
A Configurable System for Automation Programming and Control

James U. Korein
Georg E. Maier'
Russell H. Taylor

Lawrence F. Durfee

Manufacturing Research Department
IBM T. J. Watson Research Center

Yorktown Heights, New York, 10598 USA

Abstract: This paper discusses an environment for configuration,
programming, and control of robot workcells. The controller is in-
tended to support research in automation programming and motion
control, and to provide a vehicle for conveniently integrating new
sensors and other devices into a workcell in a useful way. The sys-
tem consists of an interactive Programming System connected
through a shared memory to a multiple-processor Real Time System
that performs time-critical operations. The Programming System
executes programs written in an enhanced version of AML and
transmits high level commands, called verbs, to the Real Time System
for execution. Verbs may either be simple, consisting essentially of
a process specification and termination conditions, or they may be
compositions of other verbs. The processes themselves are specified
in terms of lower level entities called real time application subrou-
tines, state vector variables, and data flow graphs which describe
computations to be performed in the Real Time System.

Introduction

Rapid progress in robotics and programmable automation is
limited by the lack of flexibility and configurability of currently
available systems, and the difficulty with which these systems are
extended. These problems, among others, have also been detri-
mental to the integration of programmable automation on the fac-
tory floor. One critical problem is to be able to take advantage of
the wide variety of new sensor and actuator technologies in the field,
and to use them in meaningful ways without redesigning the system.
A second is the large amount of labor involved in coordinating a
variety of special purpose controllers.

It is the contention of the authors that a general purpose auto-
mation controller with an open system philosophy could improve the
situation in several ways. The first is by allowing users make new
devices known to the system and to build new real time commands
incorporating these devices. Second, a general purpose controller
could he used to provide a common interface to a variety of different
robots and other devices, so that these devices may be programmed
in a homogeneous manner.

A general purpose automation controller must be readily con-
figured to control a wide variety of equipment, including robots,
XY-tables, tools, process equipment, inspection apparatus, convey-
ors, etc. It must provide sufficient computational power to support
the functional requirements of the equipment being interfaced to it.
The programming interface must be powerful enough to describe
complex behavior, while still allowing simple tasks to be pro-
grammed simply. This interface should support a spectrum of users

from line attendants and maintenance personnel to robotics re-
searchers.

Robotics research control architectures have taken a number of
different approaches to meeting the requirements of configurability,
computational power, and programming. Early systems [e.g., 1, 2,
3, 4, 5, 6, 71 typically relied on a mainframe or large minicomputer,
or in some cases to a mini tied to a mainframe, to provide both pro-
gramming and control functions. More recent systems .[e.g., 8, 9,
11, 121 have tended to employ larger numbers of processors, inter-
connected in various ways, and there has been considerable atten-
tion recently to the use of specialized computational hardware [e.g.,
13, 101 for manipulator control. A number of systems [e.g., 14, 15,
161 have recently paid more explicit attention to the problems of
workstation integration. For example, Barberra et al. at NBS [14]
define a multiple level control hierarchy and relies on a number of
communication interfaces to tie together computers controlling var-
ious equipment within the manufacturing cell.

The system described here has been designed with a focus on
dynamic configurability, layered user interfaces and incorporation
of sensor-based real time operations into new commands. It is these
features which distinguish it from earlier work. The system is cur-
rently being implemented at IBM for research purposes and internal
use, an outgrowth of programmable automation research which has
been ongoing since 1972 [e.g., 17, 18, 19,20,21,22,23, 24, 25, 26,
271 .

System Hardware

The overall structure of the hardware is illustrated in Figure 1.
The system consists of a Programming System, which provides an
environment for the development and execution of programs, and
one or more Real Time Systems, which perform time-critical tasks
such as motion control and sensor monitoring. The Programming
System is connected to the Real Time System by a Real Time Bridge
containing a shared memory and synchronization hardware.

The rationale for separating the Programming System from from
the Real Time System is that their needs are quite different. The
programming system must support a conventional operating system,
a wide variety of development tools, disk and communications net-
work. The Real Time System must provide fast computation, 1 / 0
for sensors, and actuators and guaranteed latencies for real time
computations. Systems which are best suited to one of these pur-
poses are usually not ideal for the other. Moreover, the forces driv-
ing their evolution can be expected to widen the gap. The division
allows independent evolution on both sides.

Visiting Scicntist from the Department of Automatic Control and Industrial Electronics, Swiss Federal Institute of Technology ETH, CH-8092 Zurich. Swilxrland

1871
CH2282-2/86/0000/1871~01.00 0 1986 IEEE

Programming System

The Programming System consists of a computer workstation of
conventional design with the usual array of input/output peripher-
als, including a hard disk, local area network (LAN) interface, dis-
play, keyboard. etc. The primary requirements for this component
are reasonably high computation rates, floating point capabilities,
large (several megabyte) physical and virtual memory address space,
acceptable interrupt response latency, and a wide menu of available
hardware and support software for program development and fac-
tory communications.

We have made a serious effort to minimize dependencies on the
Programming System hardware, configuration, or host operating
system. The only “custom” hardware element is the interface card
attaching the Bridge to the Programming System bus. All Program-
ming System software is written in AML or in a standard high level
language (C), and all input/output relies on standard C subroutine
calls. The principal operating system requirements beyond standard
l /O are the ability to map the shared memory of the Real Time
Bridge into specific addresses in user programs and the ability to
awaken user processes in response to interrupts from the Real Time

.System through the Bridge.

Real Time Bridge

The Real Time Bridge contains shared memory addressable from
both the Programming System and the Real Time System, together
with a large number (1024) of indivisible test-and-set registers to
provide mutual exclusion between processors. It provides the capa-
bility for processors on either system bus to interrupt those on the
other. Finally, it contains specialized hardware supporting system
diagnostics.

The Bridge effectively decouples performance on the two system
buses, thus preventing bursts of 1/0 activity for factory communi-
cations, disk file transfcr, or display updating on the Programming
System bus to degrade access times on the Real Time System bus.
At the same time, the shared memory permits high bandwidth, ran-
dom access communication between subsystems, permitting system
softwarc to share global data structures. The Bridge architecture
also provides a natural dividing line for future implementation up-
grades, since changes in the bus architecture for one subsystem do
not necessarily require changes in the other.

Real Time System

The Real Time System consists of multiple single board com-
puters on a shared bus. Each card includes a processor, local mem-
ory (both private and shared) and standard interfaces for daughter
cards to do t/O functions (Figure 2).

One of these computers is dcsignated the Supervisory Processor.
The Supervisory Processor executes commands constructed in the
sharcd memory of the Real Time Bridge by the Programming Sys-
tem. It communicates with the other real time processors through
their “local” shared memories and through “global” shared memory
in thc Bridge.

The workload of the system is distributed over all processors.
Code is stored in the local memories of the processors to avoid bus
traffic. Except for a small module in ROM, the code is downloaded
into local RAM when the system is configured. Most processors
pcrform special purpose functions such as axis servo control and
sensor interface functions.

All processors are capable of being masters on the Real Time
System bus. Processor communication is accomplished using shared
memory and special prioritized interrupts for interprocessor com-
munication.

Real time processing cards may be customized by the attachment
of any of a number of daughter cards through an industry standard
local bus [31]. Daughter cards are available to provide various types
of 1 / 0 including A/D and D/A conversion, digital and serial I/O.

As with the Programming System, we have spent considerable
effort to minimize hardware dependencies. Aside from a small
kernel whose primary function is interrupt dispatching, all software
is being written in high level languages. Beyond this, custom inter-
faces to robot hardware are confined to daughter cards. This iso-
lates dependencies on specific robots, as well as keeping 1 / 0 traffic
between a processor card and its daughters off the global real time
bus.

Typical Con figurations

A principal design objective of the system is that it should be
configurable to support a wide variety of automation equipment.
This is achieved by providing modular interfaces at the joint and
sensor control level to permit many different 1 /0 interfaces and
protocols, by providing standard configuration tables and utilities,
and by supporting standard communications interfaces in the pro-
gramming system.

Typical configurations may be designed for applications involv-
ing pick and place, electronic test, visual inspection and assembly.

The workstation may include one or more robot robot arms, XY
positioning tables, a vision system, analog test equipment, and a va-
riety of devices controlled through serial and parallel ports. An
abundance of digital inputs and outputs may be used to handle sim-
ple sensors and devices.

Layered User Interface

The community of system users is expected to span a wide range.
At one end of the spectrum is the manufacturing engineer who wants
a simple menu-driven or teach-pendant interface to assist him in
setting up a manufacturing workstation in an expedient manner,
without writing complex computer programs. Next, there are robot
programmers developing applications programs to control the robot
directly. Then, there are programmers writing programs which pro-
vide manufacturing engineers with the menu-driven and teach pen-
dant application interfaces they require. Finally, there are robotics
researchers experimenting with new control and trajectory planning
strategies to extend the capabilities of robotic systems.

In order to accommodate these different levels of use, several
layers of user interface are provided.

1. The outermost level encompasses menu-driven and pendant
driven application interfaces which are useful for manufactur-
ing engineers and factory personnel.

2. The next level is programming in AML [19, 20, 28, 291 . The
Programming System provides an interpreter for an enhanced
version of the AML programming language which supports ex-
ception handling and powerful mechanisms for data ab-
straction. AML callable subroutines may also be defined in
lower level languages like C [30] and FORTRAN. A library of
predefined commands for the Real Time System is provided to
do motion control and condition monitoring. These commands
are called verbs.

1872

The next layer is the verb composition level at which new verbs
may be constructed, using a set of primitive AML callable
subroutines provided by the system. At this level, the building
blocks for constructing new verbs are other verbs which have
previously been defined. A detailed knowledge of the system
is not required. New verbs take on the appearance of old ones.

Still deeper is the primitive verb definition level, which allows
users to develop verbs which are fundamentally new. This is
necessary to incorporate new types of devices into the Real
Time System, and to experiment with new types of motion
control. At this level, verbs are defined in terms of specifications
of real time computations. Programming the system at this layer
allows the introduction of radically new types of hardware and
software into the system, but requires knowledge and caution
on the part of the user.

All levels are built on top of a core of system subroutines.

The intent of this layered architecture is to provide a vehicle for
experimentation with new technologies in programmable auto-
mation, and to provide a path by which the fruits of this research can
flow quickly and painlessly into productive manufacturing systems.

Verbs

Verbs are commands from the Programming System to the Real
Time System. They may be applied to devices, e.g. to monitor sens-
ing devices or to move robots as well as other devices.

The conceptual representation of a verb is depicted in
Figure 3. The verb consists of a process, which is the action which
transpires during the execution of the verb, and a set of termination
conditions (Tl , ..., Tn), any of which may cause the verb to termi-
nate. This concept is a natural generalization of the guarded move
concept [17] .

In a typical guarded move, for example the process would be the
motion of a robot arm, and termination conditions might include
reaching a desired position within some tolerance and encountering
a large force.

In addition, the verb, like a subroutine, has a set of formal pa-
rameters. In the guarded move example, some parameters would be
the device to move, the position goal, and a threshold level on the
force.

A verb is a generic command which may be applied to devices
of different structures. For example, the verb MOVE may be used
to move one or several joints of a robot:

MOVE(j2,goal);
MOVE(<jl,j3>,<goall,goal3>);

Application of a verb to a device (or a set of devices) is called a verb
instance. A verb is re-entrant in the sense that several instances of
the same verb may be executed concurrently (but independent of
each other).

Depending on the termination condition which actually occurs,
different sets of values may be returned by the verb (r l , ..., rn). If a
guarded move reaches its destination, indicating this with an appro-
priate return code may be sufficient. If, however, the motion is ter-
minated due to a force, it may be desirable to return several values
including the measured force vector, the position at which it was
encountered, and the position at which the arm stopped.

Verb Composition

Verbs are modular building blocks which can be composed to
build new verbs. These new verbs, which are called compound verbs
have the same external structure as do simple verbs and can be used
in exactly the same ways. Compound verbs may be constructed as
verb graphs whose nodes are themselves verbs.

An example is given in Figure 4. One node is designated as the
starting node. For each termination condition of each node, there is
exactly one arc which points either to another node in the graph, or
to a termination condition for the entire compound verb, in which
case it is called a terminating arc.

The starting node is executed first. When a node terminates,
subsequent action is determined by the arc leaving the termination
condition which occurred. If this arc goes to another node, that node
is to be executed next in sequence. However, if the arc is a termi-
nating arc, the entire compound verb terminates with the specified
termination condition.

When the compound verb is defined, a mapping between the
parameters of the compound verb and those of each of the constit-
uent verbs is established. The number of parameters for all constit-
uent verbs may be large. A default mechanism is prdvided so that
all these parameters need not be specified for the compound verb.

Just as for a simple verb, a set of returned values must be defined
for each termination condition of the compound verb. Each termi-
nating arc must map the returned values from its source onto those
of its destination. That is, returned values of a verb node are
mapped onto those for the compound verb.

An example of a useful operation which is conveniently imple-
mented as a compound verb is shown in Figure 5. This verb, called
centering grasp is used to grasp an object without wasted motion.
The verb is invoked when an object to be grasped is known to be
between the fingers of the gripper of a robot arm. The verb has four
nodes, each of which is a guarded move (GMOVE). The first closes
the gripper until either or both fingers hit the object, or until the
gripper closes to a specified width. This last condition is used to
check for the contingency that the object is not between the fingers,
in which case the compound verb reports the erroneous condition
"Too Small". If both fingers happen to hit the object at the same
time, a final GMOVE is used to tighten the grip on the object. For
the sake of simplicity in this example, the tightening operation is as-
sumed always to work correctly. When the fingers are being closed,
if the left finger hits the object before the right, another guarded
move is invoked to compensate for the skew by moving the gripper
left while. it is closing. If the second finger then hits, control passes
to the tightening verb. However, if the first finger which hit looses
contact, control passes back to the original finger closing verb. As
before, if the fingers get too close together for the desired object to
be between them, the verb terminates with the "Too Small" condi-
tion. The fourth node in the graph handles the case where right
finger hits first?

Composition of verbs provides a convenient abstraction for the
definition of complex motion commands from simple ones in a
modular way.

Predefining compound verbs allows large tasks to be performed
by the Real Time System with a minimum of traffic between the
Programming System and Real Time System.

A similar method was developed by R. Paul in the early 1970's and appeared in both the WAVE and AL systems. Interestingly, this CENTER command was first
iniplcnicnlcd as a macro-operation in WAVE, but constant use led it lo he reimplcmented as a primitive [33].

1873

Verb graphs are not implemented as conventional programs but
as data structures. This allows them to be easily manipulated in or-
der to remove the overhead introduced by nesting, and permits them
to be configured dynamically, without the overhead of a language
interpreter. A graphical interface is planned to allow convenient
construction of compound verbs.

Specification of Real Time Computations

Function Blocks and Sfate Vector Variables

A function block specifies a generic piece of computation with a
well defined interface which consists of input and output ports,
conditions used to report verb termination, and formal parameters
with default values.

A state vector variable is a global data buffer in the shared mem-
ory of the Real Time System which may be used to communicate
between different function block instances. State vector variables
have a type and may hold a number of previous values.

An instance of a function block may be obtained by binding its
input and output ports to state vector variables. Several instances
of a function block, which are bound to different state vector vari-
ables, may exist at the same time. A function block instance may
be scheduled to be executed once, which results in a single
invocation, or it may be activated for repetitive execution, which re-
sults in multiple invocations.

Actual parameter valucs are passed to a function block instance
before it is scheduled. Parameters are then local to the instance and
cannot be accessed from outside.

The input and output ports allow an instance of a function block
to access state vector variables. The value associated with a port is
local to the instance during one invocation: It is guaranteed that an
input does not change and an output is not accessible from outside
while the function executes. The ports have a type and can only be
bound to state vector variables of matching types.

Computations in the Real Time System may be performed at
different frequencies. For example,'some low level control compu-
tations need to be executed very often, whereas the generation of
set points may be done less often. Therefore, a function block port
has a mode which 'defines whether this port will be accessed during
each invocation or not:

0 synch(defau1t): The port is accessed during each invocation

0 fixed-ratio: The port is accessed during each k'" invocation,

0 var-ratio: The port is accessed during each nrh invocation,

0 asynch: The port may be updated asynchronously to the inv-

(updated input value assumed, new output value produced).

where k is a constant.

where n is a variable.

ocations of the function block.

An execufion interval may be associated with a function block in-
stance, if it must always be executed at a certain frequency.

A port with the mode synch may have the type trigger. Such a
port cannot be read or written but only affects the flow of control.
A trigger port is not bound to a state vector variable but to a trigger
source. An input trigger port may either be bound to an interrupt
(c.g., from the real time clock) or to an output trigger port of another
function block instance.

The following commands may be used in command lisrs to
schedulc function block instances:

0 install: A function block instance must be installed in the Real
Time System before it may be executed. All state vector vari-
ables bound to output ports and all physical devices used are
reserved in order to detect any resource conflict.

0 remove: After execution, a function block instance may be re-
moved to allow another function to write the same state vector
variables and to use the same physical devices.

invocation).

cution as specified by its execution interval.

0 exec-once: Execute a function block instance once (single

0 activate: Schedule a function block instance for repetitive exe-

0 deactivate: Do not invoke a currently active function block in-

0 wait: Wait until one of the active function block instances re-
stance anymore.

ports a condition (illegal, if no instance is active).

Execution of such a command list terminates as soon as one of the
involved function block instances reports a condition different from
success. In case of a simple verb, which is defined by one command
list, the reported condition terminates the verb instance and is re-
turned to the Programming System as a verb termination code. In
case of a compound verb, which is defined by one command list for
each of the nodes of the verb graph, the reported condition deter-
mines which node is executed next or whether the verb terminates.
At the time a verb instance terminates, any of its function block in-
stances which are still active or installed are automatically deacti-
vated and removed.

Application subroutines

Basic function blocks, coded as C functions, are called applica-
tion subroutines. A set of coding conventions must be used to meet
the function block interface requirements. A few support functions
allow an application subroutine to report a condition, to access the
current time, to get the execution interval, and to determine whether
the current invocation is the first one.

When an application subroutine is compiled, in addition to the
object file a so called symbol file is created which includes function
names, type definitions, variable names, field names etc. These
symbol files are automatically read and processed at the time an
object module is downloaded to the Real Time System. As a con-
sequence, the Programming System is able to check whether the
coding conventions have been observed and to automatically con-
figure the application subroutine interface for the most part. Only
port types different from synch, condition values and formal param-
eter default values different from zero must be configured explicitly.

Application subroutines are the only functional objects in the
system which cannot be introduced at any time but must be compiled
and linked before the application is downloaded to the Real Time
System.

Dafa Flow Gmphs

A function block composed of one or more other function blocks
is called a data flow graph. Such a graph is defined by

0 a set of named function block nodes,
0 a set of named data nodes which are either a port of the data

flow graph or a typed data cell internal to the graph,

node to a data node,
0 a function which maps each input port of each function block

0 a function which maps each output port of each function node
to a data node,

0 a function which maps each condition of the graph to one or
more conditions of onc or more function block nodes, and

1874

0 a function which maps each formal parameter of the graph to
one or more formal parameters of one or more function block
nodes.

Znternas of Verbs and Devim

A verb is internally represented by

0 a formal parameter list (including default values, types, and

0 one or more function blocks and/or function block instances,
0 one or more command lists to install, execute (once or repeti-

keywords),

tive), deactivate, and remove function block instances,

parameters to function block instances, and

termination conditions) to define the return values.

0 an input parameter table to define the distribution of actual

0 one or more output mapping tables (each associated to a set of

When a verb is called, the device(s) and/or state vector variable(s)
passed as actual parameters are used to build a new verb instance
which includes instantiation of the function blocks of the verb. Ac-
cording to the input parameter mapping table, the remaining actual
parameters are then distributed to the function block instances, and
the verb instance is passed to the Real Time System to be executed.
The termination code returned to the Programming System deter-
mines which of the output mapping tables is used to compute the
actual verb return values.

A device type is internally represented by a verb. For example,
the device type joint would be represented as a verb to continuously
servo a joint to a desired position. Application of a device type re-
sults in a new device which is internally represented by a verb
instance. In the case of a joint, this would bind a joint servo to spe-
cific sensors and actuators as well as to a specific state vector vari-
able where a new desired joint position is picked up repeatedly as
soon as the device is enabled.

When a verb is applied to a device, the necessary communication
is actually performed through one or more state vector variables,
each either written by the verb instance and read by the device or
vice versa. Before a verb may be applied to a device, the device must
be enabled which results in the execution of the verb instance re-
presenting the device. When a device i s no longer needed, it may
be disabled, resulting in terminating the corresponding verb instance.

Example

The concept of verb implementation is illustrated by the example
of a guarded move applied to a single joint j l . Figure 6 shows all the
function block instances which are involved.

The device j l is represented by a verb instance which consists
of the function block instances pdZnit and jl-servo and the com-
mand list

install(pd1nit);
install(j1-servo);
exec-once(pd1nit);
activate(j1-servo);
remove(pd1nit);
wait;

which is executed in the Real Time System when the joint is enabled
by the statement ENABLECI). The function block instance
jl-servo stays activated, i.e. is invoked each 5 ms, until the joint is
disabled again.

The verb instance corresponding to GMOVE(j1,. . J; consists of
the function block instances plan, genSetPoint, and monitor and the
command list

install(p1an);
install(genSetPt);
install(monitor);
exec-once(p1an);
activate(monitor);
activate(genSetPt);
remove(p1an);
wait;

which is executed when the verb instance is passed to the Real Time
System. The function block instances monitor and genSetPoint stay
activated, i s . are invoked each 20 ms, until the goal position is
reached or a force is encountered, and the verb instance is termi-
nated.

Real Time Execution Model

Supervisor

The system code called the supervisor resides on the supervisory
processor of the Real Time System. The supervisor receives the verb
instances to be executed from the Programming System and controls
the behavior of the Real Time System by interpretation of the cor-
responding command lists. Whenever a verb instance terminates,
the supervisor returns a termination message to the Programming
System.

In order to minimize overhead, a function block instance is
passed to the Real Time System as a set of action sequences. An
action sequence is a list of subroutines to be called strictly sequen-
tially on the same processor. An action sequence is typically bound
to an interrupt, so that it may be triggered by simply issuing that in-
terrupt.

In the simplest case (e.g., a sequence of application subroutines
passing only information from one to the other through ports with
the mode synch), an action sequence contains calls to application
subroutines only. Cases where a function block instance is distrib-
uted over several processors or uses port modes other than synch are
more complex. In these cases, an action sequence contains addi-
tional function calls to trigger other action sequences and to provide
mutually exclusive access to state vector variables.

The action sequences representing a data flow graph are pre-
pared as soon as it is defined. First, the data flow graph is reduced
to the corresponding control flow graph. This may raise an excep-
tion, because there does not exist a control flow graph for any arbi-
trary data flow graph. The control flow graph includes two
solutions. The first produces a sequence to execute the data flow
graph on a single processor, the second shows the highest degree of
parallelism permitted by data flow constraints. Fortunately, most
of the relevant applications map to one of these two solutions, and
in other cases satisfactory results may be obtained by manually as-
signing each application subroutine instance to a processor. The
problem of automatic load distribution onto multiple processors with
minimal overhead for dispatching and synchronization has not yet
been investigated.

Dispatcher

The dispatcher is distributed over all processors of the Real Time
System. It actually executes the action sequences and provides the
operations to trigger other action sequences and to perform the
synchronization necessary to mutually exclude concurrent accesses
to state vector variables.

1875

Conclusions

This paper has described the design philosophy, structure and
some key concepts of a general purpose controller for programmable
automation.

At this time the system is partially implemented. When the sys-
tem is complete, it will be used for the investigation of automation
applications, the development of new motion control techniques,
and the incorporation of new sensors into new verbs.

As well as supporting new research in robotics, the system pro-
vides a convenient way to describe distributed real time computa-
tions. Some interesting questions are raised about the translation of
verb graphs and data flow graphs into efficient computations.

We contend that verb concept is a useful model for describing
actions, and that the methods described for building and composing
them make them a modular tool as well. By the creation of verb li-
braries, we hope to provide some of the wide variety of behaviors
that are captured in the verbs of natural language.

Acknowledgements

We would like to thank our colleagues for their technical con-
tributions to the work discussed in this paper. Lee Nackman, Mark
Lavin, Jim Colson, Dave Klein, Ken Morgan and Barry Russell have
contributed to the programming system. Martin Sturzenbecker,
Kevin Short, Bob French and Gary Franklin have contributed to the
design and development of the Real Time System. Robert Eng and
Jim Brewcr have donc substantial work in hardware design and im-
plementation. Many others at IBM Research in Yorktown Heights,
at the Manufacturing Systems Products group in Boca Raton and at
The Entry Systems Division Process Development Lab in Austin
haw made contributions.

References
H. A. Ernst, MH-I. A Computer-Operated Mechanical Hand, Sc.D. Thesis,
h4l.T. Dcccmhcr 1961.

Rlcllard Paul. M ~ & l l m ~ , TraJectory Calculation. and Servoing of a Computer
Coutrollwl Arm, Ph.D. Dlrscrtalion. Report STAN-CS-72-31 1 . Stanford
Uniwrsily. Novcmhcr 1972.

Carl Ruoll, “PACS: An advanced multitasking robot system”, The Indus-
lriol Robtit, Junc 1980. pp X7-98.

D. Silvcr.The Litrle Robot Syuem. MIT Artilicial lntclligence Laboratory
M c ~ n o 273. January 1973.

R. Finkcl. R. Taylor, R. Bollcs and J. Fcldman, “AL, A Programming
Language lor Automation”. Stanlord Artificial Intclligence Laboratory
Mcmo AIM-243. Stanlord University, 1974.

S. Llujtaba and R. Goldman. “AL user’s manoal.” Memo AIM-323, Arli-
licid Intclligcncc Lahointory, Stanlord Univ., Stanford. CA, 1979.

Clil l o r d (;cschkc. A S~~WCIII for Pro,yrumi~?m~y and con troll in^ Sensor-Based
Robot Ma,upuIattirs. PI]. D. Dirscrtation, University of Illinoib, December
1078.

turc lor Reliable Control of Roholic Syrtems”. Proceeding3 of the 19H5
I;. Ozguncr and M. L Kao, ”A Rcconfigurahlc Multiprocessor Architcc-

/ E E L /ntermI~o,~ul Conference 011 R O ~ I I C P arid Automzution, pp. 802-806.
M;trch 19x5.

R. N i g m and C. G. S. Lcc, “A Muitiproccssor-Based Controller for the
Cuntrol o f Mccllnnicai Maniptilators”, Proceediqgs of tlle 1985 IEEE
lnwrwtioml Cmferenie on Robot~cs atld Automation, St. Louis, pp.
X 1 5 x 2 I, March I985

S. Ahnwl :~nd C B Hcsont. “Motion Control o l Industrial Robols with
Clmcd. Loop Trajcclorich.” Proceedinzy,, of tlre I984 IEEE Internatmwl
Co+,e,xe on Robotics. pp. 305-309. March 1985.

1. Lee and S. Goldwasser, “A Distributed Testbed for Active Scnsory
Processing”, Proceedings of the 1985 IEEE Internationol Conference on
Robotics and Autoniatron, St. Louis, pp. 925-930, March 1985.

D. Siegel, D. Kreigman, S. Narasimhan, G. Gerpheide, J. Hollerbach,
“Computational Architecture for the Utah/MIT Hand”, Proceedings of the

pp. 919-924, March 1985.
1985 IEEE International Conference on Robotics and Automatron, St. Louis,

Proceedings of Special IEEE Workshop on Computational Architectures for
Robot~s, St. Louis, March 24, 1985.

A. Barberra. M. Fitzgerald, J. Albus and L. Hayncs. ”RCS, The NBS
Real-Time Control System”, Proceedings of Robots 8 Conference, Detroit,
pp. 19-1 to 19-34, Junc 1984.

K. Shin and M. Epstein, “Communication Primitives for a Distributed
Multi-Robot System”, Proceedings of the 1985 IEEE International Confer-
ence on Robotics andAutomation, St. Louis, pp. 919-924, March 19x5.

R. D. Gaglianello and H. P. Kalseff, “MEGLOS: An Operating Systcm for
a Multiprocessor Environment” Proc. 5’rh IEEE International Conference
on Distributed Computing Systems, Denver, pp. 35-42, May 1985.

P. Will and D. Grossman, “An Experimental System for Computer Con-
trolled Mcchanical Assembly.“ IEEE Trans. Comput., C-24, pp. 879-888,
1975.

R. H. Taylor and D. 0. Grossman, “An Integrated Robot System Archi-
tecture“, IEEE Proceedings, Vol. 71, pp. 842-855. July 1983.

R. Taylor, P. Summers, and J. Mcyer. “AML: A Manufacturing Lan-
guage ” International Journal of Robotics Research, Vol. I, No. 3, pp.
19-41, 1982.

(anon.), I B M Manufacturing System: A Manufacturing Language Reference
Manual No. 8509015, IBM Corporation, 1983.

M. Lavin and I>, Lieberman, “AML/V: An Industrial Machine Vision
Programming System.” Inrernationul Journal of Robotics Research, Vol. I ,
No. 3, 19x2.

R. Taylor, R. Hollis, M. Lavin, “Prccise Manipulation with Endpoint
Sensing”, I B M J. ofResearch and Development, Vol 29, No 4, pp. 363-376,
July 1985.

“Robotic Circuit Board Testing Using Fine Positioncrs with Fiber-Oplic
R. L. Hollis, R. H. Taylor, M. Johnson, A. Lcvas and A. Brennemann,

ceedings of the International Symposium on I n d ~ ~ w i a l Robots. Tokyo, Sep-
Scnsing”, IBM Research Report RC #11164, May 21, 1985; also in Pro-

tember 1985.

Robots 9 Conference Proceedinss, Detroit, Michigan, pp. 6-28 to 6-36. Junc
R. L. Hollis “A Fine Positioning Device for Enhancing Robot Precision",

19x5.

J. Ish-Shalom and D.G. Manzcr. “Commutation and Control of Stcp Mo-
tors”, Proceedings of 14th Annual Symposrum on Incremental Molion Control
Systems and Devices, Champaign, June 1985.

R.H. Taylor, J.U. Korein, G.E. Maicr and L.F. DUI~CC, “A Gencral Pur-
pose Control Architecture for Programmable Automation Research,” Third
Internutmnai Symposium on Robotics Research. MIT Press, 1986.

Gencral Purpose Automation Controller,” Fourth IFAC/ IF lP Symp. on
C.E. Maier, R.H. Taylor and J.U. Korcin, “A Dynamically Configurablc

Sofitware for Computer Control, Graz, Austria, May 19x6.

L. R. Nackman and R. H. Taylor. “A Hierarchical Exception Ha11dlc1
Binding Mcchanism”, SoJiware - Practice and Experrerice. Vol. 14 (IO) , pp.
999-1007, Oct. 19x4.

L. R. Nackman, ct. a]., The Yorktow Expe.imenta1 A M L Reference
Manual, Document in preparation, IBM T. J. Watson Rcscarch Ccntcr.
Yorktown Heights, NY.

B. Kcrnighan and‘D. Rltchic, Thr C Programmming Lanuguage, Prcnlice
Hall, 1978.

INTEL iS‘BXlN Bus Spec$ication, Intel Corporation; Manual 142686-002
MarXl

Vincent Hayward and Richard Paul, “Robot Manipulator Control undcr
UNIX,” from TR-EE 84-10, Purdue University School of Electrical Engi-
neering, pp. 22-34, Jan. 1984.

1876

1331 Robert Bollcr and Richard Paul, The Use o/ Sensory Feedback in a Pro- [34] T. Lozano-Perez, M. T. Mason, R. H. Taylor, “Automatic Synthesis Of

Fine-Motion Strategies for Robots”, Inl. J. of Robotics Research. Val. 3,
No. 1, pp. 3-24, Spring 1984.

, q ru~~~?~uh le Assetnhly Sprern Stanford Univcrsity Computer Science Report
STAN-CS-396, Octobcr 1973.

F&um

Hardware Organization

Centering Grasp

? ?

Processor

t t t
t

Interfaces

t
Programing System Bus

c
I -1 c;o?:flZeri 11

Hit Hit Hit Move
Left Both Right Done

1
1

Programming
System

Real-Time
System

Interface (RT

Real-Time Bus t
+

t t t
c j

Too Small
Figure 1.

Real Time System Processor Card Figure 5.

+ Local Bus

t t

Figure 2

Function Block Instances Involved in
a Guarded Move Applied to a Joint jl

(once)

jectory
I tip I monitor

force

Legend:
Data Flow Grapt

generate

polynom points

(once) . 0 sense
Compound Verb

Applic. Subr.

0 j I-pm
State Vector
Variable

Data Flow
4

................ e....
j;-;=;vo 1 Verb Concept

M
formal parms

PROCESS

TCl TC2 TC3
(r l) (r 2) (r3)

..
Figure 6.

Figure 3.

Figure 4.

