
AML/X: A Programming Language for Design and Manufacturing

Lee R. Nackman
Mark A. Lavin

Russell H. Taylor
Walter C. Dietrich, Jr.

David D. Grossman

Manufacturing Research Department
IBM Thomas J. Watson Research Center

Yorktown Heights, New York, 10598

Abstract

AML/X is a modern general purpose high level program-
ming language, aimed at applications in manufacturing and
computer aided design. It includes features for both conven-
tional and cPbject-oriented programming. The AML/X inter-
preter is implemented in C and has been ported to IBM 370,
Motorola 68000, and IBM PC hardware, running under CMS,
UNIX, XENIX, and DOS. This paper describes the rationale
for AML/X and gives an overview of the language itself.

1 .O Introduction

Architects of industrial automation systems make a trade-off
between two goals: ease of use and flexibility. A decade ago,
when computers were far more expensive, these goals were seen
as competing alternatives.

Historically, many industrial automation systems limited
their flexibility to the minimum requirements of some (hope-
fully) large class of users, but no more. Those users then speci-
fied applications with a minimal language, which was simple and
easy to learn. An example of this approach in robot program-
ming was teaching by showing, in which the user manually
moves a robot through a sequence of motions, recording them
for later replay[l]. The disadvantage is the lack of a growth
path: once the user’s needs exceed the flexibility provided, the
system becomes ineffective.

Clearly, there is significant benefit in providing systems with
much greater flexibility. Generally, this flexibility is achieved by
deferring certain choices until as late as possible. For example,
a robot achieves more flexibiity than fixed automation by de-
ferring the choice of motions from the time the equipment is
designed until it is actually used.

Flexibility gained by deferring choices implies the need for
a much richer language in which to specify the choices to be
made. The challenge for the system architect is to layer this
language so that ease of use is not sacrificed. As computers de-
cline in cost, this approach of layering is becoming an increas-
ingly practical means of combining flexibility with ease of use.

One begins at the bottom layer with as much flexibility as
one can afford (more on this later) and a language for specifying
the remaining choices. The language must be expressive enough
to allow the most sophisticated users to take advantage of the
flexibility included. Perhaps less obvious, but equally important,

the language must provide mechanisms for composing higher
layers, each essentially a new language, with less flexibility and
fewer remaining choices than the preceding layer. The highest
layers, those with the least flexibility, provide ease of use for
unsophisticated users along with potential growth to lower, more
flexible layers.

:This is the context in which we have designed AML/X, a
general purpose programming language tailored for use in man-
ufacturing and computer aided design. Its roots are in AML[2],
a programming language originally developed for use in a re-
search robot system[3] and subsequently made available as the
programming language of the IBM 7565 Manufacturing System.
AML also saw use as the base language for AML/V, an indus-
trial machine vision programming system built as an extension
to the research robot system[4]. AML/X is the result of a major
redesign of AML and is part of the programming environment
for our research activities in robotics[5], machine vision, and
computer aided design. As such, it is likely to continue to
evolve. It is also the basis for AML/Z, the programming lan-
guage for IBM’s new 7575 and 7576 Manufacturing Systems.

This paper describes the rationale for the design and imple-
mentation of AML/X, provides a brief overview of the lan-
guage, and illustrates its use. For brevity and clarity this paper
emphasizes the use of AML/X in robotics; however, AML/X
is actively used in our research in machine vision, workcell lay-
out, and computer aided design. The next section outlines our
objectives and their influence on the design of AML/X. This
is followed by an overview of the .basic structure and facilities
of AML/X, just enough to provide the flavor of the language
and to be able to follow subsequent examples. (A detailed de-
scription of AML/X is available in [6].)

2.0 De&m Rationale

2.1 Guidhut PrimiDles

Designing a programming language requires balancing the
many conflicting requirements of the anticipated user commu-
nity. To help achieve this balance we have tried to fallow a few
broad, general principles, against which specific design decisions
could be evaluated.

First among these is Hoare’s dictum[7] that the language
designer’s task is one’of “consolidation, not innovation.” In
keeping with that principle, we have not introduced any radically
new constructs in AML/X. Instead, we have chosen from

CH2345-7/86/0000/0145$01.00@ 1986 IEEE
145

among constructs and ideas that have been tested in other lan-
guages and have tried to integrate them into a consistent, co-
herent whole. LISP, APL, and SMALLTALK have had an
especially strong influence.

The second guiding principle is to prefer general purpose
constructs to those meeting specific, limited, application needs.
A corollary is that it must then be easy to provide layers that
adapt general purpose features to meet the specific needs. For
example, AML/X’s interactive debugging tools are a small ex-
tension of a very general exception handling mechanism. These
principles keep the language a coherent whole, rather than an
accumulation of features. In practice, this has been very diffi-
cult. When an important user requests a specific new feature,
it is hard to say no.

The third principle is orthogonality, which demands that
separate features be separate, that is, that the legality and
meaning of the use of a construct should be independent of its
use in combination with some other construct. Orthogonality
aids in achieving generality, but also makes it easier to write
obscure programs. It can also be difficult to achieve in a prac-
tical implementation. For these reasons, we have occasionally
violated orthogonality, but not without careful thought.

These three principles are helpful, but they do not substitute
for an understanding of the anticipated applications of the lan-
guage.

2.2 Iarunuwe De&n Criteria

We have designed AML/X keeping in mind three major
areas of use: robot programming, machine vision programming,
and computer-aided design (primarily of mechanical objects and
assemblies, see e.g. [S]). An analysis of the requirements of ro-
bot programming and a survey of existing robot programming
systems appears in 191. Requirements for machine vision pro-
gramming and an abstract language for vision programming
(which could be embodied in many ways) are described in [lo].
Some issues in programming languages for CAD systems and a
particular language design are discussed in [111.

In all three areas, flexibility has historically been sacrificed,
primarily to achieve ease of use. As a consequence, existing
systems rarely exploit the intrinsic similarities between these
domains. For example, all three, domains deal with mechanical
objects, assemblies, geometric algorithms, and transformations
in 2 and 3 dimensions.

In the future, applications will expand in all three domains,
and there will be increased need in industry to integrate them.
It is therefore desirable to have a single language that can ef-
fectively deal with robotics, vision, and CAD.

In the following subsections we discuss the implications of
the intended uses of AML/X.

Classes of Users: Roughly speaking, we anticipate three classes
of users. End users, such as manufacturing engineers or me-
chanical designers, are the people who specify the operations to
be carried out by the automation or CAD system. They typically
have little programming skill, but need to be able to “chain to-
gether” sequences of pre-existing, relatively high-level com-

mands, possibly including some simple control flow. Application
developers write application packages, programs that provide fa-
cilities for use by a small class of end users. In a sense, an ap-
plication package decreases generality while increasing ease of
use for a particular class of users. Application developers typi-
cally have some programming skill and a deep knowledge of the
application area. Often they produce new application packages
by building a layer on top of an existing, more ‘general program.
Application development environment developers write the (typi-
cally) large systems application developers use. Robot pro-
gramming and CAD systems are examples. They need both very
high programming skill and a reasonably deep knowledge of the
application area. This mix of users and the way they work has
had an important influence on the language design.

Most significantly, the language must be a modem, general
purpose language well-suited to developing large, layered sys-
tems. It must support the definition and use of abstract data
types and have facilities for manipulating strings, complex data
structures, and symbolic information. A general exception
handling mechanism is essential so that an application can
“catch” exceptions from lower layers, thus avoiding the incom-
prehensible error messages to end users that would otherwise
result.

At the same time, the language must be simple, or at least
have simple subsets, so that it is accessible to end users. How-
ever, as Hoare has observed[7], subsetting is simpler said than
done, because an errant program can invoke some language
feature outside of the subset. It is therefore important to be able
to selectively disable or hide portions of the language. More-
over, the use of subsets increases the need for consistency and
lack of special cases to provide an easy growth path for users
who become more sophisticated over time.

Robot Progrannning: Our experience with several generations
of robot system[3, 12, 13] has confirmed that specification of
manipulator motion represents only a small, though very impor-
tant, proportion of the total code required for a working robot
application. Other components include I/O for auxiliary devices
and communications, operator interfaces, calibration and setup
routines, bookkeeping, access to manufacturing data bases, etc.
The failure of special-purpose manipulation languages such as
AL [14] to provide adequate support for these other compo-
nents has led to renewed interest [e.g., 151 in the use of standard
general-purpose languages for robot programming. The ap-
proach in AML, carried over to AML/X, was to design a new
general-purpose language whose design trade-offs make it con-
venient for automation programming.

Robotic applications do have many special characteristics.
Manipulator motion specifications and calibration packages rely
heavily on geometric calculations, and means must be provided
for expressing these conveniently. Most applications require
some level of concurrency. Application programs are usually
debugged (and often written) “on-line” and are hard to restart,
thus making support for interactive programming especially im-
portant.

The structure of programs is often rather different from that
found in other, more “algorithmic” domains. Generally, the
main line of an application program is quite straightforward, and

146

consists of little more than a sequence of commands, with most
of the useful work being done as a “side effect”. Unfortunately,
the vagaries of the physical world [16] cannot be ignored. Our
experience has been that robust programs can easily have three
to five times as much error testing and recovery as main line
code. Often, the error recovery actions are both context de-
pendent and safety related. For example, it may be appropriate
to freeze manipulator motion if a gripper feedback sensor fails
unless the hand happens to be in a furnace at the time. These
considerations have led us to place special emphasis on powerful
exception handling mechanisms.

Machine Vision: Many of the considerations for robot pro-
gramming also apply to machine vision [4, lo]. Indeed, one of
our objectives was to promote better integration of robot and
vision programs. The large amount of data that must be handled
in many vision programs means that it is especially important to
provide data representations and execution primitives with effi-
cient low-level implementations while still providing great ex-
pressive power at higher levels. Beyond this, the language
should permit suitable interfaces to special-purpose computa-
tional hardware.

Computer-aided Design: The requirements for computer-aided
design overlap those for robotics and vision. We require good
support for layering, support for interaction at high levels, effi-
cient low-level code execution, and extensibility. Requirements
that are especially acute in CAD applications include support for
self-describing objects, efficient and accurate numerical com-
putation, and the ability to build up extremely complex data
structures.

Other criteria: Since we were generally pleased with our expe-
rience with .AML, we decided early in our design effort to
maintain its general flavor, but not to require strict upward
compatibility. The result is that most nontrivial AML programs
will not run unaltered on AML/X. One reason for this decision
was to enable us to make several changes for future
compilabilty.

Although we wanted to take advantage of object-oriented
language constructs to provide language extensibility,
“layering”, and support for modular programming, we also
wanted to preserve the procedural style that many of our users
were accustomed to. We also felt that it was essential to provide
good interfaces to other languages to provide “maturity” (e.g.,
mathematical subroutine packages), to allow for efficient low-
level execution (our first implementation is an interpreter), and
to allow us to integrate large and diverse subsystems.

3.0 Laumuwe Description

This section describes the basic entities and operations
available to the AhIL/X programmer. We begin with some de-
finitions:

obj’ects These are the entities that can be directly manipulated
by AML/X.

values The value of an object is the interpretation of its
contents; it is meaningful to distinguish between an
object and its value, since the value of an object can
be changed.

OFT Each AML/X object has a type, which defines the set
of values that that object can have. A&IL/X includes

several numeric types (I NT, REAL, etc.), types for
character- and bit- strings, and more complicated
types.

variables These are symbolic names (e.g., FOO, VAR NAME,
x) by which a programmer can refer to objects in
AML/X; the object to which a variable refers is
called its binding. We also speak of the “type” and
“value” of a variable, by which we mean the type and
value of its biding.

As in most other programming languages, variables are a key
feature of AhK/X. They can be manipulated in several ways:

evaluation Retrieving the binding of a variable, that is, the
object to which it refers symbolically.

assignment Changing the value of the object bound to a varl-
able. Since the type of an object is fixed, assign-
ment cannot change the type of a variable.

binding Changing the binding of a variable, that is, causing
it to be bound to a new object. Unlike assignment,
there is no restriction about the type of the new
object to which the variable is bound.

Expressions are combinations of variables, constants, and
operators that are evaluated to produce new objects and, in the
case of assignment, to change the values of existing objects.
AML,/X is a so-called expression-oriented language, in that all
program execution can be described as expression evaluation.

3.1 Data Obiects and Ooerators

AML/X has the usual complement of basic data objects and
operators necessary for “language-hood”. These, and a few
other objects and operators are described cursorily in this sec-
tion. All Ah4L/X code is written in TH I S TYPE FONT so that
it stands out from the rest of the text without resorting to the
use of various awkward quote marks. In code examples, we have
used upper case for usage that is required (e.g., reserved words)
and lower case elsewhere (e.g., identifier names).

Numeric Objects and Operators: Ah4L/X has four kinds of nu-
meric objects: I NT and LONG I NT, which correspond to 16-
and 32-bit integers, and REAL-ad LONG REAL, which corre-
spond to single- and double-precision fl&ng point numbers
respectively. The usual binary arithmetic operations addition
(+), subtraction (-), multiplication (*), division (D IV), and
exponentiation (**) are provided.

String Objects and Operators: AML/X provides both B I T and
CHAR strings, consisting of zero or more bits or bytes, which can
be manipulated ColIectively or individually. The usual oper-
ations for manipulating both CHAR and B IT strings, including
current and maximum length, lexicographic comparison, con-
catenation, and selection, are provided. The standard bitwise
logical operations AND, OR, XOR, logical and arithmetic shifts,
rotate, and (unary) NOT are provided for B I T strings.

Boolean Objects and Operators: BOOLEAN objects can have two
values, which are denoted by the reserved words TRUE and
FALSE. The standard Boolean operations AND, OR, XOR, and
(unary) NOT are available in AMLJX. There are also two
“short-circuit” Boolean operators, CAND and COR, which do not
evaluate their right operands unless it is necessary. Thus, if x is

147

OF
I OTA
I SAGG

AGGS IZE
MAP
REDUCE
SCAN
ANY
ALL
EQUAL
COMPRESS
AGGLOC

Figure 1.

Concatenate two aggregates to form a new aggregate
Replicate an aggregate a specified number of times
Make an aggregate containing a sequence of integers
Is an object an aggregate?
Number of elements in an aggregate?
Distribute an operator or subroutine over arguments
“Place” an operator between successive elements of an aggregate and evaluate
Lie REDUCE but return an aggregate of partial results
Are any elements of an aggregate TRUE?
Are all elements of an aggregate TRUE?
Are the arguments equal in both structure and value?
Select elements of an aggregate using an aggregate of BOOLEANs as a mask
Locate a target aggregate within another aggregate

Aggregate built-in operators and subroutines.

zero, x NE 0 CAND y / x GT 10 evaluates to FALSE and
does not divide by zero.

Symbol Objects: SYMBOL objects are variables that are not
evaluated (like quoted atoms in LISP) and can therefore be used
as names. The notation $name defines a SYMBOL object.

Reference Objects: An object of type REF “points at” an
AML/X object, which is called the referand of the REF. REF
objects can be created by either using the & operator or by call-
ing REF. The referand of a REF object is obtained by using the
dereferencing operator (!).

DEFAULT: The AML/X object DEFAULT is used in situations
where an object is needed but no particular one is required. For
example, the return value of a function called only for its side
effects is DEFAULT.

Type Objects and Operators: All AML/X objects have a type,
which can be determined using the typeof operator (?). For
example, the result of the expression ? 3 is the type I NT.

3.2 Amresate Data Obiects

Aggregates are one of the most important features of
AML/X since they are its most basic data grouping mechanism.
An aggregate is exactly what its name implies: a collection of
objects that can be treated as one. An Ah4L/X object that is
not an aggregate, such as an I NT or CHAR, is called a scalar ob-
ject.

Creating Aggregates: Aggregates are created using the uggre-
galion operator pair, < >, to form a single AML/X object from
an explicit list of other AML/X objects. The general form

< el, ek, en >

creates an n-element aggregate containing the elements ek. The
important points to note are that: (1) any Ah4L/X object can
be an aggregate element; (2) elements of an aggregate need not
all be the same type; and (3) each element is the object that is
the result of evaluating an (arbitrary) expression that specifies
the element. Once an aggregate is created, its size cannot be
changed. Figure 1 lists some of the operators and built-in sub-
routines for working with aggregates.

Aggregate Subscripts: Individual aggregate elements can be re-
ferred to by numeric indices or subscripts. If a is an aggregate,
the expression a (s) is a subscripted aggregate reference; we also

say that a is being applied to s . Elements of multi-dimensional
aggregates (where some elements are themselves aggregates)
can be referenced by multiple subscripts. For example,
a (3) (2) refers to the second element of the third element of
a. Since this syntax is awkward, multiple subscripts can be
elided,sothata(3)(2)canbewrittenasa(3, 2).

The most general case of subscripting occurs with multi-
dimensional aggregates subscripted by arbitrary combinations
of scalar and aggregate subscripts. The rules are simple. Sup-
pose

a is an arbitrary aggregate
i is a positive integer
s is an aggregate of positive integers or aggregates
..rest.. denotes the “rest” of a list of subscripts (possibly

empty).

Then, the meaning of any subscript can be determined by ap-
plying the following rules recursively until all subscripts are re-
duced to scalar values:

Pc?est..)
E;guiwknt
(a(i)) (..rest..)

a(s,. .rest. .I a(s(k) rest.. 1 ,...a

a(DEFAULT,..rest..) :::::a(k,..&t..) ,... >

A few examples will help to give an intuitive understanding
of what these rules mean. We’ll start with the 3 x 4 matrix m
defined by

m: NEW < < 1, 2, 3, 4 >,
< 5, 6, 7, 8 >,
< 9, 10, 11, 12 ' ';

The NEW keyword indicates that this is a variable declaration.

It is simple to use aggregate subscripts to refer to rows and
columns of m. If i is a scalar, then m (i) refers to the i -th row
of m and m(DEFAULT, i) refers to the i -th column of m. The
latter can be written more succinctly as m (, i 1. In general, any
“missing” subscript is treated as if DE FAULT had been specified.
The “missing” subscript notation is convenient for denoting
entire rows or columns. Selected rows or columns can be re-
ferred to by using aggregate subscripts, as illustrated below:

Yy 3’)
1st and third rows

, tOTA(2,4)) ## 2nd through 4th cols
m(, 14, l>) ## 4th and 1st columns
m(<1,2>, <1,2>) ## Upper left 2x2

148

IF cond THEN el [ELSE e2]
evaluates el if cond is TRUE and to e2 otherwise; if e2 is ommitted, DEFAULT is used

WHILE cond DO expr
continues to evaluate expr while cond is TRUE; the result is the result of the last evaluation of expr, or DEFAULT if none

WHILE cond DO COLLECT expr

continues to evaluate expr while cond is TRUE; the result is an aggregate of the successive results of evaluating expr, or
the empty aggregate if none

REPEAT expr UNTIL cant
continues to evaluate expr until cond becomes TRUE; the result is the result of the last evaluation of expr, or DEFAULT if
none

REPEAT COLLECT expr UNTIL cant
continues to evaluate expr until cond becomes TRUE; the result is an aggregate of the successive results of evaluating
exp r , or the empty aggregate if none

BEGIN el; . . . ek; END
the expressions e i are successively evaluated; the result is the result of evaluating ek.

SELECT expr CASE cl THEN et .._ CASE ck THEN ek [OTHERWISE oexpr] END
The result of evaluating exp r is compared against successive e i ; if there is a match, the result is c i ; if no match the result
is oexpr if present, and DEFAULT otherwise

Figure 2. Control Ooerators

Operator Mapping: Operators extend to aggregate operands
through a set of mapping rules (adopted with slight alteration
from AML[2]) which are an abstract form of the distributive law
of arithmetic. Suppose

s is any scalar object
<ul,...,un> isann-elementaggregate
<vl , . . . , v n > is an n-element aggregate
oP is an AML/X operator

Then, the operator mapping rules are:

Eqmmion Eqviwlent
op <ul ,...,un> <op ul ,...,op un>
:,;p <vl ,... ,vn> <S 0p vl,...,S 0p vn>

,...,un> op s <ul op s,...,un op 5’
<ul ,..., un> op cvl,..., vn> <ul op vl ,...,un op vn>

These mapping rules apply recursively to multi-dimensional ag-
gregates.

A key point about the mapping rules is that they work in a
uniform way for most AML/X operators. In particular, “par-
allel assignment” can be written in the form <v 1 , . . . ,vk> =
express ion.

3.3 control ollerators

AML/X supports control flow constructs typical of a struc-
tured programming language. These are summarized in
Figure 2. Since AML/X is an expression-oriented language,
all control flow constructs are operators that yield a result like
any other operator, as illustrated by the expression

move(WHILE ask(‘More?‘) DO COLLECT teach())

which creates an aggregate of (presumably) points returned by
successive calls to teach and passes it to the subroutine move.

3.4 Exoression Evaiuation

AML/X is an expression-orientedlanguage, which means that
evev Al&/X program construct is an expression. Thus, ex-

pression evaluation is the fundamental computational process in
AML/X.

Before an expression is evaluated, it is parsed into a tree of
subexpressions based on the usual sort of precedence rules
found in most languages. Then it is evaluated by applying op-
erators to objects according to two evaluation rules, one for or-
dinary operators and one for special form operators. To evaluate
an expression,

1. If the operator is not a special form, first evaluate the op-
erator’s subexpressions (left-to-right), then apply the op-
erator to the resulting objects;

2. If the operator is a special form, the operator is applied
without prior evaluation of its subexpressions; the operator
may cause any or all of its subexpressions to be evaluated.

The rules are applied recursively and must be augmented by two
additional rules which are the basis of the recursion:

1. A constant (e.g., 1, 2.305, ’ FOO ‘) evaluates to itself.
2. A simple variable (e.g., a, arm, current-speed) eval-

uates to its binding (not a copy).

The details of the evaluation rule are only relevant when
evaluation of a subexpression causes a side effect, i.e., when the
value of some variable is changed during the course of evaluating
the subexpression. We will consider several examples.

Example: <a , b> = ~1, 2>
This expression assigns 1 to a and 2 to b. The left-hand-side
evaluates to an aggregate of the bindings of a and b (not copies
of the bindings); the right-hand-side evaluates to the aggregate
< 1 ,2>. The usual mapping rules then cause the assignment
operator to be “distributed” over the corresponding aggregate
elements.

There are some circumstances where such behavior is not
desired. For those cases, Ah4L/X has a copy operator, denoted
by %. An expression of the form %exp r evaluates to a copy of

149

dia onal:
3

SUBR (m);
Returns the diagonal elements of the n x n matrix m

n: NEW AGGSIZE (m); ## Number of rows (~01s) in m
i : NEW 0; ## Index over rows/cols
RETURN (WHILE ++i LE n DO COLLECT m(i, i));

END;

id: NEW 3 OF 3 OF 0.;
diagonaltid) = 1.;

Make a 3 by 3 matrix of zeros
Set diagonal elements to 1

Figure 3. The subroutine d i agona 1 returns the diagonal elements of a square matrix represented as a nested aggregate. Its
use is illustrated by constructing the 3 by 3 identity matrix i d.

the result of evaluating expr. Its use is illustrated in the fol-
lowing example.

Example: <a, b> = <b, a>
This expression might be written (incorrectly) to swap two var-
iable values. Each side of the assignment evaluates to an ag-
gregate of the bindings of a and b, but in different order.
Applying the mapping rule, the expression is equivalent to
<a = b, b = a>. Since these are evaluated left-to-right, the
value of a will be “lost”. The copy operator, used in the ex-
pression <a, b> = %<b, a>, causes a copy of the original
values to be made before any of the assignments are done, thus
achieving the desired effect.

Example: diagonal(m) = 1
The subroutine shown in Figure 3 uses
WH I LE. . DO. . COLLECT to construct an aggregate of the
bindings of the diagonal elements of the matrix m. Since
d i agona 1 (a) evaluates to an aggregate of the bindings of the
diagonal elements, d i agona 1 (a) = 1 has the effect of set-
ting all diagonal elements of a to 1. Again, the key point is that
variables in Ah&/X evaluate to their bindings, not copies of
those bindings, and the WH I L E . . DO. . COLLECT operator ag-
gregates but does not copy the successive values of the loop ex-
pression.

3.5 Subroutines

This section describes AML/X subroutines and variable
declarations. A subroutine is defined by a statement of the form

subrname: SUBR(...formal-arguments...)
declarations
. . .
statements

END;

This statement really consists of two parts, the subroutine ex-
pression itself (SUBR...END) and the variable name
subr name. The statement defines a subroutine and makes it
the binding of the variable subrname. There may be any
number of formal arguments, including zero. The body of the
subroutine consists of any number (including zero) of focal vur-
iable declarations followed by any number (including zero)
AML/X statements.

A subroutine is called when a subroutine object is applied to
an argument list, as follows:

subrexpr(actual-arg-1 ,...,actual-arg-n)

The subroutine to which the expression sub r exp r evaluates is
called with the specified actual arguments.

Local Variables and Declarations: Local variables are variables
whose names are known only within the extent of a particular
subroutine. A local variable is defined by being declared at the
beginning of a subroutine. Variable declarations (except labels
and internal subroutines) are of the form

varname: declarator init-expr;

where varname is the name of the variable being declared,
dec 1 ar a tor specifies various properties of the local variable,
and i n i t-expr is an arbitrary Ah&/X expression that defines
the variable’s type and initial value. The effect of a variable
declaration is to associate a variable name with the storage that
holds its binding, as defined by four attributes:

Memory space: Determines which memory space the bind-
ing is stored in. If the binding is in the stack, it will be dis-
carded when the subroutine terminates.
Constant: Determines whether or not the value of the
binding can be altered once it is initialized.
Copy: Determines whether the result or a copy of the result
of evaluating the initialization expression becomes the
binding.
Per&tent: The binding is created when the subroutine is
loaded and is reestablished each time the subroutine is in-
voked.

Possible declarators and their attributes are shown in F’ mre 4.

A subroutine definition contained in another subroutine is
an internal subroutine and can only be called from within the
containing subroutine. Free variables in internal subroutines are
bound lexically. Labels are declared by prefixing any statement
by a name, as in

labname: stmt;

Internal subroutines and labels are two exceptions of the rule
that declarations appear at the beginning of a subroutine. In this
case, ease-of-use seemed to outweigh consistency.

Arguments: A simple formal argument is a variable name, im-
plicitly declared as a B I ND declaration, and bound to the corre-
sponding actual argument when the subroutine is called. In
effect, arguments are passed by reference. The caller can spec-
ify that an argument be passed by value by preceding the actual
argument with the copy operator (%). The formal argument can
also be preceded by the copy operator, in which case the argu-
ment is passed by value regardless of how the actual argument
is passed. This is illustrated in the following example:

150

I Declarator

NEW

NEW CONSTANT

I CONSTANT I Stack ~--ryes 1 Yes [No 1

I STATIC 1 Heap ~-INo 1 Yes [Yes 1

I STATIC CONSTANT 1 Hew I Yes 1 Yes 1 Yes 1
1 BIND I- I- INo INo 1
1 STATIC BIND I- 1 No 1 Yes 1

Figure 4. Variable dm eclarators

fact: SUBR(%i)
Returns i factorial (i GE 1)
f: NEW i;
WHILE --i GT 1 DO f *= i;
RETURN(f);

END;

ML/X provides a way to specify values for missing argu-
ments. If the formal argument has the form

formal-arg DEFAULT expr

and the corresponding actual argument is supplied, then
for ma 1 -a r g is processed as described above. However, if the
corresponding actual argument is missing, or if its value is
DECAULT, then expr is evaluated and its result becomes the
binding of forma I-ar g. Thus in the code

s: SUBR(p, to1 DEFAULT I.Oe-6)
. . .

END *
d3I;
~(3, 1 .Oe-8);

to 1 is bound to l . Oe-6 the fit time s is calIed and to
l . Oe-8 the second time.

Subroutines can also access excess actual arguments using
the predefined variable ACTUAL ARGS, which is bound to an
aggregate of the actual arguments-

It is easy to write generic subroutines in AML/X because it
is not necessary to declare the type of formal arguments. This
is often convenient, especially for small programs, but can lead
to programming errors and make it very difficult to compile ef-
ficient code for the subroutine. In keeping with our philosophy
of letting the user make the trade-off between flexibility and
efficiency, AML/X allows optional type declarations for formal
arguments. A formal argument (possibly including a DEFAULT
clause) can be followed by a type specification of the form

MUSTBE type-spec

where type-spec is an aggregate of types. If the correspond-
ing actual argument is not one of the specified types, an excep-
tion is raised.

Exiting from Subroutines: Any AML/X object can be returned
as the result of a subroutine call by passing the object to the
RETURN built-in subroutine. The object returned is not copied
unless it would be destroyed by termination of the subroutine

(e.g., a NEW variable). Therefore a variable binding can be re-
turned and a subroutine call can be used on the left-hand side
of an assignment, as illustrated in Figure 3.

The built-in subroutine CLEANUP can be called while exe-
cuting a subroutine to request an action when the subroutine
terminates. For example, suppose a subroutine which opens a
file should always close it, even if the subroutine terminates be-
cause of some error condition. This can be done by the code
shown in Figure 5.

3.6 Exception Handling

When an error is detected during program execution an ex-
ception is raised. The action taken by a program when an ex-
ception is raised is determined by the exception handler defined
for that particular exception. The design of m/x’s exception
handling is described in [181.

Each possibie exception has a name, which is represented by
a SYMBOL. When an exception is raised, either by the system
or by the user through the RAI SE-EXCEPT1 ON built-in sub-
routine, AMLjX finds the most recent activation of a block
containing a variable of that name which was declared as a
HANDLER. If none is found and a variable of the appropriate
name exists at top-level, it is used. The binding of that variable
is the exception handler used.

The type of the binding determines what kind of action is
taken, as follows:

EXPR: The EXPR is evaluated and the result becomes the
result of the exception handler.
SUBROUTI NE: The SUBROUTI NE is called. The argu-
ments passed provide the SUBROUT I NE with detailed in-
formation about the exception that occurred. The result of
the subroutine call becomes the result of the exception
handler.
LABEL: The LABEL is branched to. The exception handler
has no result.
BOOLEAN: The BOOLEAN object is set to TRUE and the
result of the exception handler is TRUE.
SYMBOL: The value of the SYMBOL is used as the name of
another exception to raise. This allows exceptions to be
grouped hierarchically into exception groups, each consist-
ing of several exceptions all handled by the same exception
handler.

151

file update: SUBR()
ci NEW OPEN(‘file.name’,‘w’); ## Open file
CLEANUP($(CLOSE(c)) 1; ## Request cleanup action

END; ‘*
Processing code

Figure 5. An example of a subroutine cleanup action: The expression $ (CLOSE (c)) passed to CLEANUP is an (unevaluated)
expression object which will be evaluated when f i 1 e update terminates.

A program can use the EXCP-B I ND I NG built-in subroutine
to determine the current exception handler for a specified ex-
ception. In this way, a subroutine can decide to let an exception
be handled by its caller if its caller has an appropriate handler,
or can handle the exception itself if the caller doesn’t provide a
handler. For example, in the code in Figure 6, the subroutine
default handle set is used in foo to bind
EXCP-ZEEOD IV &the caller’s handler if it exists, or to a
boolean flag if it doesn’t exist.

Most system-defined exceptions are continuable, meaning
that execution continues from where the exception was raised
and the resultsf the exception handler becomes the result of the
operator that caused the exception. The operation is not “re-
tried”, although the exception handler is free to retry the oper-
ation or provide a reasonable result, as in

EXCP ZERODIV: HANDLER SUBR()
##-Return lar est possible number
RETURN(MAXVAL LONG-REAL)); 9

END;

User exceptions can be either continuable or non-continuable.

3.7 Obiect-oriented Prommming

The use of abstraction is a very powerful tool for building
large programs. Powerful or complicated abstractions can be
implemented by using .simpler ones so that each implementation
is small and (presumably) easy to understand. AML/X sup-
ports abstraction by providing classes, a mechanism for defining
new objects and operations on them. A class defies a new type
in the language; a class instance is a particular object derived
from a class. This is analogous to built-in types and instances
of the built-in types: for example the number 2 is an instance
of the type I NT. Thus, if one writes a class definition for com-
plex numbers, each instance of that class would correspond to a
particular complex number. The data for each instance is held
in its instance variables, which are accessible only from within the
class unless access elsewhere is granted explicitly.

Class Definitions: A class definition is defined by a statement
of the form

classname: CLASS(...formal-arguments...)
I VARS

instance variable declarations
END;
declarations
initialization statements
methods

END ;

This statement defines a TYPE and makes it the binding of
c I ass name. Each declaration in the I VARS section defines an
instance variable. All of the non-STAT I C declarators shown in
Figure 4 can be used. Figure 7 shows part of a simple class
definition for vectors.

Class Instantiation: A class instance is created (the “class is
instantiated”) by calling the class definition as one would a
subroutine, the only difference being that a class returns an in-
stance containing the current bindings of the class’ instance
variables. Thus, vet tor (1 ,2 ,3) would return an instance of
vector with instance variables 1 EO, 2E0, and 3E0.

Methods and Operator Overloading: Classes are only useful if
there is a way to do something to class instances. A method is a
special kind of internal subroutine that (1) is contained in a class
definition but can be called from outside of the class definition,
and (2) has access to the instance variables of an instance of the
class. A method is invoked by executing an expression of the
form

obj~exp.method~name(...formal~argumens...)

where ob j exp is an expression that evaluates to a class in-
stance and- met hod name is the name of a method. The
method executes exactly like an ordinary subroutine except that
the instance variables are bound to the values of the instance
variables contained in the instance instead of to the result of
evaluating their initialization expressions. Also, the predefined
variable SELF is bound to the class instance itself.

AML/X operators can be extended to class instances. or
overloaded, on a class-by-class basis by associating a method
with the operator. This is done simply by having in the class a
method whose “name” is a literal form of the operator to be
overloaded. If the left operand of an operator is a class instance,
the corresponding operator method in the appropriate class de-
finition is invoked with the right operand as actual argument; if
the left operand is an instance of a built-in type but the right
operand is a class instance, the corresponding modifier method
is invoked passing the left operand as actual argument. This al-
lows non-commutative operators to be overloaded.

Exposed Instance Variables: Ordinarily, instance variables are
not accessible except within the class definition or through
method calls. Direct access to instance variables can be explic-
itly granted by declaring them to be EXPOSED as in

I VARS
x: EXPOSED NEW REAL();

END;

An exposed instance variable is referenced by an expression of
the form:

instance.inst var name - -

Note that a class definition containing only exposed instance
variables is equivalent to C’s structures and PASCAL’s records.

Exposed instance variables were added to the language in
response to user’s complaints that they often had to write a
method just to access a single instance variable. However, be-
cause they expose the data representation used by a class, they

152

default handle set: SUBR(ex name, new handler)
If-the caller of the caller of tiiis routine does not
have an exception handler for the exception named
ex name, return the specified new handler; otherwise,
return the existing handler.

existing-handler: BIND EXCP-BINDING(ex-name, CALLER(CALLER()));

RETURNS IF existing handler NE UNBOUND THEN existing handler -
ELSE new handler 1;

END ;
-

foo: SUBR()
Set up handler for EXCP ZERODIV
EXCP ZERODIV: HANDLER BIND-

default-handle-set($EXCP_ZERODIV, FALSE);

END;“’

Figure 6. Providing a default exception handler: The subroutiner foo binds the result of calling def au 1 t-hand 1 e-set to
EXCP-ZEROD IV, thus making it the exception handler for dividing by zero. The subroutine
defau 1 t-hand 1 e-set first determines the exception handler binding in its caller’s caller (i.e., foo’s caller). If
there is one, it is returned for use; otherwise the new-hand 1 er is returned for use as the exception handler.

violate the abstraction that classes were intended to provide.
PR I VATE EXPOSED instance variables, which only allow direct
access to instance variables from within the class definition,
were introduced so that data representation could be exposed
inside the class definition but remain hidden from outside view.

4.0 Examoles

4.1 Cartesian Data Tvues

Data types for vectors, rotations, and coordinate transf-
ormations are often provided in special-purpose, languages for
robotics and CAD [e.g., 14, 1.5, 19, 201. The conciseness and
consistency checking provided by such types, compared to the
subroutine libraries providing comparable functions for general
purpose languages, significantly Gnproves programmer produc-
tivity and program readability. Unfortunately, users of special-
purpose languages are often stuck with whatever internal
representation and function set the system implementers have
chosen to provide.

This section .illustrates the use of AML/X classes and oper-
ator overloading to implement these data types in a way that
provides both expressive power and easy customizing.

Vectors: Vectors are represented by three real numbers, stored
in EXPOSED instance variables x , y , z. Methods overload-
ing the normal arithmetic operators can be provided for vector
addition, subtraction, and scaling. “Multiplication” of two vec-
tors is used for vector inner product and “exponentiation” is
used for cross product. A .method for assignment can also be
provided. A sketch of such a class definition is given and several
standard constant vectors are declared in Figure 7.

Rotations: Rotations are commonly represented as 3 x3
orthogonal matrices. This representation is easily understood
and is computationally efficient if many vectors are to be ro-
tated. On the other hand, it is wasteful of storage, subject to
numerical inconsistencies, and computationally expensive for

many operations, including composition and specification from
angles.

As an alternative, we have sketched in Figure 8 a class de-
finition for rotations that uses quaternions[21, 221 as the
underlying representation. In this case, EXPOSED PRIVATE
instance variables are used in order to hide implementation de-
tails while permitting efficient execution within methods. TWO
“class” methods,

r = rotation.polar(axis vector, angle);
r = rotation.euler(abt-?-l,abt-y,abt-z-2);

permit rotations to be specified either as a right-handed twist
about a specified axis or as a sequence of rotations about cardi-
nal axes. Multiplication is overloaded to provide for composi-
tion of two rotations and rotation of a vector and division is
overloaded to provide for formation of an inverse rotation and
for multiplication by the inverse.

Two methods,

<axis vector,angle> = r.polar parms();
<abt ? -- l,abt-y,abt z 2> = r.eiler parms(); --

invert the po 1 a r and eu 1 e r methods, respectively. One po-
tential problem with the latter method arises when the second
angle, corresponding to rotation about the “y” axis, is zero. In
this case, only the sum of the first and third angles is determined.
By default, the third value will be set to zero and an exception,
EXCP-degen-rot, is raised. However, the exception handler
can override the default. For example, the simplified kinematic
solution procedure shown in Figure 9 uses an exception handler
to divide the angle sum evenly between.the fist and third wrist
joints.

Transformations: Arbitrary coordinate transformations, con-
sisting of rotation followed by translation, are straightforwardly
implemented using the class definitions for vectors and ro-
tations. In a typical class definition (not shown), multiplication
would be overloaded to provide transformation of vectors and
composition, and division would be overloaded to provide in-
verses and composition with inverses. A class,method for co-

vector: CLASS(xx DEFAULT 0.0, yy default 0.0, zz DEFAULT 0.0)

I VARS
x: EXPOSED NEW REAL(xx);
y: EXPOSED NEW REAL(yy);
z: EXPOSED NEW REAL(zz);

END;

$“: METHOD(v)
SELECT (?v>

Inner product and scaling

CASE vector THEN RETURN(x”v.x+y*v.y+z”v.z)
OTHERWISE RETURN(vector(x”v, y”v, z’v))

END :
END; .
$*: MOD-METH(s) RETURN(vector(s”x, s*y, s*z)); END;

$ *;*: METHOD(v MUSTBE <vector>) ## Cross product
RETURN(vector(y”v.z-z*v.y, z*v.x-x*v.z, x*v.y-y*v.x));

END;

$=: METHOD(v)
<x9 Ys Z’ = SELECT (?v)

CASE vector THEN <v-x, v.y, v.z>
OTHERWISE v

RETURN(SELF);
END;

END;

uvect : METHOD0 RETURN(SELF/sqrt(self”self)); END;
END;

null vector: STATIC CONSTANT vector(0, 0, 0);
x axTs:
yIaxis:

STATIC CONSTANT vector(1, 0, 0);
STATIC CONSTANT vector(0, 1, 0);

z axis: STATIC CONSTANT vector(0, 0, 1);

Figure 7. Class definition for vectors: Methods that overload the addition, subtraction, and division operators have been
omitted for brevitv.

ercing vectors and rotations to transformations would also be
useful.

4.2 Coordinate Frames and Affiient

Coordinate transformations arise naturally from part-
subpart relationships in both robot and CAD programming. If
the location (i.e., position and orientation) of Part A relative to
the workstation is given by a transformation, frame-a, and
t r an s-ab gives the location of a Subpart B relative to A, then
the location of B relative to the workstation is given by
f r ame a” t r an s a b. Similarly, if the location of C relative
to B is&en by tr ans bc, then the location of C relative to
the workstation is given by
frame a*trans ab’trans bc. In practice, these ex-
pressions become very cumbersome and tend to interfere with
the readability of programs. To get around this, AL [141 intro-
duced the concept of affixment, in which part-subpart relation-
ships and similar dependencies were declared explicitly, as in

AFFIX part-b TO part-a AT trans-ab;

Programs then simply referred to par t-b to get the current lo-
cation of Part B. If Part A was moved or if a new value for its
location was determined by sensing, then the location value for
Part B was updated automatically.

One of the interesting aspects of the AL implementation of
affiient [23] was that recomputation of coordinate frame val-
ues was deferred until they were needed, but the values were
saved to eliminate needless recomputation. This saving can be
quite important in robotic applications where parts are being
moved about the workstation and where the expressions in-
volved in recomputation may involve a long chain of affixments.
An AML/X implementation of much the same idea is shown in
Figure 10. Once again, classes and operator overloading are
used to provide a new data type, frame, whose value corre-
sponds to a coordinate system.

Figure 11 illustrates the use of this data type in a simple as-
sembly application. Figure 11 (a) shows a box and cover plate
being delivered to an assembly station on a small tray. The co-
ordinates of the box and cover are initiahy known relative to the
tray. Furthermore, grasping points relative to the box and cover
have been defined. The problem is to use vision to locate the
tray, then use a vision routine to locate the box and cover more
precisely, based on the tray location. Finally, place the cover
on the box and pick up the box. A program to accomplish this
is sketched in Figure 11 (b).

154

rotat ion: CLASS(ss DEFAULT 0.0, vv DEFAULT null vector MUSTBE <vector>) -

I VARS
s: PRIVATE EXPOSED NEW REAL(ss);
v: PRIVATE EXPOSED NEW vv;

END ;

$=: METHOD(r) <s,v> = <r.s, r.v>; END;

polar: CLASS METH(axis MUSTBE <vector>, angle)
RETURN(rot%tion(cos(angle/2), sin(angle/2)“axis.uvect()));

END ;

euler: CLASS METH(a, b, c)
RETURN(rotation.polar(z_axis,a) ’ rotation.polar(y-axis,b) * rotation.polar(z-axis,c));

END ;

$“: METHOD(p MUSTBE <rotation,vector>)
SELECT (?p)

CASE rotation THEN RETURN(rotation(s*p.s-v*p.v,
CASE vector THEN RETURN((SELF”rotation(O,p)/SELF 7

.s*v+s”p.v+v”“p.v))

.v)
END;

END ;

$/: METHOD(p MUSTBE <rotation>)
RETURN(rotation(s”p.s+v”p.v, p.s*v-s”p.v-v**p.v))

END ;

$/: MOD METH(p)
IF p NE 1 THEN RAISE EXCP($EXCP-invalid-inv,,<p,SELF>,TRUE);
RETURN(rotation(s,-VT);

END ;

euler parms: METHOD0
ad:-
bc:

BIND ~““2 + v.z”“;;
BIND v.x*“2 + v. ““2;

beta: BIND acos((ad-bc /(ad+bc)); Y
gpa: BIND atan2(v.z, s);
gma : BIND IF beta NE 0 THEN atan2(v.x, v.y)

ELSE BEGIN rslt: BIND RAISE EXCP($EXCP degen rot,, gpa, TRUE);
IF is 3 reals(rslt) THEN RETURN‘rrslt)-ELSE 0.0;

END; ##See also Figure 9
RETURN(<gpa-gma, beta, gpa+gma>);

END;

polar parms: METHOD0
s sqd: BIND ~““2;
RETURN(IF s-sqd EQ 0.0 THEN <z axis, 0.0’

END ;
ELSE <v7sqrt(s_sqd), acos(s”“2-s-sqd)>);

is 3 reals: SUBR(va1) --
RETURN(ISAGG(va1) CAND AGGSIZE(VAL) EQ 3 CAND ALL(?VAL EQ

END ;
REAL) 1;

END;

EXCP degen rot: BIND HANDLER FALSE; ## Default: i nore except
null-rot: STATIC CONSTANT rotation.polar(z-axis, 03; -

Figure 8. Class definition for rotations

ion

The declarations create an “affiient tree” of frames. The
instance variables associated with each frame specify the parent
frame, the offset of the frame relative to its parent, the present
value of the frame-i.e., its transformation relative to the
workstation- a “mark” counter used to determine whether the

value is valid, and a flag specifying whether the affixment is
“rigid”. The mark counter is incremented every time a new
value is saved, and a frame’s value is valid if and only if its mark
counter is greater than its parent’s. “Rigid” affixments are those

hand-vector: STATIC CONSTANT vector(O,O,g);

solve arm: SUBR(f MUSTBE <frame>)
t: HIND f.xfO; ## Frame transformation
cj: BIND t.v - t.r * hand vector;
RETURN(<cj.x, cj.y, cj.zy # (t.r).euler-parmso 1;

EXCP degen rot: HANDLER SUBR(a, b, ang-sum);

END;
ii;ETURNT<ang-sum, O., ang-sum>/Z);

END;

Figure 9. Simplified kinematic solution procedure for a Cartesian robot such as the IBM 7535: This subroutine returns an
aggregate of six real numbers giving joint values corresponding to specified hand frame. Note the use of an exception
HANDLER subroutine to override the default handling of degenerate wrist rotations.

in which updates to the frame value are to cause the parent’s
value to be updated as well.

The initial assignment statement causes the value of tray
to be updated, and its mark to be incremented. The second
statement fit causes the value of cover to be computed as
partof thecall to locate-object. Since tray hasbeenup-
dated, its mark counter is higher than that of cover, so the
value is obtained by obtaining a valid value for tray and then
composing the result with the offset stored for cover. The as-
signment then updates the value stored in cover a second time.
The third statement repeats the process for box.

Subsequent statements call subroutines to pick up the cover,
place it on the box, etc. The fragments from grasp-object
and move object illustrate the use of affiient to simplify
programn&g. grasp-o b j ec t moves the robot to the specified
grasping point, closes the gripper, and then affixes the object (by
assumption, the most remote rigidly affixed ancestor) to the ro-
bot. Subsequent motions of the robot will cause all location at-
tributes of the object to be updated. move-objet t verifies
that mot i on frame is affixed to the robot and then moves the
robot so thatthe value of mot i on-frame is equal to des t i -
nation.

5.0 Imvlementation

AML/X is implemented by a portable interpreter written in
C. It runs on the IBM 370 family of machines under VM/CMS,
on the IBM PC under DOS and XENIX, on the IBM RT/PC
under AIX, and on several other machines. Facilities exist on
all machines for writing C subroutines callable from AML/X;
on the VM/CMS implementation, there are also interfaces to
Fortran and PL/ 1.

6.0 Exwrlence and Conclusions

AML/X has now been in use for about a year in our research
in robotics, computer-aided design, and machine vision. Exe-
cution speed of the interpreter has proved adequate for robotics
applications. As anticipated, however, the interpreter is too
slow for production use in the lowest layers of more complex
systems, especially in CAD applications. We have begun work
on a prototype compiler that should resolve this issue. Mean-
while, several of our researchers find AML/X sufficiently ex-
pressive that they prototype low level geometric data structures

and algorithms in AML/X and recode in C where necessary for
efficiency. Classes, including operator overloading, are often
used in this work, and the resulting programs are both readable
and modifiable.

AML/X has also been used as a programming “front-end”
to a powerful geometric modelling system [17]. In this case,
class definitions for geometric objects have been written in
AML/X but the actual data representation is created and ma-
nipulated by the modelling system. Each class instance essen-
tially contains a “handle” on the data maintained by the
modelling system. Methods implement geometric operations by
passing these “handles” to the modelling system, which then
does the necessary computation. Our initial (limited) experience
with this use of AML/X in the higher layers of a system is that
it provides a very powerful programming environment with very
reasonable performance. The drawing in Figure 11 was
produced by an AML/X program running on this system.

The need for concurrency can to some extent be met by
simple interfaces to operating system services. However, in re-
sponse to the requirements of automation programming, we
have begun to consider providing concurrency directly in the
language.

Providing interfaces to other languages has allowed us quick
access to a variety of existing code, ranging from mathematical
subroutines, to graphics routines, to a large modelling system.
We expect that AML/X will continue to be used at the highest
layers of large systems built from existing components and that
using it in this way will help us to integrate various automation
technologies.

Acknowle&ments

AML/X is a descendant of AML (A Manufacturing Lan-
guage) and owes much to its developers. As early users of
AML/X, Georg Maier and Vijay Srinivasan at IBM Yorktown
provided especially valuable suggestions on ways to improve the
language. Dave Klein of the Manufacturing Systems Program
(MSP) at IBM Boca Raton designed and implemented the gar-
bage collector. Ken Morgan, also of MSP, implemented most
of the debugging facilities. Many others in the Automation Re-
search group at IBM Yorktown and the Manufacturing Systems
Program at IBM Boca Raton have also made useful comments
and suggestions.

156

frame: CLASS(afx DEFAULT NULL MUSTBE <REF,frame>,
ofst DEFAULT transo,
rigidly DEFAULT FALSE MUSTBE <BOOLEAN> KEY)

frame-counter: STATIC LONG-INT(0);

I VARS
parent: PRIVATE EXPOSED NEW IF ?afx EQ REF THEN afx ELSE Bafx;
offset: PRIVATE EXPOSED NEW trans.coerce(ofst);
value: PRIVATE EXPOSED NEW IF parent EQ NULL THEN

trans() ELSE (!parent).xfo*offset;
mark: PRIVATE EXPOSED NEW frame counter++*
rigid: PRIVATE EXPOSED NEW BOOLEAN(rigidlyj;

END;

$=: METHOD(f)
value = trans.coerce(f);
IF parent NE NULL THEN

IF rigid THEN (!parent) = value/offset
ELSE offset = (l/(!parent).xf())*value;

mark = frame counter++;
RETURN(%value);

END;

$*: METHOD(b) RETURN(SELF.xf() * b); END;

$/: METHOD(b) RETURN(SELF.xf() / b); END;

xf: METHOD0 SELF.validate(); RETURN(%value); END;

unfix: METHOD0 parent = NULL; rigid = FALSE; END;

affix-to: METHOD(afx MUSTBE <REF,frame>, ofst,
rigidly DEFAULT FALSE MUSTBE <BOOLEAN> KEY)

IF ?ofst EQ DEFAULT THEN SELF.validate();
SELF.unfix();
rigid = rigidly;
parent = IF ?afx EQ frame THEN Eafx ELSE afx;
IF ?ofst EQ DEFAULT THEN

offset = (l/((!parent).xf()))*value
ELSE

BEGIN mark = 0; offset = trans.coerce(ofst); END;
END;

validate: PRIVATE METHOD0
if parent EQ NULL then RETURNS;
(!parent).validate();
IF mark LE (!parent).mark THEN

END;
BEGIN value = (!parent).value*offset; mark = frame-counter++; END;

rigid ancestor: METHOD0
RETURN(IF rigid CAND parent NE NULL THEN (!parent).rigid-ancestor-0 ELSE SELF);

END;

has ancestor: METHOD(f)
RcTURN(IF SELF EQ f THEN TRUE

ELSE IF parent EQ NULL THEN FALSE

END;
ELSE (!parent).has-ancestor(f));

END;

Ficwre 10. Class definition for Cartesian frames and affixments

157

ly=TRUE);

(b)
tray: NEW frame();
cover : NEW frameftray, trans(...)>;
cov-gr asp : NEW frametcover, trans(...), rigid
box : NEW frameftray, trans(...));
box-top : NEW frametbox, trans(...));
box-grasp: NEW frame(box, trans(...), rigid

tray = locate object(DEFAULT, . ..I. ## no a p
cover = locateobject(cover, . ..I. ## locate
box = IdcateIobject(box, . ..I. ## locate

ly=TRUE);

riori info
cover better
box better

grasp object(cover grasp, . ..I.
move object(cover ,-box-top, . .) ;

grasp the cover
move it

release object(. . .);
grasp o6ject(box

let go

move i5bjecti .);
grasp, . . .) ;

-

grasp-object: SUBR(grasp-frame, . . . 1;
. . .
move robottgrasp frame, . ..I.
close gripper-(..3;
(grasp frame.rigid-ancestor()).affix_to(robot);
. . .
END ;

move object: SUBR(motion frame, destination, . ..I. - -
. .
IF NOT motion frame.has-ancestor(robot) THEN

RAISE EXCPT .._);
move-robot(destination/motion framelrobot, .._ 1; -
. .
END ;

Figure 11. Simple robotic assembly task: (a) Initial situation and (b) Sketch of program. The models in (a) were implemented
using an AML/X front-end to the IBM Geometric Design Program [171.

158

111

PI

131

\ [41

151

[61

[71

b31

[91

References

D.D. Grossman, “Programming a computer controlled
manipulator by guiding through the motions,” IBM Re-
search Report RC6393, IBM Thomas J. Watson Re-
search Center, Yorktown Heights, NY, 1977.

R.H. Taylor, P.D:Summers, and J.M. Meyer, “AML: A
Manufacturing Language,” Zntl. J. Robotics Research,
vol. 1, no. 3, pp. 19-41, Fall 1982.

R. H. Taylor and D. D. Grossman, “An Integrated Robot
System Architecture”, IEEE Proceedings, vol. 71, pp.
842-855, July 1983.

M.A. Lavin and L.I. Lieberman, “AML/V: An Industrial
Machine Vision Programming System,” Intl. J. Robotics
Research, vol. 1, no. 3, pp. 42-56, Fall 1982.

J. Korein, G. Maier, R. Taylor and L. Durfee, “A
Configurable System for Automation Programming and
Control,” Proc. I986 IEEE Conf. on Robotics and Auto-
mation, San Francisco, pp. 1871-1877, April 1986.

L.R. Nackman, M.A. Lavin, R.H. Taylor, and W.C.
Dietrich, Jr., “AML/X User’s Manual,” IBM Research
Report RA 175, IBM Thomas J. Watson Research Cen-
ter, Yorktown Heights, NY, (1986).

C.A.R. Hoare, “Hints on Programming Language De-
sign,” Keynote address given at the ACM
SIGACT/SIGPLAN Conf. on Prinicples of Program-
ming Languages, Boston, (1973) as quoted on pp. 255
and 257 of C. Ghezzi and M. Jazayeri, Programming
Language Concepts, New York: John Wiley, 1982.

M.A. Wesley, “Construction and Use of Geometric
Models,” in Computer Aided Design. J. Encamacao, ed.,
Lecture Notes in Computer Science 89, Springer Verlag,
1980.

T. Lozano-Perez, “Robot Programming,” Proc. of the
IEEE, vol. 71, no. 7, pp. 821-841, July 1983.

[lo] M.A. Lavin and L.I. Lieberman, “AVLO -- A Vision
Language,” IBM Research Report 8390, IBM Thomas
J. Watson Research Center, Yorktown Heights, NY,
(1980).

[l l] C. Eastman and M. Henrion, “Glide: A Language for
Design Information Systems,” Proc. ACM
SIGGRAPH’77, Computer Graphics, vol. 11, no. 2, pp.
24-33, Summer 1977.

t121

iI31

1141

u51

1161

u71

1181

I191

DOI

Pll

WI

[=I

P. Will and D. Grossman, “An experimental system for
computer controlled mechanical assembly”, IEEE Trans.
Cornput., vol. C-24, p. 879., 1975.

R. Evans, et. al., “Software system -for a computer con-
troller manipulator”, IBM Res., Yorktown Heights, NY,
Rep. RC-6210, 1977.

R. Finkel, R. Taylor, R. Belles, R. Paul and J. Feldman,
“AL, A Progr amming Language for Automation,”
Stanford Artificial Intelligence Laboratory Memo
AIM-243, Stanford University, 1974.

V. Hayward and R. Paul, “Robot Manipulator Control
under UNIX,” from TR-EE 84-10, Purdue University
School of Electrical Engineering, pp. 22-34, Jan. 1984.

A. Bloch, Murphy’s Law and other reasons why things go
gnonu. Los Angeles: Price/Stem/Sloan, 1977.

M.A. Wesley, T. Lozano-Perez, L.I. Lieberman, M.A.
Lavin, and D.D. Grossman, “A Geometric Modeling
System for Automated Mechanical Assembly,” IBM J.
Res. Dev., vol. 24, pp. 64-74, Jan. 1980.

L.R. Nackman and R.H. Taylor, “A Hierarchical Excep-
tion Handler Binding Mechanism,” Software--Practice
and Experience, vol. 14, no. 10. pp. 999-1003, Oct. 1984.

B. Shimano, “VAL: An industrial robot programming
and control system”, Proc IRZA Sem. of Languages and
Merhodr of Programming, Rocquencmn-t, France, pp.
47-59, June 1979.

C.M. Brown, “PADL-2: A Technical Summary,” IEEE
Comp. Graphics & Applications, vol. 2, no. 2, pp. 69-84,
Mar. 1982.

W. R. Hamilton, Elements of Quatemions, Third Edition,
New York: Chelsea Pub. Co., 1969.

R. H. Taylor, “Planning and execution of straight line
manipulator trajectories”, IBM J. of R. & D.,vol. 23,
no. 4, pp. 424-436, July 1979.

R. H. Taylor, A Synthesis of Manipulator Control Pro-
grams from TaskLevel Specifications., PhD Dissertation,
Memo AIM-282, Artificial Intelligence Laboratory,
Stanford Univ., Stanford, CA, 1976.

159

