
A Configurable System for Automation  Programming  and  Control 

James U. Korein 
Georg E. Maier' 
Russell H.  Taylor 

Lawrence F. Durfee 

Manufacturing  Research  Department 
IBM T. J.  Watson  Research  Center 

Yorktown  Heights,  New  York,  10598 USA 

Abstract: This  paper discusses an  environment  for  configuration, 
programming, and  control of robot workcells. The  controller is in- 
tended to support  research in automation  programming  and  motion 
control,  and to provide a vehicle for  conveniently  integrating new 
sensors  and  other devices into  a workcell in a useful way. The sys- 
tem  consists of an interactive Programming System connected 
through  a  shared  memory to a  multiple-processor Real  Time  System 
that  performs time-critical operations.  The  Programming System 
executes  programs  written in an  enhanced version of AML  and 
transmits high level commands, called verbs, to  the  Real  Time  System 
for  execution.  Verbs may either  be simple, consisting essentially of 
a  process  specification  and  termination  conditions,  or  they may be 
compositions of other verbs. The processes  themselves  are specified 
in terms of lower level entities called real time application subrou- 
tines, state vector variables, and data flow graphs which describe 
computations  to  be  performed  in  the  Real  Time System. 

Introduction 

Rapid progress in  robotics  and  programmable  automation is 
limited by the lack of flexibility and configurability of currently 
available systems,  and  the difficulty with which these  systems  are 
extended.  These  problems,  among  others,  have  also  been  detri- 
mental to  the  integration of programmable  automation  on  the  fac- 
tory floor.  One critical problem is to  be  able  to  take  advantage of 
the wide variety of new sensor  and  actuator technologies in the field, 
and to use them in meaningful ways without redesigning the  system. 
A  second is the large amount of labor involved in  coordinating  a 
variety of special purpose  controllers. 

It is the  contention of the  authors  that  a  general  purpose  auto- 
mation  controller with an open system philosophy could improve the 
situation in several  ways.  The  first is  by allowing users  make new 
devices  known  to  the system and to build new real time commands 
incorporating  these devices. Second,  a  general  purpose  controller 
could he used to provide a  common  interface to a  variety of different 
robots  and  other devices, so that  these devices may be  programmed 
in a  homogeneous  manner. 

A  general  purpose  automation  controller must be readily con- 
figured to  control  a wide variety of equipment, including robots, 
XY-tables,  tools,  process  equipment,  inspection  apparatus,  convey- 
ors, etc.  It must provide sufficient  computational  power  to  support 
the  functional  requirements of the  equipment  being  interfaced to it. 
The  programming  interface must be  powerful  enough to describe 
complex behavior, while still allowing simple tasks to  be  pro- 
grammed simply. This  interface  should  support  a  spectrum of users 

from line attendants  and  maintenance  personnel  to  robotics  re- 
searchers. 

Robotics  research  control  architectures  have  taken  a  number of 
different  approaches to meeting  the  requirements of configurability, 
computational  power,  and programming. Early  systems [e.g., 1, 2, 
3, 4,  5,  6, 71 typically relied on a  mainframe  or large minicomputer, 
or  in  some  cases  to  a mini tied to a  mainframe, to provide  both pro- 
gramming and  control  functions.  More  recent  systems .[e.g., 8, 9, 
11, 121 have  tended  to  employ  larger  numbers of processors,  inter- 
connected  in  various ways, and  there has been  considerable  atten- 
tion  recently to  the use of specialized computational  hardware  [e.g., 
13, 101 for  manipulator  control. A number of systems [e.g., 14,  15, 
161 have  recently paid more explicit attention  to  the  problems of 
workstation  integration.  For  example,  Barberra et al. at NBS [14] 
define  a multiple level control  hierarchy  and relies on a  number of 
communication  interfaces to tie together  computers  controlling var- 
ious equipment within the  manufacturing cell. 

The  system  described  here has been designed with a  focus  on 
dynamic  configurability,  layered  user  interfaces  and  incorporation 
of sensor-based  real time operations  into new commands.  It is these 
features which distinguish it  from  earlier  work.  The  system is cur- 
rently  being  implemented  at IBM for  research  purposes  and  internal 
use, an  outgrowth of programmable  automation  research which has 
been  ongoing since 1972 [e.g., 17,  18,  19,20,21,22,23,  24,  25,  26, 
271 . 

System Hardware 

The  overall  structure of the  hardware is illustrated in Figure  1. 
The  system  consists of a Programming  System, which provides an 
environment  for  the  development  and  execution of programs,  and 
one or  more Real  Time  Systems, which perform time-critical tasks 
such  as  motion  control  and  sensor monitoring. The  Programming 
System is connected  to  the  Real  Time System by  a Real  Time  Bridge 
containing  a  shared  memory  and  synchronization  hardware. 

The  rationale  for  separating  the  Programming  System  from  from 
the  Real Time System is that their needs  are  quite  different.  The 
programming  system must support  a  conventional  operating  system, 
a wide variety of development  tools, disk and  communications  net- 
work. The  Real  Time System must provide fast  computation, 1 / 0  
for  sensors,  and  actuators  and  guaranteed  latencies  for real time 
computations. Systems which are  best  suited  to one of these  pur- 
poses are usually not ideal for  the  other.  Moreover,  the  forces  driv- 
ing their  evolution  can  be  expected to widen the gap. The division 
allows independent  evolution  on  both  sides. 
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Programming  System 

The Programming System consists of a computer  workstation of 
conventional design with the usual array of input/output  peripher- 
als, including a hard disk, local area  network  (LAN)  interface, dis- 
play, keyboard.  etc.  The primary requirements  for this component 
are reasonably high computation  rates,  floating  point  capabilities, 
large (several megabyte) physical and virtual memory address  space, 
acceptable  interrupt  response  latency,  and a wide menu of available 
hardware  and  support  software  for program development  and  fac- 
tory communications. 

We have  made a serious  effort to minimize dependencies  on  the 
Programming System hardware,  configuration,  or  host  operating 
system.  The only “custom”  hardware  element is the  interface  card 
attaching  the Bridge to  the  Programming System bus. All Program- 
ming System software is written in AML or in a standard high level 
language (C), and all input/output relies on  standard C subroutine 
calls. The principal operating  system  requirements  beyond  standard 
l /O are  the ability to  map  the  shared  memory of the  Real  Time 
Bridge into specific addresses in user programs  and  the ability to 
awaken user processes in response  to  interrupts  from  the  Real Time 

.System  through  the Bridge. 

Real Time  Bridge 

The Real Time Bridge contains  shared memory addressable  from 
both  the  Programming System and  the  Real Time System,  together 
with a large number (1024) of indivisible test-and-set  registers  to 
provide mutual exclusion between  processors.  It provides the  capa- 
bility for  processors  on  either  system bus to interrupt  those  on  the 
other. Finally, it contains specialized hardware  supporting  system 
diagnostics. 

The Bridge effectively decouples  performance  on  the  two system 
buses,  thus  preventing  bursts of 1/0 activity for  factory  communi- 
cations, disk file transfcr,  or display updating  on  the  Programming 
System bus to  degrade access times on  the Real Time System bus. 
At  the  same time, the  shared  memory  permits high bandwidth, ran- 
dom access communication  between  subsystems,  permitting system 
softwarc  to  share global data  structures.  The Bridge architecture 
also provides a natural dividing line for future  implementation up- 
grades, since changes in the bus architecture  for  one  subsystem  do 
not necessarily require  changes in the  other. 

Real  Time System 

The  Real  Time System consists of multiple single board  com- 
puters on a shared  bus.  Each  card includes a processor, local mem- 
ory (both  private  and  shared)  and  standard  interfaces  for  daughter 
cards to do t/O functions  (Figure 2). 

One of these  computers is dcsignated  the Supervisory Processor. 
The Supervisory Processor  executes  commands  constructed in the 
sharcd memory of the  Real  Time Bridge by the  Programming Sys- 
tem.  It  communicates with the  other  real time processors through 
their “local”  shared memories and  through “global” shared memory 
in thc Bridge. 

The workload of the system is distributed  over all processors. 
Code is stored in the local memories of the  processors to avoid bus 
traffic. Except for a small module in ROM,  the  code is downloaded 
into local RAM  when  the  system is configured.  Most  processors 
pcrform special purpose functions such as axis servo  control  and 
sensor  interface  functions. 

All processors  are  capable of being  masters  on  the  Real  Time 
System bus.  Processor  communication is accomplished using shared 
memory  and  special  prioritized  interrupts  for  interprocessor  com- 
munication. 

Real time processing  cards may be  customized by the  attachment 
of any of a number of daughter  cards  through an industry  standard 
local bus [31]. Daughter  cards  are available to provide various types 
of 1 / 0  including A/D  and  D/A conversion, digital and serial I/O. 

As with the  Programming  System, we have  spent  considerable 
effort  to minimize hardware  dependencies.  Aside  from a small 
kernel whose primary  function is interrupt  dispatching, all software 
is being  written in high level languages. Beyond this, custom  inter- 
faces to  robot  hardware  are  confined  to  daughter  cards.  This iso- 
lates  dependencies on specific robots, as well as keeping 1 / 0  traffic 
between a processor  card  and its daughters off the global real time 
bus. 

Typical Con figurations 

A  principal design objective of the  system is that  it  should be 
configurable to support a wide variety of automation  equipment. 
This is achieved by providing modular  interfaces  at  the  joint  and 
sensor  control level to permit many different 1 /0  interfaces  and 
protocols,  by providing standard  configuration  tables  and utilities, 
and  by  supporting  standard  communications  interfaces in the  pro- 
gramming system. 

Typical  configurations  may  be designed for  applications involv- 
ing pick and place, electronic  test, visual inspection  and assembly. 

The  workstation  may  include  one  or  more  robot  robot  arms, XY 
positioning tables, a vision system,  analog  test  equipment,  and a va- 
riety of devices controlled  through serial and parallel ports. An 
abundance of digital inputs  and  outputs may be used to handle sim- 
ple sensors  and devices. 

Layered User  Interface 

The  community of system users is expected  to  span a wide range. 
At  one  end of the  spectrum is the  manufacturing  engineer  who  wants 
a simple menu-driven or  teach-pendant  interface  to assist him in 
setting up a manufacturing  workstation in an  expedient  manner, 
without writing complex computer programs. Next,  there  are  robot 
programmers  developing  applications  programs to control  the  robot 
directly. Then,  there  are  programmers writing programs which pro- 
vide manufacturing  engineers with the  menu-driven  and  teach pen- 
dant  application  interfaces they require.  Finally,  there  are  robotics 
researchers  experimenting with new  control  and  trajectory  planning 
strategies to extend  the capabilities of robotic systems. 

In  order  to  accommodate  these  different levels of use, several 
layers of user  interface  are provided. 

1. The  outermost level encompasses  menu-driven  and  pendant 
driven application interfaces which are useful for  manufactur- 
ing engineers  and  factory  personnel. 

2. The next level is programming in AML [19, 20, 28, 291 . The 
Programming System provides an  interpreter  for  an  enhanced 
version of the AML programming language which supports ex- 
ception handling and  powerful  mechanisms  for  data  ab- 
straction.  AML callable subroutines may also be  defined in 
lower level languages like C [30] and FORTRAN. A  library of 
predefined  commands  for  the  Real Time System is provided to 
do motion  control  and  condition  monitoring.  These  commands 
are called verbs. 
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The next  layer is the verb composition level at which new verbs 
may be  constructed, using a  set of primitive AML callable 
subroutines provided by  the  system.  At this level, the building 
blocks  for  constructing  new  verbs are  other  verbs which have 
previously been  defined.  A  detailed knowledge of the  system 
is not  required. New verbs  take on  the  appearance of old ones. 

Still deeper  is  the primitive verb definition level, which allows 
users to develop  verbs which are  fundamentally new. This is 
necessary to  incorporate  new  types of devices into  the  Real 
Time  System,  and to experiment  with  new  types of motion 
control.  At  this level, verbs are  defined  in  terms of specifications 
of real time computations. Programming  the  system at this  layer 
allows the  introduction of radically new types of hardware  and 
software  into  the  system,  but  requires knowledge and  caution 
on  the  part of the user. 

All levels are built on  top of a  core of system subroutines. 

The  intent of this  layered  architecture is to provide  a vehicle for 
experimentation with new technologies in programmable  auto- 
mation,  and to provide  a  path  by which the  fruits of this  research  can 
flow quickly and painlessly into  productive  manufacturing systems. 

Verbs 

Verbs  are  commands  from  the  Programming System to  the  Real 
Time System. They may be applied to devices, e.g. to monitor sens- 
ing devices or  to  move  robots  as well as  other devices. 

The  conceptual  representation of a  verb is depicted  in 
Figure 3. The  verb  consists of a process, which is the  action which 
transpires  during  the  execution of the  verb,  and  a  set of termination 
conditions (Tl ,  ..., Tn),  any of which may  cause  the  verb to termi- 
nate.  This  concept is a  natural  generalization of the guarded move 
concept [17] . 

In  a typical guarded  move,  for  example  the process would be  the 
motion of a  robot  arm,  and  termination  conditions might include 
reaching  a  desired  position within some  tolerance  and  encountering 
a large force. 

In  addition,  the  verb, like a  subroutine,  has  a  set of formal pa- 
rameters.  In  the  guarded  move  example,  some  parameters would be 
the device to move,  the position goal, and  a  threshold level on  the 
force. 

A  verb is a  generic  command which may be  applied to devices 
of different  structures.  For  example,  the  verb MOVE may  be used 
to move  one  or  several  joints of a  robot: 

MOVE(j2,goal); 
MOVE(<jl,j3>,<goall,goal3>); 

Application of a  verb  to  a device (or  a  set of devices) is called a verb 
instance. A  verb is re-entrant in the  sense  that  several  instances of 
the  same  verb  may  be  executed  concurrently  (but  independent of 
each  other). 

Depending  on  the  termination  condition which actually occurs, 
different  sets of values may  be  returned  by  the  verb ( r l ,  ..., rn). If a 
guarded  move  reaches  its  destination,  indicating this with  an  appro- 
priate  return  code may be  sufficient.  If,  however,  the  motion is ter- 
minated  due to a  force, it may be  desirable  to  return  several values 
including the  measured  force  vector,  the position at which it  was 
encountered,  and  the position at which the  arm  stopped. 

Verb Composition 

Verbs  are  modular building blocks which can  be  composed  to 
build new  verbs.  These  new  verbs, which are called compound verbs 
have  the  same  external  structure as  do simple verbs and  can  be used 
in  exactly  the  same ways. Compound  verbs  may  be  constructed  as 
verb graphs whose nodes  are themselves verbs. 

An example is given in Figure 4. One  node is designated as  the 
starting node. For each  termination  condition of each  node,  there is 
exactly  one arc which points  either to  another  node in the  graph, or 
to a  termination  condition for  the  entire  compound  verb, in which 
case  it is called a terminating arc. 

The  starting  node is executed  first.  When  a  node  terminates, 
subsequent  action is determined  by the arc  leaving  the  termination 
condition which occurred. If this arc  goes  to  another  node,  that  node 
is to  be  executed  next in sequence.  However, if the  arc is a  termi- 
nating  arc,  the  entire  compound  verb  terminates  with  the specified 
termination  condition. 

When  the  compound  verb is defined,  a  mapping  between  the 
parameters of the  compound  verb  and  those of each of the  constit- 
uent  verbs is established.  The  number of parameters  for all constit- 
uent  verbs may be large. A default  mechanism is prdvided so that 
all these  parameters  need  not  be specified for  the  compound  verb. 

Just  as for a simple verb,  a  set of returned  values must be defined 
for  each  termination  condition of the  compound verb. Each termi- 
nating  arc must map  the  returned  values  from  its  source  onto  those 
of its destination.  That is, returned values of a  verb  node  are 
mapped  onto  those  for  the  compound  verb. 

An  example of a useful operation which is conveniently imple- 
mented as a  compound  verb is shown in Figure 5. This  verb, called 
centering grasp is used to grasp  an  object  without  wasted  motion. 
The  verb is invoked  when an  object  to  be  grasped is known to  be 
between  the  fingers of the  gripper of a  robot  arm.  The  verb  has  four 
nodes,  each of which is a  guarded  move (GMOVE). The  first closes 
the  gripper until either or both  fingers hit the  object, or until  the 
gripper  closes  to  a specified width.  This  last  condition is used to 
check  for  the  contingency  that  the  object is not  between  the  fingers, 
in which case  the  compound  verb  reports  the  erroneous  condition 
"Too Small". If both  fingers  happen to hit the  object  at  the  same 
time, a final GMOVE is used to tighten  the  grip  on  the  object.  For 
the  sake of simplicity in this example, the  tightening  operation is as- 
sumed  always  to work correctly.  When  the  fingers  are  being closed, 
if the  left  finger  hits  the  object  before  the  right,  another  guarded 
move is invoked to compensate  for  the  skew by moving the  gripper 
left while. it is closing. If the  second  finger  then  hits,  control passes 
to  the tightening verb. However, if the  first  finger which hit looses 
contact,  control  passes  back  to  the  original  finger closing verb. As 
before, if the  fingers  get  too close together  for  the  desired  object  to 
be  between  them,  the  verb  terminates  with  the  "Too Small" condi- 
tion.  The  fourth  node  in  the  graph  handles  the  case  where right 
finger  hits  first? 

Composition of verbs  provides  a  convenient  abstraction  for  the 
definition of complex  motion  commands  from simple ones in a 
modular way. 

Predefining  compound  verbs allows large tasks to  be  performed 
by  the  Real  Time System with  a minimum of traffic  between  the 
Programming System and  Real  Time System. 

A similar method  was  developed  by R.  Paul in the early 1970's and appeared in both the WAVE and AL systems.  Interestingly, this CENTER command was first 
iniplcnicnlcd as a macro-operation in WAVE, but constant  use  led it lo  he reimplcmented as a primitive [33]. 
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Verb  graphs  are not implemented as conventional  programs  but 
as data  structures. This allows them to  be easily manipulated in or- 
der  to remove the  overhead  introduced by nesting,  and  permits  them 
to be configured dynamically, without the  overhead of a language 
interpreter.  A graphical interface is planned to allow convenient 
construction of compound verbs. 

Specification of Real Time Computations 

Function Blocks and Sfate Vector  Variables 

A function block specifies a generic piece of computation with a 
well defined  interface which consists of input  and  output  ports, 
conditions used to  report  verb  termination,  and formal parameters 
with default values. 

A state vector variable is a global data  buffer in the  shared mem- 
ory of the  Real  Time System which may be used to communicate 
between  different  function block instances.  State  vector  variables 
have a type and may hold a number of previous values. 

An instance of a  function block may be  obtained  by  binding  its 
input  and  output  ports to  state  vector variables. Several instances 
of a function block, which are  bound to different  state  vector vari- 
ables, may exist at  the  same time. A  function block instance may 
be scheduled to  be executed  once, which results in a single 
invocation, or it may be activated  for  repetitive  execution, which re- 
sults in multiple invocations. 

Actual parameter valucs are passed to a function block instance 
before it is scheduled.  Parameters  are  then local to  the  instance  and 
cannot be accessed from  outside. 

The input and output ports allow an instance of a function block 
to access state  vector variables. The value associated  with a port is 
local to the  instance  during one invocation: It is guaranteed  that  an 
input  does not change  and an output is not accessible from  outside 
while the  function  executes.  The  ports  have  a type and  can only be 
bound to state  vector variables of matching  types. 

Computations in the  Real  Time System may be performed  at 
different  frequencies.  For  example,'some low level control  compu- 
tations need to be executed very often,  whereas  the  generation of 
set  points may be done less often.  Therefore,  a  function block port 
has a mode which 'defines whether this port will be accessed during 
each  invocation  or  not: 

0 synch(defau1t): The  port is accessed  during  each  invocation 

0 fixed-ratio: The  port is accessed during  each k'" invocation, 

0 var-ratio: The  port is accessed  during  each nrh invocation, 

0 asynch: The  port may be  updated  asynchronously to  the inv- 

(updated  input value assumed,  new  output value produced). 

where k is a constant. 

where n is a variable. 

ocations of the  function  block. 

An execufion interval may be associated with a  function block in- 
stance, if it must always be executed at a certain  frequency. 

A port with the  mode synch may have  the  type trigger. Such a 
port  cannot  be  read or written  but only affects  the  flow of control. 
A trigger port is not  bound  to  a  state  vector variable but  to a trigger 
source. An  input trigger port may either  be  bound to an interrupt 
(c.g.,  from  the real time clock) or to an output trigger port of another 
function block instance. 

The following commands may be used in command lisrs to 
schedulc  function block instances: 

0 install: A  function block instance  must be installed in the  Real 
Time System before it may  be  executed. All state  vector vari- 
ables  bound to  output  ports  and all physical devices used are 
reserved in order  to  detect  any resource conflict. 

0 remove: After  execution, a function block instance may be re- 
moved to allow another  function to write  the same state  vector 
variables  and  to use the  same physical devices. 

invocation). 

cution as specified by its execution  interval. 

0 exec-once: Execute a function block instance  once (single 

0 activate: Schedule a function block instance  for  repetitive  exe- 

0 deactivate: Do not  invoke  a  currently  active  function block in- 

0 wait: Wait until one of the  active  function block instances re- 
stance  anymore. 

ports a condition (illegal, if no  instance is active). 

Execution of such a command list terminates as soon  as one of the 
involved function  block  instances  reports  a  condition  different  from 
success. In  case of a simple verb, which is defined  by  one  command 
list,  the  reported  condition  terminates  the  verb  instance  and is re- 
turned  to  the  Programming  System as a  verb  termination  code. In 
case of a compound  verb, which is defined by one  command list for 
each of the  nodes of the  verb  graph,  the  reported  condition  deter- 
mines which node is executed  next  or  whether  the  verb  terminates. 
At  the time a verb  instance  terminates,  any of its  function block in- 
stances which are still active  or installed are  automatically  deacti- 
vated  and  removed. 

Application  subroutines 

Basic function blocks, coded as C functions, are called applica- 
tion subroutines. A  set of coding conventions must be used to  meet 
the  function block interface  requirements.  A  few support functions 
allow an application  subroutine  to  report  a  condition,  to access the 
current  time, to get  the  execution  interval,  and to determine  whether 
the  current  invocation is the first one. 

When an application  subroutine is compiled, in addition  to  the 
object file a so called symbol file is created which includes function 
names,  type  definitions, variable names, field names  etc.  These 
symbol files are  automatically  read  and  processed  at  the time an 
object  module is downloaded to the  Real  Time  System. As a  con- 
sequence,  the  Programming System is able  to  check  whether  the 
coding  conventions  have  been  observed  and to automatically  con- 
figure  the  application  subroutine  interface  for  the most part.  Only 
port  types  different  from synch, condition values and  formal  param- 
eter  default values different  from  zero must be configured explicitly. 

Application subroutines  are  the  only  functional  objects in the 
system which cannot  be  introduced  at  any time but must be compiled 
and linked before  the  application is downloaded to the  Real Time 
System. 

Dafa Flow  Gmphs 

A  function block composed of one  or  more  other  function blocks 
is called a data flow graph. Such a graph is defined by 

0 a  set of named  function block nodes, 
0 a  set of named  data  nodes which are  either  a  port of the  data 

flow graph or a typed  data cell internal  to  the  graph, 

node  to  a  data  node, 
0 a  function which maps  each  input  port of each  function block 

0 a function which maps  each  output  port of each  function  node 
to a data node, 

0 a  function which maps  each  condition of the  graph  to  one  or 
more  conditions of onc  or  more  function block nodes,  and 
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0 a function which maps  each  formal  parameter of the  graph to 
one  or  more  formal  parameters of one or more  function block 
nodes. 

Znternas of Verbs  and Devim 

A  verb is internally  represented by 

0 a formal  parameter list (including default values, types,  and 

0 one  or  more  function blocks and/or  function block instances, 
0 one  or  more  command lists to install,  execute  (once  or  repeti- 

keywords), 

tive),  deactivate,  and  remove  function block instances, 

parameters to function block instances,  and 

termination  conditions) to define  the  return values. 

0 an  input  parameter  table  to  define  the  distribution of actual 

0 one or  more  output mapping tables  (each associated to a set of 

When a verb is called,  the  device(s)  and/or  state  vector  variable(s) 
passed as actual  parameters  are used to build a new  verb  instance 
which includes instantiation of the  function blocks of the  verb. Ac- 
cording  to  the  input  parameter  mapping  table,  the remaining actual 
parameters  are  then  distributed  to  the  function block instances,  and 
the  verb  instance is passed to  the Real  Time System to  be executed. 
The  termination  code  returned to the  Programming System deter- 
mines which of the  output  mapping  tables is used to compute  the 
actual  verb  return values. 

A device type is internally  represented by a verb. For  example, 
the  device  type joint would be  represented as a verb  to  continuously 
servo a joint  to a desired  position.  Application of a device type re- 
sults in a new device which is internally  represented  by a verb 
instance. In  the  case of a joint, this would bind a joint  servo to spe- 
cific sensors  and  actuators as well as to a specific state  vector vari- 
able  where a new  desired  joint position is picked up repeatedly as 
soon as the device is enabled. 

When a verb is applied to a  device,  the  necessary  communication 
is actually performed  through  one  or  more  state  vector  variables, 
each  either  written  by  the  verb  instance  and  read  by  the device or 
vice versa. Before a verb may be applied to a device,  the  device must 
be enabled which results in the  execution of the  verb  instance re- 
presenting  the device. When a device i s  no  longer  needed, it may 
be disabled, resulting in terminating  the  corresponding  verb  instance. 

Example 

The  concept of verb  implementation is illustrated by the example 
of a guarded move applied to a single joint j l .  Figure 6 shows all the 
function block instances which are involved. 

The  device j l  is represented by a verb  instance which consists 
of the  function block instances pdZnit and jl-servo and  the  com- 
mand list 

install(pd1nit); 
install(j1-servo); 
exec-once(pd1nit); 
activate(j1-servo); 
remove(pd1nit); 
wait; 

which is executed  in  the  Real  Time  System  when  the  joint is enabled 
by the  statement ENABLECI). The function block instance 
jl-servo stays  activated, i.e. is invoked  each 5 ms, until the  joint is 
disabled again. 

The  verb  instance  corresponding  to GMOVE(j1,. . J; consists of 
the  function block instances plan,  genSetPoint, and monitor and  the 
command list 

install(p1an); 
install(genSetPt); 
install(monitor); 
exec-once(p1an); 
activate(monitor); 
activate(genSetPt); 
remove(p1an); 
wait; 

which is executed  when  the  verb  instance is passed to  the  Real  Time 
System. The function block instances monitor and genSetPoint stay 
activated, i s .  are  invoked  each 20 ms, until the  goal position is 
reached  or a force is encountered,  and  the  verb  instance is termi- 
nated. 

Real Time  Execution Model 

Supervisor 

The  system  code called the supervisor resides  on  the  supervisory 
processor of the  Real  Time System. The  supervisor receives the  verb 
instances to  be  executed  from  the  Programming  System  and  controls 
the  behavior of the  Real  Time System by  interpretation of the  cor- 
responding  command lists. Whenever a verb  instance  terminates, 
the  supervisor  returns a termination message to  the  Programming 
System. 

In  order  to minimize overhead, a function block instance is 
passed to  the  Real  Time System as a set of action sequences. An 
action  sequence is a list of subroutines to  be called strictly  sequen- 
tially on  the  same  processor.  An  action  sequence is typically bound 
to  an  interrupt, so that it may be triggered by simply issuing that in- 
terrupt. 

In  the simplest case  (e.g., a sequence of application  subroutines 
passing only information  from  one  to  the  other  through  ports with 
the  mode synch), an action  sequence  contains calls to application 
subroutines only. Cases where a function block instance is distrib- 
uted  over  several  processors  or uses port  modes  other  than synch are 
more complex. In  these  cases,  an  action  sequence  contains  addi- 
tional  function calls to trigger other  action  sequences  and  to  provide 
mutually exclusive access to  state vector  variables. 

The  action  sequences  representing a data flow graph  are  pre- 
pared as soon as it is defined.  First,  the  data  flow  graph is reduced 
to  the  corresponding control flow graph. This may raise  an  excep- 
tion,  because  there  does  not exist a control  flow  graph  for  any  arbi- 
trary  data flow graph.  The  control  flow  graph  includes  two 
solutions.  The  first  produces  a  sequence  to  execute  the  data  flow 
graph on a single processor,  the  second  shows  the highest degree of 
parallelism permitted  by  data flow constraints.  Fortunately, most 
of the  relevant  applications  map to  one of these  two  solutions,  and 
in other  cases  satisfactory  results may be  obtained  by manually as- 
signing each  application  subroutine  instance to a processor.  The 
problem of automatic  load  distribution  onto multiple processors with 
minimal overhead  for  dispatching  and  synchronization has not yet 
been  investigated. 

Dispatcher 

The  dispatcher is distributed  over all processors of the  Real  Time 
System. It actually executes  the  action  sequences  and  provides  the 
operations  to trigger other  action  sequences  and  to  perform  the 
synchronization  necessary to mutually exclude  concurrent accesses 
to  state  vector  variables. 
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Conclusions 

This  paper has described  the design philosophy, structure  and 
some key concepts of a general purpose  controller  for  programmable 
automation. 

At this time the system is partially implemented. When  the sys- 
tem is complete, it will be used for  the investigation of automation 
applications,  the  development of new  motion  control  techniques, 
and  the  incorporation of new sensors  into new verbs. 

As well as supporting new research in robotics,  the system pro- 
vides a convenient way to describe  distributed real time computa- 
tions. Some  interesting  questions  are raised about  the  translation of 
verb  graphs  and  data flow graphs  into  efficient  computations. 

We contend  that  verb  concept is a useful model  for  describing 
actions,  and  that  the  methods  described  for building and composing 
them make them a modular tool as well. By the  creation of verb li- 
braries, we hope to provide some of the wide variety of behaviors 
that  are  captured in the  verbs of natural language. 
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