

Jk(q)

I



(∆q)≤





bt

bk

bj



 (21)

B. Target-inspection in Complicated Geometric Environment

Another useful procedure in endoscopic sinus surgery is to
manipulate an endoscope to observe a target anatomy from
different view. Our target-inspection task is then defined as
keeping a virtual positionP v, which is along the endoscope
optical axis andr mm away from the lens, staying on a given
target positionP t, while approaching the target position from
different angles based on a user’s input.

1) Task Implementation:
a) Tip constraints:: Once P v reaches on the target

positionP t, we require the virtual pointP v to stay onP t:

‖P v − P t‖ ≤ ǫt (22)

where ǫt is a small positive number. We further approxi-
mate (22) using method described in [52] as
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AtJt(q)∆q ≤ bt

At=







cos α1 cos β1 cos α1 sin β1 sin α1 0 0 0

...
cos αn cos βm cos αn sin βm sin αn 0 0 0







,

bt=







ǫt

...
ǫt







−At·

[

P v−P t

0

]

.

(23)
whereαi = i2π

n
, βj = j2π

m
. ǫt is the tool tip distance error

tolerance.
We require our tool rotational motion proportional to the

user’s inputτ , then we set the cost function as

ζt = ‖Wt · (Jt(q)∆q − k · τ )‖
2
2

b) Task constraints::The other constraints, such as tool
shaft boundary constraints and joint limitation constraints, are
the same as we described in the “path-following” task. We
combine all of the task constraints and objective functions,
and then obtain the overall optimization problem, which is:

arg min
∆q

∥

∥

∥

∥

∥

∥





Wt

Wk

Wj



·









Jt(q)

Jk(q)

I



∆q−





k·τ

0

0









∥

∥

∥

∥

∥

∥

2

2

(24)
subject to





At

Ak

Aj



 ·





Jt(q)

Jk(q)

I



∆q≤





bt

bk

bj



 (25)

V. EXPERIMENTS AND RESULTS

A. Experimental System Setup

Force
sensor

Tool

Tool

handle

tip

Fig. 5. (left) experimental setups, (right) the tool with a bent tip portion

Our current implementation used the Johns Hopkins Uni-
versity Steady Hand robot (JHU SHR) [50]. The JHU SHR is
an admittance-controlled non-backdrivable 7-DoF robot with
a remote-center-of-motion (RCM) kinematic structure. The

Fig. 6. (left) phantom skull and wire serving as path, (right) reconstructed
3D skull model and path

robot is ergonomically appropriate for minimally invasive
microsurgical tasks and provides10µm scale, tremor free
motion.

The experimental setup is shown in Figure 5. A commercial
6-DOF force sensor (Nano43, ATI Industrial Automation,
North Carolina, USA) was mounted to the robots tool holder.
The handle of the tool was mounted co-axially with the sensor,
and the operator manipulates the tool by exerting forces on the
handle. In Steady Hand collaborative control, forces exerted by
the operator on the handle are measured and equation (10) is
used to compute the desired motion of the robot. In the absence
of other constraints, the robots’ motions simply comply with
the operator’s hand forces. This feels to the operator like he
or she is manipulating the tool in a viscous medium.

A tool with a bent tip was attached to the end-effector of
the Steady Hand robot. The purpose of the bent part is 1)
to simulate the shape of the sinus surgery instrument; 2) to
simulate the angular view of a high degree endoscope. In the
experiments, we constrained motion to avoid collisions with
any portion of the tool shaft (i.e., either with the “straight” or
“bent” portions). Motion constraints for the tool tip vary with
the specific experiment, as discussed elsewhere.

Our results were based on experiments with a phantom
skull. Five small spherical fiducials were attached to the
skull, which was then CT scanned. 3D-SLICER’s [56] built-
in segmentation functionality was used to threshold, segment
and render the skull CT dataset to create a triangulated model
of the skull surface. Figure 6 shows the phantom and the
constructed 3D model.

An optical tracking system OptotrakR©3020 (Northern Dig-
ital, Inc. Waterloo, Canada) was employed for the robot cali-
bration, system registration and the validation for experimental
results. A 2GHz Pentium IV IBM PC-compatible machine
running Windows 2000 was used for robot control and registra-
tion. The basic control loop (shown in Figure 4) was operated
at a rate around 30Hz. PID controller for servoing the robot
position runs on-board at a much higher rate (around 1000Hz).

B. System Registration Accuracy

The positions of the fiducials in CT coordinate frame were
determined by a fiducial finding algorithm. The algorithm
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marches through consecutive CT slices gathering pixels based
on a threshold input and collecting adjacent hyperdense pixels
into consolidated objects representing fiducials. The fiducials
positions in Optotrak coordinate frame were gathered by
calibrated pointers. We computed the transformation from the
skull to the pre-operative CT coordinate frame by least square
fitting method [57]. To evaluate the registration accuracy,we
computed the residual error across the fiducials. The average
residual registration error measured across the five fiducials
upon five trails is0.473± 0.07 mm.

C. Surface Model Representation

We used a triangulated surface mesh to represent the phan-
tom skull. In our experiment, we only used the nose and
sinus portion of the resulting skull model. There are about
99,000 vertices and 182,000 triangles in this surface model.
The average area of the triangles is around0.5 mm2. The
average length of the triangle sides is around0.9 mm. The
time used for building a tree from this surface model is around
60 seconds.

There is some trade-off between mesh resolution, model
fidelity, and computational efficiency, although the hierarchy
nature of our covariance tree data structure limits this sensitiv-
ity. It would be a straightforward matter to vary the geometric
tightness of collision constraints simply by stopping the tree
search at a coarse level of detail.

D. Results of Target-Inspection

We marked a position at the bottom of the phantom skull as
the target. This target position with respect to CT space was
determined using an Optotrak pointer. We used the bent tip
tool (shown in Figure 5) to represent a high degree endoscope.
The tool was inserted through the phantom nasal cavity. The
tool tip represented the virtual positionP v.

A user held the handle to manipulate the tool. The robot
read the applied forcef ∈ ℜ3 and provided assistance to avoid
collisions between the tool shaft and the phantom, meanwhile
maintain the tool tip at the given position.

We set distance error toleranceǫt in (23) as0.1 mm to
generate stiff tip motion constraints.k in equation (24) was
set as0.01. We used both the robot encoders and the Optotrak
to record the tool tip position. The average distance of the tool
tip P v to targetP t for ten trials is0.02±0.02mm measured
by robot encoders, while the average distance measured by
the Optotrak is0.34±0.15mm. The maximum distance from
P v to P t is 0.08 mm and 0.81 mm measured by the robot
encoder and the Optotrak respectively. Figure 7 shows the tool
tip position measured by the robot encoders and the Optotrak.
During the user operation, the tool shaft did not collide with
the plastic skull. Figure 8 shows the relative position of the
tool and the plastic skull from two different views.

E. Results of path-following simulation

A thin wire attached inside the nasal cavity of the plastic
skull served as the target path. The target path with respectto
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Fig. 7. The tool tip position measured by (top) the robot encoders and
(bottom) the Optotrak in a target-inspection task. The green ’+’s are the
measured positions, the red ’o’ is the target position.

Fig. 8. Trajectories of the tool during a target-inspectiontrial from two
different views. (left) the swept volume of the tool path, (right) the relative
relation between the tool and the nasal part of the plastic skull

CT space was defined by tracing the wire with an Optotrak
pointer. A 5-th degree bspline curve, which interpolated the
gathered sample points, represented the target path. This path
was transformed to robot coordinate frame after registration.

The tool was inserted through the phantom skull nasal
cavity. In the path-following experiment, a user was asked
to manipulate the tool to move along the wire as close as
possible while avoiding the collision between the tool-shaft
and the phantom.

We first applied force on the handle and performed com-
puter simulation to check the feasibility of motion for path-
following task given the constraints and robot kinematics.
We chose the admittance ratiokτ in equation (10) as 0 to
enforce the tool-tip motion only along the preferred direction.
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The control gainkd in equation (11) was set as 0.2. The
components ofwk in (17) andwj in (19) were set as0.01.

Figure 9 shows tool trajectories and the relative position
of the tool with the phantom skull model. The result of our
simulation suggests that the robot can exactly track the path
while avoiding the collision between the tool-shaft and the
skull.

Fig. 9. Trajectories of the tool in a path-following simulation. (left) the
swept volume of the tool path, (right) the relative positionbetween the tool
and the nasal part of the phantom skull model

In our experiment, the size of∆q in (20) and (21) was7×1.
The size ofA ·J in (21) varied from20×7 to 39×7; the size
of W ·J in (20) varied from13×7 to 37×7 according to the
number of boundary constraints. With our 2GHz Pentium IV
PC, the average time in each control interval for the boundary
search and optimization problem solution is6 ms.

According to [53], LSI problem is eventually reduced to
NNLS problem. NNLS is solved iteratively and the algorithm
always converges in a finite number of iteration. Based on
the implementation of [53], NNLS returns with a feasible
(approximated) solution if it fails to converge after3 × n (n
is the number of decision variable, which is7 in our case)
iterations. In our experiments, the numbers of iteration of
NNLS were less than21. In other words, we obtained the exact
solution, instead of approximated solution to the constructed
optimization problem.

F. Performance comparison of cooperative and teleoperative
control in path-following task

The main purpose of the experiments is to evaluate the
improvement of users’ performance of manipulating instru-
ment with robot guidance using virtual fixtures derived from
complex geometry compared to free-hand instrument manipu-
lation. Our constrained control method works for both hands-
on cooperative control operation and more traditional master-
slave teleoperation. We evaluated users’ performance for path-
following task with both operation modes, and free hand
as well. We simply used an available 3D joystick as the
teleoperation master hand controller. No attempt was made
to produce an optimized ergonomic design. Different specific
designs could significantly improve the overall performance
of either mode.

1) Protocol: The experimental system setup is described in
section V-A and V-E. A tool was inserted through the phantom
skull nasal cavity. The length of the tool was around15 mm

and the weight was around0.5kg. It was based closely on real-
life practice. The experiments required subjects to manipulate
a tool to move along the wire attached to the bottom of
phantom nasal cavity as close as possible while avoiding the
collision between the tool-shaft and the phantom. We tested
the user’s performance in three modes.

• Freehand mode:The user held the tool and manipulated
it without any assistance. No robot was involved.

• Steady Hand robot guidance in hands-oncooperative
operation mode:We attached the tool handle to the force
sensor. Both of the tool handle and the force sensor were
mounted on the SHR end-effector. The user held the tool
handle to manipulate the tool. The robot read the applied
force f ∈ ℜ3, provided assistance to avoid collisions
between the tool shaft and the phantom and move the
tool tip along the desired path as well.

• Steady Hand robot guidance in remoteteleoperation
mode: We employed a SpaceBallTM mouse (3D Con-
nexion, Germany) to implement a simple teleoperator
interface. The SpaceBallTM is a 6-DoF (three translational
components and three rotational components) force sen-
sor commonly used as a joy stick or mouse in computer
graphics or gaming application. The user controlled the
tool tip motion through the SpaceBall three translational
components,τ ∈ ℜ3. The translational components were
aligned with the robot base frame. The robot read the
output of the SpaceBallτ ∈ ℜ3, provided assistance to
avoid collisions and move the tool tip along the desired
path. The desired tool tip velocityvd

t then was determined
by replacef by τ in (10) and (11).

Fig. 10. (left) Hands-on cooperative control, and (right) Teleoperative control.
In hands-on cooperative control, a force sensor and tool aremounted on the
robot end-effector. Tool is “manipulated” by an operator holding a handle
attached to the force sensor. The robot read the applied force and provided
assistance. In remote teleoperative control we use 3D mouseto tele- control
the robot.

A 3D visualization interface provided the user with visual
information about 3D geometry, the tool position, orientation
and the reference target path around the working site.

Ten subjects participated in the experiment. These subjects
were varied in experience with the Steady Hand robot from
novice to expert. The subjects were asked to perform five trials
for each of three different modes. Between every two trials,
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the subjects were given one or two minutes for rest.
An Optotrak rigid body was fixed to the tool. We recorded

the tip position error of each trial during the path-following
task both from the robot encoders and Optotrak tracking
system. The tip position error is the distance from tool tip
position to the reference curve in a coordinate frame. The
average error is defined as the total error divided by the number
of samples throughout the task. The execution times for each
trial were recorded on the computer. The average execution
time and average error for all ten subjects were tested to
determine the statistical difference between different modes.

We compared the performance of different operation modes
in both robot context and Optotrak context. In robot context,
we evaluated subjects’ performance based on the amount of the
error inside robot envelope. All constraints were transformed
into the robot coordinate frame, and the tool tip position
was measured using the robot encoders and its kinematics. In
this case, we assumed that there was no other external error:
error was only caused by the control algorithms and the robot
controller. In Optotrak context, the tracking system provided
an independent measurement of tool tip position relative tothe
target path. In this case, we measured the error on the system
level.

2) Results: For all trials of ten subjects in robot-assisted
modes (hands-on cooperative and teleoperative mode), during
the path following task execution, we found the tool shaft itself
did not hit the skull phantom by observation.

a) Robot Context:The error profiles and trajectories
of tip during task execution of the two Steady Hand robot
guidance modes in robot context are shown in Figure 11
and 12. Although the error in hands-on cooperative mode
(0.204±0.01mm) is slightly better than the error performance
in teleoperative mode (0.219±0.02mm), there is no significant
difference between two modes (paired t-test,p = 0.31) as
shown in Table I. However the execution time in hands-on
cooperative mode (19.00± 2.31 s) is significantly better than
in teleoperative mode (24.17 ± 4.14 s). All subjects moved
faster in hands-on cooperative mode.

TABLE I

ERROR AND TIME IN HANDS-ON COOPERATIVE MODE AND

TELEOPERATIVE MODE FOR PATH-FOLLOWING TASK MEASURED BY THE

ROBOT

Avg Error
(mm)

p-value Time (s) p-value

Hands-on 0.204± 0.01 0.3065 19.00± 2.31 0
Remote 0.219± 0.02 24.17± 4.14

In both modes, our control optimization solved practically
identical problems to determine commanded joint velocities
– i.e., the only differences in the constraints and objective
functions were those relating to the user command interface
(i.e., force compliancevs. SpaceBall input). Velocity profiles
in Figure 13 and 14 show that commanded joint velocities
change more smoothly in hands-on cooperative mode than in
our simple teleoperative mode. The users SpaceBall input that
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Fig. 11. Error profiles of a path-following task measured by the robot. In
the robot context, there is no significant difference between two robot-assisted
modes.
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Fig. 12. (top) Trajectory of the tool tip in “path-following” task measured
by the robot. (bottom) close-up of the highlighted part.

was used to calculate the joint velocities was not as smooth
as the force input. The teleoperative control via SpaceBallis
harder than hands-on cooperative control. The subjects also
commented that the task was easier to perform in hands-on
cooperative mode. This can provide some explanation on why
execution time of the hands-on cooperative mode is less.

b) Optotrak Context:We compared the errors in hands-
on cooperative mode, the remote teleoperative mode, as well
as the free hand mode in the Optotrak tracking coordinate
system. As shown in Table II, errors in both robot-assisted
modes (0.99±0.14mm in hands-on cooperative mode,0.72±
0.11mm in remote teleoperative mode) are significantly better
than in free hand mode (2.47± 0.98mm). Similarly, the exe-
cution times in robot-assisted modes (19.00±2.31s in hands-
on cooperative mode,24.17 ± 4.14 s in remote teleoperative
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Fig. 13. Commanded velocity profiles of prismatic joints of the Steady Hand
robot (joint No. 1,2,3,6) in path-following task (left) hands-on mode (right)
remote mode. The labels of y-axis are Velocity(mm/s) and labels of x-axis
are Time(s).
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Fig. 14. Commanded velocity profiles of revolute joints of the Steady Hand
robot (joint No. 4,5,7) in path-following task (left) hands-on mode (right)
remote mode. The labels of y-axis are Velocity(deg/s) and labels of x-axis are
Time(s).

mode) are better than free hand mode (27.56 ± 8.82 s). The
error profiles and the trajectories of tip of three modes during
task execution are shown in Figure 15 and Figure 16.

c) Discussion:As might be expected, the error of both
robot-assisted modes in Optotrak context is much larger than
in robot context. In the former case, in addition to the
control algorithm and robot controller, the robot calibration
and system registration errors are other two main sources of
the tip motion error. Moreover, the accuracy of the Optotrak
tracking system (< 0.2 mm in space) also contributes to the
overall error.
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Fig. 15. Error profiles of the “path-following” task measured by the Optotrak.
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Fig. 16. Trajectory of the tool tip in “path-following” taskmeasured by the
Optotrak. Errors in both robot-assisted modes are significantly better than in
free hand mode.

Although hands-on cooperative mode shows almost same
error as teleoperative mode when the robot is used to measure
its own performance, the relative accuracy of the teleoperative
mode is better than that of the hands-on cooperative mode
when an independent means (the Optotrak) is used to measure
path tracking (paired t-test,p < 0.000001). We believe that
the main reason for this is the robot stiffness. In hands-on
cooperative mode, subjects held the tool that is mounted on
the robot end-effector. The hand forces used to command
robot motion themselves produced some robot deflection. This
factor was perhaps exacerbated by a tendency of users to push
harder than was necessary to cause the desired motions. In
teleoperation mode, of course, the users exerted no forces on
the tool.

As noted below, we are currently adapting our constrained
control paradigm to full 6-DOF master-slave systems such as
the daVinci, although the daVinci would not necessarily be a
particularly appropriate robot for sinus surgery. Although we
have not done an exhaustive comparative study, our anecdotal
experience leads us to believe that the major effect of changing
master devices is likely to be on the time, rather than on the
accuracy of path performance. The choice of hands-on guiding
vs. teleoperation, in any case, is likely to be dictated by other
ergonomic and economic considerations which will vary with
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TABLE II

ERROR AND TIME IN THREE DIFFERENT MODE FOR“ PATH-FOLLOWING”

TASK MEASURED BY OPTOTRAK

Avg Error (mm) Time (s)
mean st. dev. mean st. dev.

Hands-on 0.993 0.136 19.00 2.31
Remote 0.720 0.112 24.17 4.14
Free hand 2.468 0.981 27.56 8.82

clinical application.
As mentioned, the visualization interface only provides the

user geometric information around the working site (the area
around the tool tip). There is no further feedback other than
user’s awareness of the relative position between the tool shaft
and phantom. The reader may notice that the position error
shown in Figure 15 is much larger in the second half of the task
in the free hand mode. That is because the relative position
of the second part of the path with respect to the cavity is
complicated. With the free hand mode, the subjects needed to
tilt and rotate the tool simultaneously to keep the tool tip on the
path and manage to avoid collision based on his awareness.

VI. CONCLUSION AND FUTURE WORK

We have developed a real time task-based control method
of surgical robot in a precise interactive minimally invasive
surgical environment equally applicable to teleoperationand
hands-on cooperative control. Robot-guidance (both hands-
on cooperative and remote teleoperative control) employing
spatial motion constraints generated by virtual fixtures derived
from complex geometry can assist users in skilled manipu-
lation tasks, while maintaining desirable properties suchas
collision avoidance and safety.

The experimental results show significant improvement in
both accuracy and execution time, compared to free hand in-
strument manipulation. The results suggest that the constrained
optimization robot control can release the surgeon’s tension on
avoiding collision of the instrument to the anatomic structure
during precision instrument manipulation in minimally inva-
sive surgical procedure.

We have compared the performance of hands-on cooperative
operation and teleoperation to control a tool manipulated in
a complicated working volume. The performance comparison
experiment results show that hands-on cooperative operation
is more intuitive for people to use. The execution time with
hands-on cooperative operation is shorter than that with teleop-
eration. Without considering external errors, the performance
of cooperative mode is identical to that of teleoperative mode.
The contact between the user and the tool that are mounted on
the robot end-effector introduces perturbations into the system
for hands-on cooperative control.

The performance comparison experiments reported here
are primarily intended to demonstrate the performance of
our constrained control method in both standard teleopera-
tion and hands-on cooperative control paradigms. They are
not designed as definitive experiments comparing these two

paradigms in general. Different specific designs could sig-
nificantly improve the overall performance of either mode.
Nevertheless, the experiments show that it is possible to apply
our control formulation to either paradigm and to achieve good
performance while doing so.

As discussed above, the primary focus of this paper has
been development of techniques for controlling the motion
of teleoperated and cooperatively controlled surgical robots
in the presence of complex geometric constraints associated
with patient anatomy, using endoscopic sinus surgery as a
motivating application.

Further work will be required before this work can be
applied clinically. In addition to the obvious progression
through animal model and cadaver testing and development of
customized instruments for the robot to hold, important further
considerations are: extension of our methods to work with
constraints associated with soft tissues, registration between
robot, patient, and image coordinates; and accommodating
patient motion.

The current experiment used rigid models derived from CT
images of a plastic skull. Clinical application would require
CT or MRI images of an actual patient, including soft tissues.
Usually CT scans are used to plan and to perform sinus
surgery. An MRI scan is only used to understand what type
of disease process is going on, i.e., to form a differential
diagnosis. Our entire paradigm for performing safe surgery
is based on understanding the bony anatomy, because it is so
important for identifying surgical landmarks. For sinus surgery
the bony anatomy is what is altered; the exception will be
polyp disease which is beyond the scope of this paper. As for
the remaining soft tissue structures, they would be amenable
to our approach. In treatment planning, the surgeon would
need to determine how much impingement into soft tissue
is permitted at different places and could also specify other
constraints on permissible tool motion. Especially where soft
tissue is involved, it is desirable to provide some compliance in
the corresponding constraints. Similarly, some compliance and
adaptation is important to permit the surgeon to accommodate
registration uncertainty. To address these issues, we have
been exploring extensions to our formulation, using nonlinear
constraints and objective functions to implement “soft” virtual
fixtures. [58].

Registration and patient motion accommodation could be
performed in a manner similar to existing surgical navigation
systems [21], [23], [59], [60] possibly with some additional
physical supports to prevent very fast head motions. We have
also been investigating alternative direct registration methods
from endoscopic video [48].

Finally, clinical application of this work will require de-
velopment of a clinically qualified version of our robot and
instrumentation to replace the engineering prototype reported
here. Although these considerations are beyond the scope
of this paper, we note that our basic control methods are
independent of the particular robot used. For example, in other
work, we have applied our approach to control of a modified
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daVinci robot, as well as an experimental “snake” robot
controlled from a modified daVinci master controller [61],
rather than the simple 3D joystick used in the experiments
reported here. Most probably, we will develop an appropriate
industry collaboration to develop a clinically deployed version,
although we are also considering appropriate next steps in this
direction to be taken internally.
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