382 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 6, NO. 3. JUNE 1990

Fig. 8. Stiffness maps for the spatial six-degree-of-freedom parallel manip-
ulator with ¢ = 10; 8 = 0°, ¢ = 30°: (a) k, for y = 10°, § = 0°,
¢ =30°, z =52.5; (b) kg, for ¢ = 10°, 8 = 0°, ¢ = 30°, z = 52.5.

the programs developed here can be of significant help in the process
of designing such manipulators. The method can also be extended to
general complex kinematic chains— which can be used, for instance,
as closed-loop hard automation modules— provided that a description
of the workspace of the device to be studied and an expression for
its stiffness matrix are available.

REFERENCES

{11 K. H. Hunt, “Structural kinematics of in-parallel-actuated robot
arms,” ASME J. Mechanisms, Transmissions, Automat. Design,
vol. 105, no. 4, pp. 705-712, 1983.

[2] E.F. Fichter, “A Stewart platform-based manipulator: General theory
and practical construction,” Int. J. Robotics Res., vol. 5, no. 2, pp.
157-182, 1986.

[3] J.-P. Merlet, **Parallel manipulators, Part II: Theory, singular config-
urations and Grassmann geometry,” Tech. Rep. 791, INRIA, France,
1988.

[4] C. Gosselin, “Kinematic analysis, optimization and programming

~ of parallel robotic manipulators,” Ph.D. thesis, McGill University,
Montréal, Québec, Canada, 1988.

{51 C. Gosselin and J. Angeles, “‘Singularity analysis of closed-loop kine-
matic chains,” IEEE Trans. Robotics Automat., this issue, pp.
281-290.

[6] C. Gosselin, *Determination of the workspace of 6-dof parallel manip-
ulators,” ASME J. Mechanisms, Transmissions, Automat. Design,
to be published.

[7] K. J. Waldron and K. H. Hunt, “Series-parallel dualities in actively
coordinated mechanisms,” in Robotics Research 4 (R. Bolles and B.
Roth, Eds.), 1988, pp. 175-181.)

[8] J.-P. Merlet, **Parallel manipulators, Part I: Theory, design, kinemat-
ics, dynamics and control,” Tech. Rep. 646, INRIA, France, 1987.

[9] T. Yoshikawa, ‘‘Analysis and control of robot manipulators with redun-
dancy,” in Proc. First Int. Symp. Robotics Res., 1984, pp. 735-747.

[10] H. AsadaandJ. A. Cro Granito, “Kinematic and static characterization
of wrist joints and their optimal design,” in Proc. IEEE Int. Conf.
Robotics Automat., 1985, pp. 244-250.

[11] K.-M. Lee and R. Johnson, “Static characteristics of an in-parallel
actuated manipulator for clamping and bracing applications,” in Proc.
IEEE Int. Conf. Robotics Automat., 1989, pp. 1408-1413.

[12] C. A. Klein and B. E. Blaho, “Dexterity measures for the design and
control of kinematically redundant manipulators,” Int. J. Robotics
Res., vol. 6, no. 2, pp. 72-83, 1987.

{13] J. K. Salisbury and J. J. Craig, “‘Articulated hands: Force control and
kinematic issues,” Int. J. Robotics Res., vol. 1, no. 1, pp. 4-17,
1982.

[14] C. Gosselin and J. Angeles, “The optimum kinematic design of a pla-
nar three-degree-of-freedom parallel manipulator,” ASME J. Mecha-
nisms, Transmissions, Automat. Design, vol. 110, no. 1, pp. 35-41,
1988.

[15] R. L. Williams, 1l and C. F. Reinholtz, “‘Closed-form workspace
determination and optimization for parallel robotic mechanisms,” in
Proc. ASME 20th Biennial Mech. Conf. (Kissimmee, FL), Sept.
25-28, 1988.

{16} A. H. Shirkhodaie and A. H. Soni, “Forward and inverse synthesis for
arobot with three degrees of freedom,” Proc. 1987 Summer Comput.
Simulation Conf. (Montréal), 1987, pp. 851-856.

On Homogeneous Transforms, Quaternions, and
Computational Efficiency

JANEZ FUNDA, RUSSELL H. TAYLOR, SENIOR MEMBER, IEEE.
anp RICHARD P. PAUL rELLOW, IEEE

Abstract— Three-dimensional modeling of rotations and translations
in robot ki tics is most ly performed using homogeneous
transforms. In this paper, an alternate approach, employing quater-
nion/Aector pairs as spatial operators, is compared with homogeneous
transforms in terms of computational efficiency and storage economy.
The conclusion drawn is that quaternionAector pairs are as efficient,
more compact, and more elegant than their matrix counterparts. A ro-
bust algorithm for converting rotational matrices into equivalent unit
quaternions is described, and an efficient quaternion-based inverse Kine-
matics solution for the Puma 560 robot arm is presented.

I. INTRODUCTION

Robotics, computer vision, graphics, and other engineering disci-
plines require concise and efficient means of representing and apply-
ing generalized coordinate transformations in three dimensions, and
a number of different representations have been developed. The most
popular representation of spatial transformations of point vectors is
the 4 x 4 real matrix (also termed homogeneous transform), based
on the idea of homogeneous coordinates, introduced by Maxwell [9].
The appeal of homogeneous transforms is mostly due to their matrix
formulation, which is familiar and lends itself to easy and efficient
manipulation by a computer. On the other hand, such matrices are
highly redundant, using 16 numbers (of which four are trivial) to
represent six independent degrees of freedom. This redundancy can
introduce numerical problems in calculations, wastes storage, and
often increases the computational cost of algorithms. In parallel im-
plementations, the extra data paths required to fetch the operands can
also be a significant factor. Despite these drawbacks, matrix-based
representations remain the dominant choice for most robotic systems
applications.

This paper is concerned with an alternative representation, termed
quaternion/vector pairs, in which a unit quaternion is used to repre-
sent rotations. Although they have been used extensively in kinematic
analysis [1], 2], [16] and offer a potentially significant advantage in
terms of numerical robustness and storage efficiency, they have been
relatively neglected in practical robotic systems. This has been in
part due to the fact that neither relative computational costs nor im-
portant details of key algorithms are well understood by the robotics
community.

Quaternions were introduced by Hamilton [6], [7] as a way of
defining the ratio between two vectors. They have since found ap-
plications in many areas of geometric analysis and modeling. Pervin
and Webb [12] discussed general properties of quaternions as rota-
tional operators, analyzed certain special types of rotations, and gave
quaternion formulations of reflections and projections of stationary as
well as moving geometric objects. Taylor [15] used quaternion/vector
pairs for kinematic path planning and compared the computational
cost with homogeneous transform methods using a Stanford arm as
an example manipulator. Salamin [13] gave a brief analysis of com-

Manuscript received January 23, 1989; revised March 9, 1990. This mate-
rial is based upon work supported by the National Science Foundation under
Grant ECS-11879. Any opinions, findings, conclusions or recommendations
expressed in this publication are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

J. Funda and R. P. Paul are with the Department of Computer and Infor-
mation Science, University of Pennsylvania, Philadelphia, PA, 19104-6389.

R. H. Taylor is with the IBM Thomas J. Watson Research Center. York-
town Heights, NY 10598.

IEEE Log Number 9036673.

1042-296X/90/0600-0382301.00 © 1990 IEEE

r

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 6, NO. 3, JUNE 1990

putational behavior of quaternions and matrices as rotational oper-
ators and outlined an approach to the conversion problem. He also
proposed an application of complex quaternions as a representation
of Lorentz transformations in the theory of relativity. Shoemake [14]
discussed advantages of using quaternions to achieve smooth inter-
polation of rotations in graphical animation and proposed a set of
conversion routines between matrix, Euler-angle, and quaternion rep-
resentations of rotations.

Although most of the above references touch on the issue of com-
putational efficiency of effecting three-dimensional rotations and their
compositions using quaternions, none of them addresses parallel
implementations of the corresponding algorithms. Section II com-
pares storage and computational costs for both sequential and paral-
lel implementations of common spatial operations using matrix and
quaternion-based representations.

Many of the authors also discuss conversion algorithms [3], [10],
[13], [14]. The suggested approaches to converting a rotational ma-
trix to a corresponding unit quaternion, although generally correct,
tend to lack robustness and stability in the neighborhood of rotational
singularities. We address this problem in Section III and present nu-
merically robust and computationally efficient algorithms for con-
verting between matrix and quaternion representations.

Finally, quaternion-based kinematic solutions for robot manipula-
tors have not been documented. This may be in part due to the fact
that the derivations (in places) are not entirely straightforward. Sec-
tion IV gives an efficient solution to the inverse kinematics problem
for the Puma 560 robot arm, employing the quaternion/vector pair
representation of spatial relationships.

II. CompuraTioNnaL CompaRisON OF HOMOGENEOUS TRANSFORMS AND
QUATERNION/VECTOR PaIRS

A. Internal Representation and Terms of Comparison

From the standpoint of evaluating relative advantages of different
representational schemes, we need to be concerned with the com-
pactness of a given representation as well as with its computational
efficiency in performing basic spatial operations. Storage considera-
tions are necessitated by the fact that on most existing hardware, the
cost (measured in terms of the number of required CPU cycles) of
fetching an operand from memory exceeds the cost of performing a
basic arithmetic operation. Consequently, an advantage of a partic-
ular representation in terms of storage may well outweight a small
disadvantage in terms of computational expense.

We will, in this paper, denote a quaternion ¢ and its components
by writing ¢ = [s, v] or ¢ = [cos(6/2), sin(8/2)k], where 5 € R,
v € R, and where § and k correspond to the angle and the unit axis,
respectively, of the fixed-point rotation encoded by ¢. Similarly, a
quaternion/vector pair operator denoting a rotationg and a translation
p will be written as @ = (g, p). For the purposes of the forthcoming
discussion, assume that such a quaternion/vector pair is stored in a
straightforward fashion as the triple (s, v, p), thus requiring storage
for seven floating point values. Sinceq -g = 1, one of these numbers
is redundant and could, in principle, be recomputed from the other
six, although this is not done in practice.

A transform T = [noap], on the other hand, contains a signifi-
cant amount of redundant information, and its representation can thus
be compacted. In particular, since the rotational part of T consists of
three mutually orthogonal vectors n, 0, and @, we can eliminate one
of them from the representation and recover it, when needed, as the
cross product of the remaining two. Usually, is omitted (note that
n =0 xa) and only the triple (0, a, p) is explicitly stored, requiring
storage for nine floating-point values. Note that this convention ne-
cessitates restoring the normal vectorn when the fuli matrix is needed
for a particular operation. This represents pure overhead (one cross
product) in the case of a spatial transformation of a point vector
but translates into a significant saving (three dot products) during
composition of spatial transformations, as the normal vector n of
the resulting matrix need not be computed [S]. This, coupled with a
25% reduction in storage space, should provide ample justification
to adopt the above convention.

383

TABLE 1
HoMmoceneous TRANSFORMS VERsUS QUATERNION/VECTOR Pairs

Sequential Execution Parallel Execution

Operation Norm T Q T Q

+ + J1 + S| PEs cyc|PEs cyc
Spatial Trans - 15 12 0{15 15 0 9 4 9 6
Composition - 33 24 0|31 27 0 24 4 22 6
Inverse — 15 9 0415 12 0 6 5 9 5
Normalization 30 16 218 3 1 6 12 4 5
Spatial Trans v 45 28 2123 18 1 9 16 9 11
Composition Vv 63 40 2 {39 30 1 24 16 { 22 11
Inverse Vv 45 25 2123 15 1 6 17 9 10

Table I gives the results of evaluating the computational behavior
of homogeneous transforms and quaternion/vector pairs in terms of
three basic operations: 1) spatial transformation of a point vector,
2) composition of two spatial operators, and 3) computing the in-
verse of a spatial operator. The costs for both sequential and parallel
executions of the corresponding algorithms are given (see [5] for
derivations). To ensure correct interpretation of the stated results, a
few comments about the way in which the numbers were obtained
may be appropriate. This is particularly critical for the case of par-
allel algorithm cost analyses.

The costs for parallel algorithms are given in terms of the num-
ber of processing elements (PE’s) and the number of machine cy-
cles needed to perform the computation. A cycle, in this context,
is defined as the time required by the hardware to execute a ba-
sic floating-point add/subtract or multiply/divide operation. Parallel
computations are structured to minimize the necessary number of cy-
cles (i.e., maximize computational concurrency) without regard to
the number of PE’s needed to support this optimal degree of paral-
lelism.

B. Tabular Summary of Computational Costs and Discussion

Table I gives the computational costs of the three operations men-
tioned above under both sequential and parallel execution.! The sym-
bol ‘—’ in the Norm column indicates that the computational cost of
the corresponding operation does not include the cost of normalizing
the spatial operator prior to performing the operation. Conversely,
the symbol ‘\/’ implies that the cost of normalization has been in-
cluded in the cost of the operation.

Table I suggests that the two formalisms are virtually equivalent
for the case of nonnormalizing sequential applications, i.e., the case
where computations are carried out on a single-processor machine
and where the rotational operators are not normalized prior to being
used in the computations. We also see that the nonnormalizing algo-
rithms based on homogeneous transforms parallelize slightly better
than their quaternion/vector counterparts. If the cost of normalizing
the rotational operator is included in the total cost, however, the
quaternion/vector pair approach yields much more efficient imple-
mentations on both single and multiprocessor systems. This is due
to the fact (see Table I) that a quaternion can be normalized with
a minimal amount of computational expense, whereas normalization
of a rotational matrix requires substantially more effort (5], [13].
Clearly, the nonnormalizing operations (where the rotational opera-
tors are never normalized) and their normalized versions as defined
above (where the rotational operators are normalized at every’ call)
correspond to the two extremes. In practice, the need for normal-
ization will be intermediate to the above two scenarios, depending
mostly on the presence of chains of transformational products, which
are likely to denormalize rotational operators. Thus, in a situation
where continuous chains of transformational products are relatively
rare and highly parallel hardware is available, homogeneous matri-
ces may prove superior to quaternion/vector pairs. Conversely, if the
nature of computation necessitates frequent renormalization of rota-

'Divisions and multiplications by 2 can be implemented by incrementing
exponents of the floating-point values being scaled and will therefore be ne-
glected in this and all subsequent cost analyses.

384

tional operators, then the quaternion/vector approach arises as the
better alternative. It is interesting to note that the cost of testing for
whether or not a homogeneous transform (i.e., its rotational matrix)
needs renormalization accounts for approximately two thirds of the
cost of the normalizing process itself [5]. Consequently, it is uncer-
tain if, for rotational matrices, ‘‘normalizing by need’’ will result in
a more efficient overall performance.

In summary, the differences in computational efficiency between
the two formalisms are perhaps not sufficiently significant to warrant
a particular choice on that basis alone. However, quaternion/vector
pairs require less storage and are therefore more conveniently re-
trievable from memory, saving valuable machine cycles in a real-time
computation.

III. CoNVERSIONS BETWEEN QUATERNIONS AND ROTATIONAL MATRICES

A. Quaternion — Rotational Matrix

Given a unit quaternion ¢ = [cos(8/2),sin(6/2)k] = Is,
{x, ¥, z)], encoding a rotation through an angle of 6 about unit axis
k, the corresponding equivalent rotational matrix R can be found to
be [5], [12], [14]

1-2y? —2z2 2xy —2sz 2x7 +2sy
R=| 2xy+2sz 1-2x2-22" 2yz-2sx |. (D)
2xz — 25y 2yz +2sx 1 —2x? —2y?

The matrix R can be constructed using nine multiples and 15 adds.

B. Rotational Matrix — Quaternion

Conversely, given a 3 x 3 rotational matrix R = [n o a], its entries
may be interpreted as in (1), i.e., as functions of s, x, y, z, and the
corresponding equivalent unit quaternion ¢ = [s, {x, ¥,)] can be
reconstructed as outlined below:

Since g is of unit magnitude, we have s* + x> + y> +z°> = 1, and

ne 40, +a, +1=4s’)

Therefore

1
s=i\/nx+oy+az+l. 3)

Note that the positive value of the square root is taken as the value of
s since — 180° < @ < 180°, and thus 0 < s = cos(6/2) < 1, where
6 is the angle of rotation implied by the matrix. The remaining task
is to extract v = {x, ¥, 2) = sin(#/2)k, where k is the unit axis of
rotation.> Observe that pairing off-diagonal elements of R gives

x' =4sx =0, —a,
"=dsy =ay —n,
7 =4sz=n, — o, 4

where v/ = {(x’, y’,z’) is colinear with the desired axis vector
v. We could therefore obtain v immediately as (1/4s)v’. How-
ever, as 0 approaches 0°, sin(8/2) approaches 0, and the vector
v’ = 4sv = 4s sin(6/2)k becomes poorly defined. This corresponds
to the physical reality of the axis of rotation being indeterminate for
very small angular displacements. Similarly, as @ approaches 180°,
s = cos(60/2) approaches 0, and again, the vector v’ is poorly de-
fined. However, physically, the rotational axis is well defined in this
case, and we should be able to recover its components precisely.
Towards this end, we will reexamine the rotational matrix R of (1)
and extract an additional corrective vector v/, which will be colinear
with the axis of rotation and whose components will not vanish as
0 approaches 180°. We will then add v’ and v’ and scale the sum
appropriately to obtain the final axis vector v.

2In the remainder of this discussion, we will refer to any vector colinear
with k as the axis of rotation.

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 6, NO. 3, JUNE 1990

Using the fact thatq is a unit quaternion, i.e., s> +x2+y?+2% =1,
we can rewrite the diagonal elements of the matrix R as follows:

ne =5 +x2 —(y*+2H
0, =5 +y* —(x* +27)
a, =5 +2° — (x> +y%. (5)

Therefore, the diagonal elements of a rotational matrix can be used
to extract information about relative magnitudes of the components of
the corresponding rotation axis v = {(x, y, z). In particular, the nu-
merically largest (most positive) of the diagonal elements n,, 0,, a,
indicates the primary direction (i.e., the largest component) of the
rotation axis. This information can be used to obtain the largest pos-
sible corrective vector v/, We will illustrate one of the three possible
cases in detail. The other two cases are similar.

If n, = max(ny, 0y, a), i.e., the largest component of the v axis
lies in the x direction, then

ny —0, —a; + 1 =4x> (6)

and a vector v/ = {x”, y", 2"}, colinear with v’, can be obtained
as follows:

x"=4xx =n, —0, —a, +1
y' =4xy =n, + o,
" =4xz =n, +a,. ©)

Note that the common factor in all components of v”’ is x (i.e., the
largest component of v), and therefore, v’ represents the largest
possible correction to v’. In addition, observe that jv”’| > |v’| for 8
close to 180°.

If x’ = 4sx >0, then as s > 0 (3), the x component of the v
axis must be positive. Since x”/ = 4x? is also positive, v’ and v”
are coparallel (i.e., point in the same direction). Conversely, if x’ =
4sx < 0, then the x component of the v axis is negative, and v’ and
v’/ are antiparallel (i.e., point in opposite directions) with x’ giving
the correct direction. We can therefore combine the two vectors as
follows:

X" =x"+ sgn(x')X” =0, —a,+ Sgl'l(x’)("x -0y —a;+1)
y" =y +sgn(x")y" =a, —n, +sgn(x")(n, + 0x)
2" =7 +sgn(x"z" =n, — o, +sgn(x)(n; +ay,) ®

where the sign function sgn(x) returns +1 if x > 0 and —1 otherwise.
Thus obtained vector v"” = (x”’, y'", z""") coincides with the axis
of rotation of the given rotation matrix (and thus with the vector v)
and is well defined for 6 approaching 180°.

Again, the cases o, = max(ny,o0,,a;) and a, =
max (ny, 0y, a;) yield symmetrically analogous derivations and re-
sults. Having obtained a robust description of the direction of the
rotation axis, we must now scale the vector v'” into v = (x, y, 2)
so that ¢ = [s, v] is a unit quaternion. In order for ¢ to be of unit
magnitude, we must have

P =x*+y*+z2=1-57 9)

and therefore

" (10)

<

where ¢ = [s, v} is the desired unit quaternion, corresponding to the
original matrix R.

The computational cost of the above procedure is as follows:
3+, 14/ are needed to obtain s, 11+ is needed to obtain »”’/ (note that
it does not matter which of the three cases turns out to be relevant),
and finally, 8+, 3+, and 1,/ are needed to compute v (10). Therefore,
the overall cost of converting a rotational matrix R = [n o a] to a unit

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION. VOL. 6. NO. 3, JUNE 1990 385

84,06
05
as
z ay
f b
01 aa
az)
ay
Yy
0

z
Fig. 1. Coordinate frame skeleton for Puma 560.

quaternion ¢ = [s, v] is eight multiplies, 17 adds, and two square
roots.

IV. QuaTERNION-BASED INVERSE KINEMATICS FOR PUuMa 560

In this section, we use the quaternion/vector pair formalism to
solve the inverse kinematics problem for a six-jointed revolute manip-
ulator with a spherical wrist. The solution is based on a nonstandard
(non Denavit/Hartenberg) choice of coordinate frame assignments,
where for the fully vertically extended arm, the six-joint coordinate
frames are aligned with the kinematic base frame (see Fig. 1). We
present the procedure in some detail and in particular concentrate on
the solution for the orientation angles (6. 8s. and 6¢) to illustrate
the elegance and power of quaternion algebra.

The inverse kinematic problem for the Puma can be stated as
the problem of retrieving the joint angles ;. 1 </ <6, from the
equation

(Rw,Tw) =T(z,a)R(z, 0,))T(y, a2)R(y, 6)T(z, as)R(y, 63)
‘T(x,a)T(z,as)R(z, 05)R(y, 05)R(z, Bs) (11)

where T and R denote translations along and rotations about the
specified coordinate axes, @; are the known link length parameters,
and (R, T,) represents the known orientation and displacement of
the robot’s wrist with respect to the (kinematic) base coordinate
frame.

Since the rotations R(y, 8,) and R(y, 63) do not change the ori-
entation of the axis y, we can rearrange the terms in (11) as follows:
(Rw, Tw) =T(z,a)R(z, 0)R(y, 02)T(z, a)R(y, 03)T(x, as)

-T(y, a)T(z, as)R(z, 0)R(y, 05)R(z, 06). (12)
By moving the translation 7'(z, a3) one step closer to the base of the

kinematic chain and combining the rotations R(y, §,) and R(y, 03),
we have

(Rw,Tw) =T(z,a))R(z, 0)T(x, $2a:)T(z, C2a3)R(y, 0(3.3)
‘T(x,a)T(y, a)T(z, as)R(z, 03)R(y, 05)R(z, Os) (13)

where S; and C; denote sin 6; and cos 6, respectively. Fixing the
arm’s base coordinate frame B at the intersection of the axes of joint
angles 6, and 6, in Fig. 1, we can write the kinematic transformations
A; describing the spatial relationships between successive coordinate
frames along the manipulator linkage as follows:

A, =R(z,0) =(IC,, Sk], 0)

Ay =T(x, 8$:83)T(z, C2a3) = (1, (5243, 0, C2a3))

A; =R, 8243) = ([Cas3)» S2:3J1, 0

Ay =T(x, a))T(y, a)T(z, as)R(z, 0s) = ([Cs, Ssk], (s, a2, as))
As = R(y, 05) = (ICs, 55j1, 0)

As = R(z, 85) = ([Cs, Sek 1, 0) (14)

where the transformations A; have been expressed as quater-
nion/vector pairs. For reasons of compactness, we will adopt the
notational conventions of denoting the unit identity quaternion [1, 0]
by i, the half angle (§;/2) by 6;, and sin(6;/2) and cos(6; /2) by
S; and C;, respectively. Note that each A; depends only on 6; with
j <. The corresponding inverse transformations are

A7 =(C\, -Sik1,)

A7 =(4, {(=S2a3,0, —C1a3))

A;I =([C243> =Sc21351, 0)

AT = (ICy, —Ssk), (—Ciay — Saar, Ssas — Csaz, —as))
A" =(Cs, -S5j1. 0

Ag' =(Cs, —S6k], 0). (15)

Given the orientation and displacement of the wrist coordinate
frame with respect to the base frame B (i.e., (Ry,Ty)), we can
recover the joint coordinates 8., 6, - - -, 0 via the following iterative
procedure:

o compute U; = A;Ajy) - Ag for 1 <i <6
o let ¥V, =(R,,Ty)
e for j — 1to 3 do
set U; = V; and extract 6;
VjH ‘*A;IVJ'
endfor
e set Uy = V, and extract 8y, 05, 06.

We therefore first define the quaternion/vector products U;,
1 <i <6, where U; = A;A;,, ---Ae. In order to optimize com-
putational efficiency, we will define local variables wherever appro-
priate:

Us = Aq

= ([Cs, Sck1, 0) (16)
Us = AsUs

= (ICsCs, (5556, S5Cs, CsSe)}, O (17
Uy = AaUs

=([Us, (Us2, Usz, Uss)], {as, a2, as)) (18)
where

Usi =CsCle Ui, = S586-4)

Usy =85C 51 Uss = CsSi-0)-
Us =AUy
= ([Us1, (U3, Usz, Usa)), (Uss, a2, Usz)) (19)
where
Usi =Cs3Uai =S Us
Usy =C.3Uss +S0.3Us

U, =CainUs2 + Sia3y Uss
Uss =Ci.3Uss =S5 Ua
Uss = Caa384 +S2438s Uy = Cay38s ~S0ias.
U, = A,Us

= ([Us1, (U3, Uss, Uw)l, (Uss, a2, Uz7)) (20)

where

Uss = Uss + S1a3 Uy = Usy + Caas.

U =40,
:([CIUBI —S_1U34,
(C1Usy —81Us3, C1Us3 +8,Usy, CyUss + 51 U3),
(C1Uss —S1az, Cray +81Uss, Unr)). (21

386

1. Solving for 6,,6,, 6;: Following the procedure outlined
above, we can extract the first three angles by equating the corre-
sponding U and V terms. The quaternion/vector pairs V;, 1 <i < 3,
have the forms

Vi=R,,T.)

=(lw, (a, b, c)), (px, Py, P:)) 22)
V,=A;7'V,

=V (Var, Va3, Vau)l, (Vas, Vag, p2)) (23)
Vy=A;'V,

=([V21, V22, Vs, Vau)l, (Vas, Vag, V37)) (24)

where the local variables V;; are defined as follows:
Vy=Ciw+38,c
Va3 =Cib - 8,a
Vis =Cipx +Sip,
Vis = Vs — Saaz

Since the details of the resulting derivation, as well as the final ex-
pressions for the joint angles, are similar to the ones obtained by
Paul and Zhang using matrix-based methods [11], we will restrict
ourselves to stating the results. The reader is referred to [5] for
derivational details:

Vi =Cia+8,b
Viy=Cic -8Sw
Vi =Cipy —Sipx
Vi = p; — Caas.

arctan {%} ~arcsin | —22___
) \/ Px P
9] =
as

arctan by + arcsin -7
p.!‘

\/ PE+ D

%5+pz+a§—as—aﬂ

2a;3+/ V%S +p§

V
0 = arctan {j} — arctan [0_4] —6,.
| 4 a

37 5

V7
0, = arctan [—'E:I + arccos l:

Note that 6, and 6 are both double valued functions corresponding
to the two possible *‘shoulder”” and “‘elbow” configurations of the
arm, respectively.

2. Solving for 04, 0s, 6s: To compute the orientation angles of
the Euler wrist, we need to evaluate the quaternion/vector pair V.
We have

Vi=A]'V;
=(Vai, (Vaz, Vs, Vaa)l, (Vas, Vag, Var)) (25)
where

Vi =CainVa + 80,3 Vas Va2 =CainVa2 =S5V
Vis =Cas3Vas — Sy Va Vis =Cas3Vas +Spi3Vn
Vis =CyyVis —SainyVar Var =Ci3 Vi + 8043 V3.

Equating the rotational parts of U, and V, yields the following
set of equations:

CsCuiey = Va
8586—4 = Va
85C6—ay =Vas

655(4%) =Vu. (26)

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 6, NO. 3, JUNE 1990

TABLE 11
InvERSE KINEMATICS FOR Puma 560
Cost
Component + [+« | /| trig7T] sin + cos
A 313 1 2 0
[4|6 1 2 1
65 412100 1 1
[Var, (Vaa, Vas, Vaa) || 8 | 16| 0 0 2
85 2|4 2 1 0
b4, b5 200 2 0
Total 23131 4 8 4
From this we see that
2 2 _ A2
Vi + Vi =Cs
2 2 _ g2
Vi + Vi =85,

Since 05 € [, 1), Cs = cos(fs /2) is nonnegative, whereas the
sign of S5 = sin(f5/2) depends on the sign of the angle 05, i.e.,
sgn(Ss) = sgn(fs). Hence, we have

i¢%+%]

05 = 2 arctan [

+V VLV,

where the positive sign of the numerator corresponds to the wrist
configuration with 85 > 0°, and conversely, the negative sign of the
numerator corresponds to the configuration with 85 < 0°.

Assuming for the moment that the wrist is nonsingular (i.e.,
S5 #0), we can cancel both S5 and Cs from the ratios Vi, /Va3
and Vi, /V4y, respectively. Preserving the signs of the ¥;; terms to
facilitate reconstruction of the correct quadrants of the angles being
retrieved, we have

sgn(Cs)Vaq |

sgn(Ss)Va,
sgn(Cs)Vsy,’

sgn(Ss)Va;
(27)

tan((L +66) = Lan(ﬁs — 64) =

Again, Cs >0, sgn(Ss) = sgn(fs), and therefore

Vaa sgn(6s)Vs,
0, = arctan | —— | — arctan | —>~_*2
¢ [Vai } [sgn(ﬂs)h;

V.
f¢ = arctan [V;M} + arctan [

a1 sgn(fs)Va3

sgn(0s)V s, :l

Observe that as 05 approaches 0°, S5 goes to 0, and the term
arctan(Vs, /V43) becomes undefined. However, the sum of 6, and 6
remains well defined, as expected, since the condition 85 = 0° cor-
responds to the axes of the joints 4 and 6 being coaxial (i.e., aligned
in the same direction). This consideration is consistent with the phys-
ical reality of the Euler wrist, which loses a degree of freedom as it
approaches a singular configuration.

Table IT summarizes the cost of the procedure outlined above.
The cost analysis assumes that table lookup is employed to compute
trigonometric functions (approximately 10 arithmetic operations).
The computation of a sin/cos pair for an angle has been counted as a
single operation because both values can be obtained at a cost only
negligibly greater than that of computing one. Finally, any subex-
pressions involving the constant offsets a; are assumed to have been
precomputed offline.

The computational costs listed in Table II are roughly comparable
with those for matrix-based representations [8], [11], and conse-
quently, one would not want to choose one representation over the
other on the basis of computational speed alone. On the other hand,
the greater numerical robustness and lower storage requirements of
quaternion-based representations can often represent a decisive ad-
vantage, and it is reassuring that this bonus comes at no additional
cost in terms of the kinematic solution time.

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 6, NO. 3, JUNE 1990

V. CoNcLUSION

The main purpose of this paper is to propose to the robotics com-
munity that quaternions, coupled with a displacement vector, function
as very elegant and efficient spatial transformation operators. With
the additional advantage of being very compact, and therefore stor-
age efficient, quaternion/vector pairs provide an attractive alternative
to the homogeneous matrices. This is particularly true in situations
where storage access is expensive (in terms of machine cycles) and
where the nature of the computation necessitates frequent renormal-
ization of rotational operators. In addition, quaternions seem to offer
a more intuitive framework for using and understanding the effects
of three-dimensional rotations because the axis and angle of rota-
tion appear explicitly in their definition. Finally, the compactness
and elegance of the quaternion algebra makes the quaternion/vector
pair formalism a rewarding alternative in research and pedagogical
environments.

We have also presented an efficient and robust procedure for
converting a rotational matrix operator into the corresponding unit
quaternion, which exhibits stable behavior in the neighborhood of
rotational singularities. As an example of the elegance and efficiency
of the quaternion algebra, we have given a quaternion-based solu-
tion to the inverse kinematics problem for the Puma 560 robot arm,
which in terms of the computational expense is comparable to exist-
ing matrix-based solutions [8], [11].

Since neither representation exhibits a decisive advantage over the
other in terms of computational speed, we suggest that other criteria
such as mathematical elegance, numerical robustness, and storage
efficiency should be considered in selecting a representation for spa-
tial transformations. The advantages of quaternion/vector pairs in
these respects may make them an attractive choice in many practical
applications.

APPENDIX A

THE Two OPERATORS

The homogeneous transform operator effecting a rotation through
an angle of 6 about a spatial axis k and a translation through p is
given by the following matrix [10]:

keko Vo +Co kykyVe —k,Ss kikyVe +Kk,Sy Dy
kek, Vo +k.So kyk, Vs +Cy kiky Vo —kiSy p,
r= kek. Vo —k,Sy kyk.Vs +k.Sy kek,Vo+Cy ps
0 0 0 1

(28)

where Sy = sin , Cyp =cos 8, and ¥y =1 — cos 8. The equivalent
quaternion/vector pair operator, describing the same point vector
transformation, has the form [4], [6], {7], [14]

6 . 0
QZ([COS E’ s E(kkayykz>jlu<p)rypyapz>) (29)

where the quaternion [cos (8/2), sin(6/2)k] encodes the appropriate
rotation, and the vector p denotes the corresponding translational
displacement.

ArpENDIX B

MaTHEMATICAL FORMULATIONS OF Basic SpaTiaL OPERATIONS

Let T = [noap] be a homogeneous transform, @ = (¢g,p) a
quaternion/vector pair with ¢ = [s,v], and r an arbitrary point
vector. Table III gives the mathematical formulations of some ba-
sic spatial operations for both homogeneous transforms and quater-
nion/vector pairs.

The only homogeneous transform operation above that requires
commentary is the normalization operation. Under the storage con-
vention of Section II-A, only the orientation and approach vectors
(i.e., 0 and a) of the rotational matrix to be normalized are avail-

387

TABLE 111
Basic SpaTIAL OPERATIONS WITH T AND Q

1. Spatial transformation of a point vector

' =[noap]r] r=q+r+ql+p

2. Composition of spatial operators

T" = [noapj[n'o’a’p') a,p) +(q',)

Q" =(
=(q*q’,q+p’+q~' +p)

3. Inverse of a spatial operator

T~ =[noal" —(lnoal"(p))] | Q' =(q7',—~q ' «p+q)

4. Normalization of a spatial operator

T = [T a el

where n = 0 x a, and

Q' =(q',p)

;_
where ¢ _m

a’=a+(nxo)

able. We assume that the spatial orientation of the 0@ plane is correct
and reconstruct the normal vector asn =0 xa. We then distribute
the orthogonality error between the orientation and approach vectors
0 and a by settinga’ =a + (n x0) and 0’ =a’ xn. Finally, the
new orientation and approach vectors are normalized. The resulting
normal vector is not explicitly stored and is denoted by ? in Table
III (see [S] for more detail).

On the quaternion/vector side, we have let the symbol ‘%’ denote
quaternion multiplication, which is defined as [6]

g *q' =[s,vl«[s", vl =[ss' —v v, 50" +5'v +v xv’].

The inverse of a quaternion is obtained by simply negating its vector
part, i.e.

g7 =ls,v]7" =1s, —v].
Finally, rotation of a vector r through a quaternion ¢ = [s, v} can
be expressed as follows:

V=r +2s(v xr)+2v x (v xr).

q *r xq
The reader is refered to [S] for a more detailed discussion of the
above operations. Other references include [2], {4], [6], [71, [12],
and [14].

REFERENCES

[11 W. Blaschke, Gesammelte Werke. Essen: Thales-Verlag, 1982.

[2] O. Bottema and B. Roth, Theoretical Kinematics. New York:
Elsevier-North Holland, 1979, pp. 518-525.

[31 J. Craig, Introduction to Robotics, Mechanics and Control (2nd
ed.). Reading, MA: Addison-Wesley, 1989.

[41 O. F. Fischer, Five Mathematical Structural Models in Natural Phi-
losophy with Technical Physical Quaternion. Stockholm: Axion
Institute, 1957, ch. 1, 2.

[51 J. Funda, “‘Quaternions and homogeneous transforms in robotics,”
Master’s thesis, Univ. Pennsylvania, 1988, MS-CIS-88-06.

[6] W.R. Hamilton, Elements of Quaternions, Volume I and II. New
York: Chelsea, 1869.

[71 W. R. Hamilton, Lectures on Quaternions.
1853.

{81 C.S. G. Lee, “Robot arm kinematics, dynamics, and control,” IEEE
Trans. Comput., pp. 62-80, Dec. 1982.

[9]1 E. A. Maxwell, General Homogeneous Coordinates in Space of
Three Dimensions. Cambridge, England: Cambridge Univ. Press,
1951.

[10] R. P. Paul, Robot Manipulators: Mathematics, Programming and
Control. Cambridge, MA: MIT Press, 1981.

[11] R. P. Paul and H. Zhang, *‘Computationally efficient kinematics for
manipulators with spherical wrists based on the homogeneous trans-
form representation,” Int. J. Robotics Res., vol. 5.2, 1986.

London: Whittaker,

388 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 6, NO. 3, JUNE 1990

[12] E. Pervinand J. A. Webb. “*Quaternions in vision and robotics,” Dept.
Comput. Sci., Carnegie-Mellon Univ.. Tech. Rep. CMU-CS-82-150,
1982.

[13] E. Salamin, “Application of quaternions to computation with rota-
tions,” Tech. Rep., Al Lab, Stanford Univ., 1979.

[14] K. Shoemake, Animating Rotation with Quaternion Curves. Bing-
hamton, NY: Singer Co., Link Flight Simulation Div., 1985.

[15] R. H. Taylor, “‘Planning and execution of straight line manipulator tra-
jectories,” IBM J. Res. Development. vol. 23, no. 4, pp. 424-436,
July 1979.

[16] A. T. Yang and F. Freudenstein, Application of dual-number quater-
nion algebra to the analysis of spatial mechanisms.™ Trans. ASME,
J. Appl. Mechanics, vol. 31, pp. 300-308. 1964.

A Proof of the Structure of the Minimum-Time Control
Law of Robotic Manipulators Using a Hamiltonian
Formulation

YAOBIN CHEN, MEMBER. [EEE, AND
ALAN A. DESROCHERS, SENIOR MEMBER, IEEE

Abstract— A Hamiltonian C ical formulation, which yields a new
and very straightforward proof of the structure of the minimum-time
control (MTC) law for m-link robotic manipulators is used. It is shown
that the structure of the MTC law requires that at least one of the
actuators is always in saturation. In addition, a numerical algorithm
is presented. The algorithm converts the original problem, possibly a
partially singular one, into a totally nonsingular optimal control problem
by introducing a perturbed energy term in the performance index. It is
shown that the solution to the perturbed problem converges to that
of the MTC problem in the sense of the performance index as the
perturbation parameter approaches zero. The control algorithm is then
used in a simulation to verify the MTC law structure.

I. INTRODUCTION

The problem of minimum-time control (MTC) of robot manipula-
tors is concerned with the determination of control signals that will
drive the manipulator from a given initial configuration to a given
final configuration in as short a time as possible. In general, it is
extremely difficult, if not impossible, to obtain an exact closed-form
solution to this problem due mainly to the highly nonlinear and cou-
pled nature of the robotic manipulator dynamics.

The general time-optimal control problem has been treated by
many authors [1], [2]. The theoretical results for the general sys-
tem are in the form of necessary and sufficient conditions that have
to be satisfied by the candidate optimal solution. It will be shown
in this work that in general, for robotic manipulators, the singular
optimal control does not exist, and the so-called “partially singular
control,” which will be defined later, may exist. Research in singular
control problems [3] has been directed towards finding some addi-
tional necessary conditions that the controls have to satisfy, obtaining
the singular optimal trajectories in the interval, and characterizing
singular extremals.

Several researchers have addressed the general point-to-point MTC
problem for robot manipulators [4], {12}, [18]. In this work, a Hamil-
tonian canonical formulation is used that not only yields a new and

Manuscript received January 28, 1988; revised March 12, 1990.

Y. Chen is with the Electrical Engineering and Computer Science Depart-
ment, George Washington University, Washington, DC 20052.

A. A. Desrochers is with the Electrical, Computer, and Systems Engi-
neering Department and the Center for Intelligent Robotic Systems for Space
Exploration, Rensselaer Polytechnic Institute, Troy, NY 12180-3590.

" 1EEE Log Number 9036836.

very straightforward proof of the structure of the minimum-time con-
trol law but also makes the numerical solution easier. It will be shown
that the structure of the MTC law requires that at least one of the ac-
tuators always be in saturation over every finite time interval, whereas
the others adjust their torques so that some constraints on motion are
not violated while enabling the arm to reach its final desired destina-
tion. Then, singular and partially singular extremal trajectories are
characterized for the purpose of finding the nonbang-bang control
law.

Solving this partially singular control problem has proven to be
difficult [5]. In this work, we present a reliable method {15] for
solving the two-point boundary value problem (TPBVP) arising from
the MTC law structure. Computer simulations for a two-degree of
freedom (DOF) arm are performed to verify our theoretical result of
the MTC structure for robot systems.

II. StrucTURE OF MINiMUM-Time ConTROL Law

A. Dynamic Model of an m-DOF Robot Arm

We first assume that the torques applied to each joint are bounded
and can take any values between the bounds. Using the Hamilto-
nian canonical equations, the dynamic equations of an m-degree-of-
freedom robot arm can be derived.

The total kinetic energy of the robot arm in the joint space is
expressed as

K@, &) = 30" M@ ()

where g(f) is the m x I generalized joint coordinate vector, and
M(q) is the m x m total inertial matrix of the system. In addition,
let the total potential energy of the system be represented by P(g).
Then, the Lagrangian of the system is written as

1

2q’M(q)q -P@).

Liq,9)=K(q,9) —P() =
Now define a Hamiltonian function H as

H =140 r(t) - L(g, ¢) 3
where 7(2) is a generalized momentum vector defined as the partial

derivative of the Lagrangian L(q, ¢) with respect to the joint velocity
vector ¢. By (2) the generalized momentum can be expressed as

r(t) = M(q)q(1). 4

From (2)-(4) and the symmetric positive definite property of the
inertia matrix, we obtain

_ 1
H = ErT(r)M*I(q)r(t) + P(q). (5)

Using the Hamiltonian canonical equations [13], a set of 2m differ-
ential equations can be written as

dg(ty _ . _,
T-M (@r ()
ary 1 r M (@
ar = z(l'@r) g r(t)

~FM~"(q)r(t) + G(g) +u(t) (6)

where ® is the Kronecker product, F is the m x m viscous frictional
matrix, and u(¢) is a control torque vector applied to the joints. Now
define the generalized coordinate vector g(#) and the generalized
momentum vector r(t) as states, i.e., x7 () = (x7(¢), xJ(t)) =

1042-296X/90/0600-0388301.00 © 1990 IEEE

