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Abstract 

AML/X is a modern general purpose high level program- 
ming language, aimed at applications in manufacturing and 
computer aided design. It includes features for both conven- 
tional and cPbject-oriented programming. The AML/X inter- 
preter is implemented in C and has been ported to IBM 370, 
Motorola 68000, and IBM PC hardware, running under CMS, 
UNIX, XENIX, and DOS. This paper describes the rationale 
for AML/X and gives an overview of the language itself. 

1 .O Introduction 

Architects of industrial automation systems make a trade-off 
between two goals: ease of use and flexibility. A decade ago, 
when computers were far more expensive, these goals were seen 
as competing alternatives. 

Historically, many industrial automation systems limited 
their flexibility to the minimum requirements of some (hope- 
fully) large class of users, but no more. Those users then speci- 
fied applications with a minimal language, which was simple and 
easy to learn. An example of this approach in robot program- 
ming was teaching by showing, in which the user manually 
moves a robot through a sequence of motions, recording them 
for later replay[l]. The disadvantage is the lack of a growth 
path: once the user’s needs exceed the flexibility provided, the 
system becomes ineffective. 

Clearly, there is significant benefit in providing systems with 
much greater flexibility. Generally, this flexibility is achieved by 
deferring certain choices until as late as possible. For example, 
a robot achieves more flexibiity than fixed automation by de- 
ferring the choice of motions from the time the equipment is 
designed until it is actually used. 

Flexibility gained by deferring choices implies the need for 
a much richer language in which to specify the choices to be 
made. The challenge for the system architect is to layer this 
language so that ease of use is not sacrificed. As computers de- 
cline in cost, this approach of layering is becoming an increas- 
ingly practical means of combining flexibility with ease of use. 

One begins at the bottom layer with as much flexibility as 
one can afford (more on this later) and a language for specifying 
the remaining choices. The language must be expressive enough 
to allow the most sophisticated users to take advantage of the 
flexibility included. Perhaps less obvious, but equally important, 

the language must provide mechanisms for composing higher 
layers, each essentially a new language, with less flexibility and 
fewer remaining choices than the preceding layer. The highest 
layers, those with the least flexibility, provide ease of use for 
unsophisticated users along with potential growth to lower, more 
flexible layers. 

:This is the context in which we have designed AML/X, a 
general purpose programming language tailored for use in man- 
ufacturing and computer aided design. Its roots are in AML[2], 
a programming language originally developed for use in a re- 
search robot system[3] and subsequently made available as the 
programming language of the IBM 7565 Manufacturing System. 
AML also saw use as the base language for AML/V, an indus- 
trial machine vision programming system built as an extension 
to the research robot system[4]. AML/X is the result of a major 
redesign of AML and is part of the programming environment 
for our research activities in robotics[5], machine vision, and 
computer aided design. As such, it is likely to continue to 
evolve. It is also the basis for AML/Z, the programming lan- 
guage for IBM’s new 7575 and 7576 Manufacturing Systems. 

This paper describes the rationale for the design and imple- 
mentation of AML/X, provides a brief overview of the lan- 
guage, and illustrates its use. For brevity and clarity this paper 
emphasizes the use of AML/X in robotics; however, AML/X 
is actively used in our research in machine vision, workcell lay- 
out, and computer aided design. The next section outlines our 
objectives and their influence on the design of AML/X. This 
is followed by an overview of the .basic structure and facilities 
of AML/X, just enough to provide the flavor of the language 
and to be able to follow subsequent examples. (A detailed de- 
scription of AML/X is available in [6].) 

2.0 De&m Rationale 

2.1 Guidhut PrimiDles 

Designing a programming language requires balancing the 
many conflicting requirements of the anticipated user commu- 
nity. To help achieve this balance we have tried to fallow a few 
broad, general principles, against which specific design decisions 
could be evaluated. 

First among these is Hoare’s dictum[7] that the language 
designer’s task is one’of “consolidation, not innovation.” In 
keeping with that principle, we have not introduced any radically 
new constructs in AML/X. Instead, we have chosen from 
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among constructs and ideas that have been tested in other lan- 
guages and have tried to integrate them into a consistent, co- 
herent whole. LISP, APL, and SMALLTALK have had an 
especially strong influence. 

The second guiding principle is to prefer general purpose 
constructs to those meeting specific, limited, application needs. 
A corollary is that it must then be easy to provide layers that 
adapt general purpose features to meet the specific needs. For 
example, AML/X’s interactive debugging tools are a small ex- 
tension of a very general exception handling mechanism. These 
principles keep the language a coherent whole, rather than an 
accumulation of features. In practice, this has been very diffi- 
cult. When an important user requests a specific new feature, 
it is hard to say no. 

The third principle is orthogonality, which demands that 
separate features be separate, that is, that the legality and 
meaning of the use of a construct should be independent of its 
use in combination with some other construct. Orthogonality 
aids in achieving generality, but also makes it easier to write 
obscure programs. It can also be difficult to achieve in a prac- 
tical implementation. For these reasons, we have occasionally 
violated orthogonality, but not without careful thought. 

These three principles are helpful, but they do not substitute 
for an understanding of the anticipated applications of the lan- 
guage. 

2.2 Iarunuwe De&n Criteria 

We have designed AML/X keeping in mind three major 
areas of use: robot programming, machine vision programming, 
and computer-aided design (primarily of mechanical objects and 
assemblies, see e.g. [S]). An analysis of the requirements of ro- 
bot programming and a survey of existing robot programming 
systems appears in 191. Requirements for machine vision pro- 
gramming and an abstract language for vision programming 
(which could be embodied in many ways) are described in [lo]. 
Some issues in programming languages for CAD systems and a 
particular language design are discussed in [ 111. 

In all three areas, flexibility has historically been sacrificed, 
primarily to achieve ease of use. As a consequence, existing 
systems rarely exploit the intrinsic similarities between these 
domains. For example, all three, domains deal with mechanical 
objects, assemblies, geometric algorithms, and transformations 
in 2 and 3 dimensions. 

In the future, applications will expand in all three domains, 
and there will be increased need in industry to integrate them. 
It is therefore desirable to have a single language that can ef- 
fectively deal with robotics, vision, and CAD. 

In the following subsections we discuss the implications of 
the intended uses of AML/X. 

Classes of Users: Roughly speaking, we anticipate three classes 
of users. End users, such as manufacturing engineers or me- 
chanical designers, are the people who specify the operations to 
be carried out by the automation or CAD system. They typically 
have little programming skill, but need to be able to “chain to- 
gether” sequences of pre-existing, relatively high-level com- 

mands, possibly including some simple control flow. Application 
developers write application packages, programs that provide fa- 
cilities for use by a small class of end users. In a sense, an ap- 
plication package decreases generality while increasing ease of 
use for a particular class of users. Application developers typi- 
cally have some programming skill and a deep knowledge of the 
application area. Often they produce new application packages 
by building a layer on top of an existing, more ‘general program. 
Application development environment developers write the (typi- 
cally) large systems application developers use. Robot pro- 
gramming and CAD systems are examples. They need both very 
high programming skill and a reasonably deep knowledge of the 
application area. This mix of users and the way they work has 
had an important influence on the language design. 

Most significantly, the language must be a modem, general 
purpose language well-suited to developing large, layered sys- 
tems. It must support the definition and use of abstract data 
types and have facilities for manipulating strings, complex data 
structures, and symbolic information. A general exception 
handling mechanism is essential so that an application can 
“catch” exceptions from lower layers, thus avoiding the incom- 
prehensible error messages to end users that would otherwise 
result. 

At the same time, the language must be simple, or at least 
have simple subsets, so that it is accessible to end users. How- 
ever, as Hoare has observed[7], subsetting is simpler said than 
done, because an errant program can invoke some language 
feature outside of the subset. It is therefore important to be able 
to selectively disable or hide portions of the language. More- 
over, the use of subsets increases the need for consistency and 
lack of special cases to provide an easy growth path for users 
who become more sophisticated over time. 

Robot Progrannning: Our experience with several generations 
of robot system[3, 12, 13 ] has confirmed that specification of 
manipulator motion represents only a small, though very impor- 
tant, proportion of the total code required for a working robot 
application. Other components include I/O for auxiliary devices 
and communications, operator interfaces, calibration and setup 
routines, bookkeeping, access to manufacturing data bases, etc. 
The failure of special-purpose manipulation languages such as 
AL [14] to provide adequate support for these other compo- 
nents has led to renewed interest [e.g., 151 in the use of standard 
general-purpose languages for robot programming. The ap- 
proach in AML, carried over to AML/X, was to design a new 
general-purpose language whose design trade-offs make it con- 
venient for automation programming. 

Robotic applications do have many special characteristics. 
Manipulator motion specifications and calibration packages rely 
heavily on geometric calculations, and means must be provided 
for expressing these conveniently. Most applications require 
some level of concurrency. Application programs are usually 
debugged (and often written) “on-line” and are hard to restart, 
thus making support for interactive programming especially im- 
portant. 

The structure of programs is often rather different from that 
found in other, more “algorithmic” domains. Generally, the 
main line of an application program is quite straightforward, and 
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consists of little more than a sequence of commands, with most 
of the useful work being done as a “side effect”. Unfortunately, 
the vagaries of the physical world [16] cannot be ignored. Our 
experience has been that robust programs can easily have three 
to five times as much error testing and recovery as main line 
code. Often, the error recovery actions are both context de- 
pendent and safety related. For example, it may be appropriate 
to freeze manipulator motion if a gripper feedback sensor fails 
unless the hand happens to be in a furnace at the time. These 
considerations have led us to place special emphasis on powerful 
exception handling mechanisms. 

Machine Vision: Many of the considerations for robot pro- 
gramming also apply to machine vision [4, lo]. Indeed, one of 
our objectives was to promote better integration of robot and 
vision programs. The large amount of data that must be handled 
in many vision programs means that it is especially important to 
provide data representations and execution primitives with effi- 
cient low-level implementations while still providing great ex- 
pressive power at higher levels. Beyond this, the language 
should permit suitable interfaces to special-purpose computa- 
tional hardware. 

Computer-aided Design: The requirements for computer-aided 
design overlap those for robotics and vision. We require good 
support for layering, support for interaction at high levels, effi- 
cient low-level code execution, and extensibility. Requirements 
that are especially acute in CAD applications include support for 
self-describing objects, efficient and accurate numerical com- 
putation, and the ability to build up extremely complex data 
structures. 

Other criteria: Since we were generally pleased with our expe- 
rience with .AML, we decided early in our design effort to 
maintain its general flavor, but not to require strict upward 
compatibility. The result is that most nontrivial AML programs 
will not run unaltered on AML/X. One reason for this decision 
was to enable us to make several changes for future 
compilabilty. 

Although we wanted to take advantage of object-oriented 
language constructs to provide language extensibility, 
“layering”, and support for modular programming, we also 
wanted to preserve the procedural style that many of our users 
were accustomed to. We also felt that it was essential to provide 
good interfaces to other languages to provide “maturity” (e.g., 
mathematical subroutine packages), to allow for efficient low- 
level execution (our first implementation is an interpreter), and 
to allow us to integrate large and diverse subsystems. 

3.0 Laumuwe Description 

This section describes the basic entities and operations 
available to the AhIL/X programmer. We begin with some de- 
finitions: 

obj’ects These are the entities that can be directly manipulated 
by AML/X. 

values The value of an object is the interpretation of its 
contents; it is meaningful to distinguish between an 
object and its value, since the value of an object can 
be changed. 

OFT Each AML/X object has a type, which defines the set 
of values that that object can have. A&IL/X includes 

several numeric types (I NT, REAL, etc.), types for 
character- and bit- strings, and more complicated 
types. 

variables These are symbolic names (e.g., FOO, VAR NAME, 
x) by which a programmer can refer to objects in 
AML/X; the object to which a variable refers is 
called its binding. We also speak of the “type” and 
“value” of a variable, by which we mean the type and 
value of its biding. 

As in most other programming languages, variables are a key 
feature of AhK/X. They can be manipulated in several ways: 

evaluation Retrieving the binding of a variable, that is, the 
object to which it refers symbolically. 

assignment Changing the value of the object bound to a varl- 
able. Since the type of an object is fixed, assign- 
ment cannot change the type of a variable. 

binding Changing the binding of a variable, that is, causing 
it to be bound to a new object. Unlike assignment, 
there is no restriction about the type of the new 
object to which the variable is bound. 

Expressions are combinations of variables, constants, and 
operators that are evaluated to produce new objects and, in the 
case of assignment, to change the values of existing objects. 
AML,/X is a so-called expression-oriented language, in that all 
program execution can be described as expression evaluation. 

3.1 Data Obiects and Ooerators 

AML/X has the usual complement of basic data objects and 
operators necessary for “language-hood”. These, and a few 
other objects and operators are described cursorily in this sec- 
tion. All Ah4L/X code is written in TH I S TYPE FONT so that 
it stands out from the rest of the text without resorting to the 
use of various awkward quote marks. In code examples, we have 
used upper case for usage that is required (e.g., reserved words) 
and lower case elsewhere (e.g., identifier names). 

Numeric Objects and Operators: Ah4L/X has four kinds of nu- 
meric objects: I NT and LONG I NT, which correspond to 16- 
and 32-bit integers, and REAL-ad LONG REAL, which corre- 
spond to single- and double-precision fl&ng point numbers 
respectively. The usual binary arithmetic operations addition 
(+), subtraction (-), multiplication (*), division (D IV), and 
exponentiation (**) are provided. 

String Objects and Operators: AML/X provides both B I T and 
CHAR strings, consisting of zero or more bits or bytes, which can 
be manipulated ColIectively or individually. The usual oper- 
ations for manipulating both CHAR and B IT strings, including 
current and maximum length, lexicographic comparison, con- 
catenation, and selection, are provided. The standard bitwise 
logical operations AND, OR, XOR, logical and arithmetic shifts, 
rotate, and (unary) NOT are provided for B I T strings. 

Boolean Objects and Operators: BOOLEAN objects can have two 
values, which are denoted by the reserved words TRUE and 
FALSE. The standard Boolean operations AND, OR, XOR, and 
(unary) NOT are available in AMLJX. There are also two 
“short-circuit” Boolean operators, CAND and COR, which do not 
evaluate their right operands unless it is necessary. Thus, if x is 
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MAP 
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EQUAL 
COMPRESS 
AGGLOC 

Figure 1. 

Concatenate two aggregates to form a new aggregate 
Replicate an aggregate a specified number of times 
Make an aggregate containing a sequence of integers 
Is an object an aggregate? 
Number of elements in an aggregate? 
Distribute an operator or subroutine over arguments 
“Place” an operator between successive elements of an aggregate and evaluate 
Lie REDUCE but return an aggregate of partial results 
Are any elements of an aggregate TRUE? 
Are all elements of an aggregate TRUE? 
Are the arguments equal in both structure and value? 
Select elements of an aggregate using an aggregate of BOOLEANs as a mask 
Locate a target aggregate within another aggregate 

Aggregate built-in operators and subroutines. 

zero, x NE 0 CAND y / x GT 10 evaluates to FALSE and 
does not divide by zero. 

Symbol Objects: SYMBOL objects are variables that are not 
evaluated (like quoted atoms in LISP) and can therefore be used 
as names. The notation $name defines a SYMBOL object. 

Reference Objects: An object of type REF “points at” an 
AML/X object, which is called the referand of the REF. REF 
objects can be created by either using the & operator or by call- 
ing REF. The referand of a REF object is obtained by using the 
dereferencing operator ( ! ). 

DEFAULT: The AML/X object DEFAULT is used in situations 
where an object is needed but no particular one is required. For 
example, the return value of a function called only for its side 
effects is DEFAULT. 

Type Objects and Operators: All AML/X objects have a type, 
which can be determined using the typeof operator (?). For 
example, the result of the expression ? 3 is the type I NT. 

3.2 Amresate Data Obiects 

Aggregates are one of the most important features of 
AML/X since they are its most basic data grouping mechanism. 
An aggregate is exactly what its name implies: a collection of 
objects that can be treated as one. An Ah4L/X object that is 
not an aggregate, such as an I NT or CHAR, is called a scalar ob- 
ject. 

Creating Aggregates: Aggregates are created using the uggre- 
galion operator pair, < >, to form a single AML/X object from 
an explicit list of other AML/X objects. The general form 

< el, . . . . ek, . . . . en > 

creates an n-element aggregate containing the elements ek. The 
important points to note are that: (1) any Ah4L/X object can 
be an aggregate element; (2) elements of an aggregate need not 
all be the same type; and (3) each element is the object that is 
the result of evaluating an (arbitrary) expression that specifies 
the element. Once an aggregate is created, its size cannot be 
changed. Figure 1 lists some of the operators and built-in sub- 
routines for working with aggregates. 

Aggregate Subscripts: Individual aggregate elements can be re- 
ferred to by numeric indices or subscripts. If a is an aggregate, 
the expression a ( s ) is a subscripted aggregate reference; we also 

say that a is being applied to s . Elements of multi-dimensional 
aggregates (where some elements are themselves aggregates) 
can be referenced by multiple subscripts. For example, 
a ( 3 ) ( 2 ) refers to the second element of the third element of 
a. Since this syntax is awkward, multiple subscripts can be 
elided,sothata(3)(2)canbewrittenasa(3, 2). 

The most general case of subscripting occurs with multi- 
dimensional aggregates subscripted by arbitrary combinations 
of scalar and aggregate subscripts. The rules are simple. Sup- 
pose 

a is an arbitrary aggregate 
i is a positive integer 
s is an aggregate of positive integers or aggregates 
..rest.. denotes the “rest” of a list of subscripts (possibly 

empty). 

Then, the meaning of any subscript can be determined by ap- 
plying the following rules recursively until all subscripts are re- 
duced to scalar values: 

Pc?est..) 
E;guiwknt 
(a(i)) (..rest..) 

a(s,. .rest. .I a(s(k) rest.. 1 ,...a 

a(DEFAULT,..rest..) :::::a(k,..&t..) ,... > 

A few examples will help to give an intuitive understanding 
of what these rules mean. We’ll start with the 3 x 4 matrix m 
defined by 

m: NEW < < 1, 2, 3, 4 >, 
< 5, 6, 7, 8 >, 
< 9, 10, 11, 12 ' '; 

The NEW keyword indicates that this is a variable declaration. 

It is simple to use aggregate subscripts to refer to rows and 
columns of m. If i is a scalar, then m ( i ) refers to the i -th row 
of m and m( DEFAULT, i ) refers to the i -th column of m. The 
latter can be written more succinctly as m ( , i 1. In general, any 
“missing” subscript is treated as if DE FAULT had been specified. 
The “missing” subscript notation is convenient for denoting 
entire rows or columns. Selected rows or columns can be re- 
ferred to by using aggregate subscripts, as illustrated below: 

Yy 3’) 
## 1st and third rows 

, tOTA(2,4)) ## 2nd through 4th cols 
m(, 14, l>) ## 4th and 1st columns 
m(<1,2>, <1,2>) ## Upper left 2x2 
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IF cond THEN el [ELSE e2] 
evaluates el if cond is TRUE and to e2 otherwise; if e2 is ommitted, DEFAULT is used 

WHILE cond DO expr 
continues to evaluate expr while cond is TRUE; the result is the result of the last evaluation of expr, or DEFAULT if none 

WHILE cond DO COLLECT expr 

continues to evaluate expr while cond is TRUE; the result is an aggregate of the successive results of evaluating expr, or 
the empty aggregate if none 

REPEAT expr UNTIL cant 
continues to evaluate expr until cond becomes TRUE; the result is the result of the last evaluation of expr, or DEFAULT if 
none 

REPEAT COLLECT expr UNTIL cant 
continues to evaluate expr until cond becomes TRUE; the result is an aggregate of the successive results of evaluating 
exp r , or the empty aggregate if none 

BEGIN el; . . . ek; END 
the expressions e i are successively evaluated; the result is the result of evaluating ek. 

SELECT expr CASE cl THEN et .._ CASE ck THEN ek [OTHERWISE oexpr] END 
The result of evaluating exp r is compared against successive e i ; if there is a match, the result is c i ; if no match the result 
is oexpr if present, and DEFAULT otherwise 

Figure 2. Control Ooerators 

Operator Mapping: Operators extend to aggregate operands 
through a set of mapping rules (adopted with slight alteration 
from AML[2]) which are an abstract form of the distributive law 
of arithmetic. Suppose 

s is any scalar object 
<ul,...,un> isann-elementaggregate 
<vl , . . . , v n > is an n-element aggregate 
oP is an AML/X operator 

Then, the operator mapping rules are: 

Eqmmion Eqviwlent 
op <ul ,...,un> <op ul ,...,op un> 
:,;p <vl ,... ,vn> <S 0p vl,...,S 0p vn> 

,...,un> op s <ul op s,...,un op 5’ 
<ul ,..., un> op cvl,..., vn> <ul op vl ,...,un op vn> 

These mapping rules apply recursively to multi-dimensional ag- 
gregates. 

A key point about the mapping rules is that they work in a 
uniform way for most AML/X operators. In particular, “par- 
allel assignment” can be written in the form <v 1 , . . . ,vk> = 
express ion. 

3.3 control ollerators 

AML/X supports control flow constructs typical of a struc- 
tured programming language. These are summarized in 
Figure 2. Since AML/X is an expression-oriented language, 
all control flow constructs are operators that yield a result like 
any other operator, as illustrated by the expression 

move(WHILE ask(‘More?‘) DO COLLECT teach()) 

which creates an aggregate of (presumably) points returned by 
successive calls to teach and passes it to the subroutine move. 

3.4 Exoression Evaiuation 

AML/X is an expression-orientedlanguage, which means that 
evev Al&/X program construct is an expression. Thus, ex- 

pression evaluation is the fundamental computational process in 
AML/X. 

Before an expression is evaluated, it is parsed into a tree of 
subexpressions based on the usual sort of precedence rules 
found in most languages. Then it is evaluated by applying op- 
erators to objects according to two evaluation rules, one for or- 
dinary operators and one for special form operators. To evaluate 
an expression, 

1. If the operator is not a special form, first evaluate the op- 
erator’s subexpressions (left-to-right), then apply the op- 
erator to the resulting objects; 

2. If the operator is a special form, the operator is applied 
without prior evaluation of its subexpressions; the operator 
may cause any or all of its subexpressions to be evaluated. 

The rules are applied recursively and must be augmented by two 
additional rules which are the basis of the recursion: 

1. A constant (e.g., 1, 2.305, ’ FOO ‘) evaluates to itself. 
2. A simple variable (e.g., a, arm, current-speed) eval- 

uates to its binding (not a copy). 

The details of the evaluation rule are only relevant when 
evaluation of a subexpression causes a side effect, i.e., when the 
value of some variable is changed during the course of evaluating 
the subexpression. We will consider several examples. 

Example: <a , b> = ~1, 2> 
This expression assigns 1 to a and 2 to b. The left-hand-side 
evaluates to an aggregate of the bindings of a and b (not copies 
of the bindings); the right-hand-side evaluates to the aggregate 
< 1 ,2>. The usual mapping rules then cause the assignment 
operator to be “distributed” over the corresponding aggregate 
elements. 

There are some circumstances where such behavior is not 
desired. For those cases, Ah4L/X has a copy operator, denoted 
by %. An expression of the form %exp r evaluates to a copy of 
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dia onal: 
3 

SUBR ( m ); 
# Returns the diagonal elements of the n x n matrix m 

n: NEW AGGSIZE ( m ); ## Number of rows (~01s) in m 
i : NEW 0; ## Index over rows/cols 
RETURN ( WHILE ++i LE n DO COLLECT m(i, i) ); 

END; 

id: NEW 3 OF 3 OF 0.; 
diagonaltid) = 1.; 

## Make a 3 by 3 matrix of zeros 
## Set diagonal elements to 1 

Figure 3. The subroutine d i agona 1 returns the diagonal elements of a square matrix represented as a nested aggregate. Its 
use is illustrated by constructing the 3 by 3 identity matrix i d. 

the result of evaluating expr. Its use is illustrated in the fol- 
lowing example. 

Example: <a, b> = <b, a> 
This expression might be written (incorrectly) to swap two var- 
iable values. Each side of the assignment evaluates to an ag- 
gregate of the bindings of a and b, but in different order. 
Applying the mapping rule, the expression is equivalent to 
<a = b, b = a>. Since these are evaluated left-to-right, the 
value of a will be “lost”. The copy operator, used in the ex- 
pression <a, b> = %<b, a>, causes a copy of the original 
values to be made before any of the assignments are done, thus 
achieving the desired effect. 

Example: diagonal(m) = 1 
The subroutine shown in Figure 3 uses 
WH I LE. . DO. . COLLECT to construct an aggregate of the 
bindings of the diagonal elements of the matrix m. Since 
d i agona 1 ( a ) evaluates to an aggregate of the bindings of the 
diagonal elements, d i agona 1 (a) = 1 has the effect of set- 
ting all diagonal elements of a to 1. Again, the key point is that 
variables in Ah&/X evaluate to their bindings, not copies of 
those bindings, and the WH I L E . . DO. . COLLECT operator ag- 
gregates but does not copy the successive values of the loop ex- 
pression. 

3.5 Subroutines 

This section describes AML/X subroutines and variable 
declarations. A subroutine is defined by a statement of the form 

subrname: SUBR(...formal-arguments...) 
declarations 
. . . 
statements 

END; 

This statement really consists of two parts, the subroutine ex- 
pression itself (SUBR...END) and the variable name 
subr name. The statement defines a subroutine and makes it 
the binding of the variable subrname. There may be any 
number of formal arguments, including zero. The body of the 
subroutine consists of any number (including zero) of focal vur- 
iable declarations followed by any number (including zero) 
AML/X statements. 

A subroutine is called when a subroutine object is applied to 
an argument list, as follows: 

subrexpr(actual-arg-1 ,...,actual-arg-n) 

The subroutine to which the expression sub r exp r evaluates is 
called with the specified actual arguments. 

Local Variables and Declarations: Local variables are variables 
whose names are known only within the extent of a particular 
subroutine. A local variable is defined by being declared at the 
beginning of a subroutine. Variable declarations (except labels 
and internal subroutines) are of the form 

varname: declarator init-expr; 

where varname is the name of the variable being declared, 
dec 1 ar a tor specifies various properties of the local variable, 
and i n i t-expr is an arbitrary Ah&/X expression that defines 
the variable’s type and initial value. The effect of a variable 
declaration is to associate a variable name with the storage that 
holds its binding, as defined by four attributes: 

Memory space: Determines which memory space the bind- 
ing is stored in. If the binding is in the stack, it will be dis- 
carded when the subroutine terminates. 
Constant: Determines whether or not the value of the 
binding can be altered once it is initialized. 
Copy: Determines whether the result or a copy of the result 
of evaluating the initialization expression becomes the 
binding. 
Per&tent: The binding is created when the subroutine is 
loaded and is reestablished each time the subroutine is in- 
voked. 

Possible declarators and their attributes are shown in F’ mre 4. 

A subroutine definition contained in another subroutine is 
an internal subroutine and can only be called from within the 
containing subroutine. Free variables in internal subroutines are 
bound lexically. Labels are declared by prefixing any statement 
by a name, as in 

labname: stmt; 

Internal subroutines and labels are two exceptions of the rule 
that declarations appear at the beginning of a subroutine. In this 
case, ease-of-use seemed to outweigh consistency. 

Arguments: A simple formal argument is a variable name, im- 
plicitly declared as a B I ND declaration, and bound to the corre- 
sponding actual argument when the subroutine is called. In 
effect, arguments are passed by reference. The caller can spec- 
ify that an argument be passed by value by preceding the actual 
argument with the copy operator (%). The formal argument can 
also be preceded by the copy operator, in which case the argu- 
ment is passed by value regardless of how the actual argument 
is passed. This is illustrated in the following example: 
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I Declarator 

NEW 

NEW CONSTANT 

I CONSTANT I Stack ~--ryes 1 Yes [ No 1 

I STATIC 1 Heap ~-INo 1 Yes [Yes 1 

I STATIC CONSTANT 1 Hew I Yes 1 Yes 1 Yes 1 
1 BIND I- I- INo INo 1 
1 STATIC BIND I- 1 No 1 Yes 1 

Figure 4. Variable dm eclarators 

fact: SUBR(%i) 
## Returns i factorial (i GE 1) 
f: NEW i; 
WHILE --i GT 1 DO f *= i; 
RETURN(f); 

END; 

ML/X provides a way to specify values for missing argu- 
ments. If the formal argument has the form 

formal-arg DEFAULT expr 

and the corresponding actual argument is supplied, then 
for ma 1 -a r g is processed as described above. However, if the 
corresponding actual argument is missing, or if its value is 
DECAULT, then expr is evaluated and its result becomes the 
binding of forma I-ar g. Thus in the code 

s: SUBR(p, to1 DEFAULT I.Oe-6) 
. . . 

END * 
d3I; 
~(3, 1 .Oe-8); 

to 1 is bound to l . Oe-6 the fit time s is calIed and to 
l . Oe-8 the second time. 

Subroutines can also access excess actual arguments using 
the predefined variable ACTUAL ARGS, which is bound to an 
aggregate of the actual arguments- 

It is easy to write generic subroutines in AML/X because it 
is not necessary to declare the type of formal arguments. This 
is often convenient, especially for small programs, but can lead 
to programming errors and make it very difficult to compile ef- 
ficient code for the subroutine. In keeping with our philosophy 
of letting the user make the trade-off between flexibility and 
efficiency, AML/X allows optional type declarations for formal 
arguments. A formal argument (possibly including a DEFAULT 
clause) can be followed by a type specification of the form 

MUSTBE type-spec 

where type-spec is an aggregate of types. If the correspond- 
ing actual argument is not one of the specified types, an excep- 
tion is raised. 

Exiting from Subroutines: Any AML/X object can be returned 
as the result of a subroutine call by passing the object to the 
RETURN built-in subroutine. The object returned is not copied 
unless it would be destroyed by termination of the subroutine 

(e.g., a NEW variable). Therefore a variable binding can be re- 
turned and a subroutine call can be used on the left-hand side 
of an assignment, as illustrated in Figure 3. 

The built-in subroutine CLEANUP can be called while exe- 
cuting a subroutine to request an action when the subroutine 
terminates. For example, suppose a subroutine which opens a 
file should always close it, even if the subroutine terminates be- 
cause of some error condition. This can be done by the code 
shown in Figure 5. 

3.6 Exception Handling 

When an error is detected during program execution an ex- 
ception is raised. The action taken by a program when an ex- 
ception is raised is determined by the exception handler defined 
for that particular exception. The design of m/x’s exception 
handling is described in [ 181. 

Each possibie exception has a name, which is represented by 
a SYMBOL. When an exception is raised, either by the system 
or by the user through the RAI SE-EXCEPT1 ON built-in sub- 
routine, AMLjX finds the most recent activation of a block 
containing a variable of that name which was declared as a 
HANDLER. If none is found and a variable of the appropriate 
name exists at top-level, it is used. The binding of that variable 
is the exception handler used. 

The type of the binding determines what kind of action is 
taken, as follows: 

EXPR: The EXPR is evaluated and the result becomes the 
result of the exception handler. 
SUBROUTI NE: The SUBROUTI NE is called. The argu- 
ments passed provide the SUBROUT I NE with detailed in- 
formation about the exception that occurred. The result of 
the subroutine call becomes the result of the exception 
handler. 
LABEL: The LABEL is branched to. The exception handler 
has no result. 
BOOLEAN: The BOOLEAN object is set to TRUE and the 
result of the exception handler is TRUE. 
SYMBOL: The value of the SYMBOL is used as the name of 
another exception to raise. This allows exceptions to be 
grouped hierarchically into exception groups, each consist- 
ing of several exceptions all handled by the same exception 
handler. 
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file update: SUBR() 
ci NEW OPEN(‘file.name’,‘w’); ## Open file 
CLEANUP( $(CLOSE(c)) 1; ## Request cleanup action 

END; ‘* 
## Processing code 

Figure 5. An example of a subroutine cleanup action: The expression $ (CLOSE ( c) ) passed to CLEANUP is an (unevaluated) 
expression object which will be evaluated when f i 1 e update terminates. 

A program can use the EXCP-B I ND I NG built-in subroutine 
to determine the current exception handler for a specified ex- 
ception. In this way, a subroutine can decide to let an exception 
be handled by its caller if its caller has an appropriate handler, 
or can handle the exception itself if the caller doesn’t provide a 
handler. For example, in the code in Figure 6, the subroutine 
default handle set is used in foo to bind 
EXCP-ZEEOD IV &the caller’s handler if it exists, or to a 
boolean flag if it doesn’t exist. 

Most system-defined exceptions are continuable, meaning 
that execution continues from where the exception was raised 
and the resultsf the exception handler becomes the result of the 
operator that caused the exception. The operation is not “re- 
tried”, although the exception handler is free to retry the oper- 
ation or provide a reasonable result, as in 

EXCP ZERODIV: HANDLER SUBR() 
##-Return lar est possible number 
RETURN(MAXVAL LONG-REAL)); 9 

END; 

User exceptions can be either continuable or non-continuable. 

3.7 Obiect-oriented Prommming 

The use of abstraction is a very powerful tool for building 
large programs. Powerful or complicated abstractions can be 
implemented by using .simpler ones so that each implementation 
is small and (presumably) easy to understand. AML/X sup- 
ports abstraction by providing classes, a mechanism for defining 
new objects and operations on them. A class defies a new type 
in the language; a class instance is a particular object derived 
from a class. This is analogous to built-in types and instances 
of the built-in types: for example the number 2 is an instance 
of the type I NT. Thus, if one writes a class definition for com- 
plex numbers, each instance of that class would correspond to a 
particular complex number. The data for each instance is held 
in its instance variables, which are accessible only from within the 
class unless access elsewhere is granted explicitly. 

Class Definitions: A class definition is defined by a statement 
of the form 

classname: CLASS(...formal-arguments...) 
I VARS 

instance variable declarations 
END; 
declarations 
initialization statements 
methods 

END ; 

This statement defines a TYPE and makes it the binding of 
c I ass name. Each declaration in the I VARS section defines an 
instance variable. All of the non-STAT I C declarators shown in 
Figure 4 can be used. Figure 7 shows part of a simple class 
definition for vectors. 

Class Instantiation: A class instance is created (the “class is 
instantiated”) by calling the class definition as one would a 
subroutine, the only difference being that a class returns an in- 
stance containing the current bindings of the class’ instance 
variables. Thus, vet tor ( 1 ,2 ,3 ) would return an instance of 
vector with instance variables 1 EO, 2E0, and 3E0. 

Methods and Operator Overloading: Classes are only useful if 
there is a way to do something to class instances. A method is a 
special kind of internal subroutine that (1) is contained in a class 
definition but can be called from outside of the class definition, 
and (2) has access to the instance variables of an instance of the 
class. A method is invoked by executing an expression of the 
form 

obj~exp.method~name(...formal~argumens...) 

where ob j exp is an expression that evaluates to a class in- 
stance and- met hod name is the name of a method. The 
method executes exactly like an ordinary subroutine except that 
the instance variables are bound to the values of the instance 
variables contained in the instance instead of to the result of 
evaluating their initialization expressions. Also, the predefined 
variable SELF is bound to the class instance itself. 

AML/X operators can be extended to class instances. or 
overloaded, on a class-by-class basis by associating a method 
with the operator. This is done simply by having in the class a 
method whose “name” is a literal form of the operator to be 
overloaded. If the left operand of an operator is a class instance, 
the corresponding operator method in the appropriate class de- 
finition is invoked with the right operand as actual argument; if 
the left operand is an instance of a built-in type but the right 
operand is a class instance, the corresponding modifier method 
is invoked passing the left operand as actual argument. This al- 
lows non-commutative operators to be overloaded. 

Exposed Instance Variables: Ordinarily, instance variables are 
not accessible except within the class definition or through 
method calls. Direct access to instance variables can be explic- 
itly granted by declaring them to be EXPOSED as in 

I VARS 
x: EXPOSED NEW REAL(); 

END; 

An exposed instance variable is referenced by an expression of 
the form: 

instance.inst var name - - 

Note that a class definition containing only exposed instance 
variables is equivalent to C’s structures and PASCAL’s records. 

Exposed instance variables were added to the language in 
response to user’s complaints that they often had to write a 
method just to access a single instance variable. However, be- 
cause they expose the data representation used by a class, they 
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default handle set: SUBR(ex name, new handler) 
## If-the caller of the caller of tiiis routine does not 
## have an exception handler for the exception named 
## ex name, return the specified new handler; otherwise, 
## return the existing handler. 

existing-handler: BIND EXCP-BINDING(ex-name, CALLER(CALLER())); 

RETURNS IF existing handler NE UNBOUND THEN existing handler - 
ELSE new handler 1; 

END ; 
- 

foo: SUBR() 
## Set up handler for EXCP ZERODIV 
EXCP ZERODIV: HANDLER BIND- 

default-handle-set($EXCP_ZERODIV, FALSE); 

END;“’ 

Figure 6. Providing a default exception handler: The subroutiner foo binds the result of calling def au 1 t-hand 1 e-set to 
EXCP-ZEROD IV, thus making it the exception handler for dividing by zero. The subroutine 
defau 1 t-hand 1 e-set first determines the exception handler binding in its caller’s caller (i.e., foo’s caller). If 
there is one, it is returned for use; otherwise the new-hand 1 er is returned for use as the exception handler. 

violate the abstraction that classes were intended to provide. 
PR I VATE EXPOSED instance variables, which only allow direct 
access to instance variables from within the class definition, 
were introduced so that data representation could be exposed 
inside the class definition but remain hidden from outside view. 

4.0 Examoles 

4.1 Cartesian Data Tvues 

Data types for vectors, rotations, and coordinate transf- 
ormations are often provided in special-purpose, languages for 
robotics and CAD [e.g., 14, 1.5, 19, 201. The conciseness and 
consistency checking provided by such types, compared to the 
subroutine libraries providing comparable functions for general 
purpose languages, significantly Gnproves programmer produc- 
tivity and program readability. Unfortunately, users of special- 
purpose languages are often stuck with whatever internal 
representation and function set the system implementers have 
chosen to provide. 

This section .illustrates the use of AML/X classes and oper- 
ator overloading to implement these data types in a way that 
provides both expressive power and easy customizing. 

Vectors: Vectors are represented by three real numbers, stored 
in EXPOSED instance variables x , y , z. Methods overload- 
ing the normal arithmetic operators can be provided for vector 
addition, subtraction, and scaling. “Multiplication” of two vec- 
tors is used for vector inner product and “exponentiation” is 
used for cross product. A .method for assignment can also be 
provided. A sketch of such a class definition is given and several 
standard constant vectors are declared in Figure 7. 

Rotations: Rotations are commonly represented as 3 x3 
orthogonal matrices. This representation is easily understood 
and is computationally efficient if many vectors are to be ro- 
tated. On the other hand, it is wasteful of storage, subject to 
numerical inconsistencies, and computationally expensive for 

many operations, including composition and specification from 
angles. 

As an alternative, we have sketched in Figure 8 a class de- 
finition for rotations that uses quaternions[21, 221 as the 
underlying representation. In this case, EXPOSED PRIVATE 
instance variables are used in order to hide implementation de- 
tails while permitting efficient execution within methods. TWO 
“class” methods, 

r = rotation.polar(axis vector, angle); 
r = rotation.euler(abt-?-l,abt-y,abt-z-2); 

permit rotations to be specified either as a right-handed twist 
about a specified axis or as a sequence of rotations about cardi- 
nal axes. Multiplication is overloaded to provide for composi- 
tion of two rotations and rotation of a vector and division is 
overloaded to provide for formation of an inverse rotation and 
for multiplication by the inverse. 

Two methods, 

<axis vector,angle> = r.polar parms(); 
<abt ? -- l,abt-y,abt z 2> = r.eiler parms(); -- 

invert the po 1 a r and eu 1 e r methods, respectively. One po- 
tential problem with the latter method arises when the second 
angle, corresponding to rotation about the “y” axis, is zero. In 
this case, only the sum of the first and third angles is determined. 
By default, the third value will be set to zero and an exception, 
EXCP-degen-rot, is raised. However, the exception handler 
can override the default. For example, the simplified kinematic 
solution procedure shown in Figure 9 uses an exception handler 
to divide the angle sum evenly between.the fist and third wrist 
joints. 

Transformations: Arbitrary coordinate transformations, con- 
sisting of rotation followed by translation, are straightforwardly 
implemented using the class definitions for vectors and ro- 
tations. In a typical class definition (not shown), multiplication 
would be overloaded to provide transformation of vectors and 
composition, and division would be overloaded to provide in- 
verses and composition with inverses. A class,method for co- 



vector: CLASS(xx DEFAULT 0.0, yy default 0.0, zz DEFAULT 0.0) 

I VARS 
x: EXPOSED NEW REAL(xx); 
y: EXPOSED NEW REAL(yy); 
z: EXPOSED NEW REAL(zz); 

END; 

$“: METHOD(v) 
SELECT (?v> 

## Inner product and scaling 

CASE vector THEN RETURN(x”v.x+y*v.y+z”v.z) 
OTHERWISE RETURN(vector(x”v, y”v, z’v)) 

END : 
END; . 
$*: MOD-METH(s) RETURN(vector(s”x, s*y, s*z)); END; 

$ *;*: METHOD(v MUSTBE <vector>) ## Cross product 
RETURN(vector(y”v.z-z*v.y, z*v.x-x*v.z, x*v.y-y*v.x)); 

END; 

$=: METHOD(v) 
<x9 Ys Z’ = SELECT (?v) 

CASE vector THEN <v-x, v.y, v.z> 
OTHERWISE v 

RETURN(SELF); 
END; 

END; 

uvect : METHOD0 RETURN(SELF/sqrt(self”self)); END; 
END; 

null vector: STATIC CONSTANT vector(0, 0, 0); 
x axTs: 
yIaxis: 

STATIC CONSTANT vector(1, 0, 0); 
STATIC CONSTANT vector(0, 1, 0); 

z axis: STATIC CONSTANT vector(0, 0, 1); 

Figure 7. Class definition for vectors: Methods that overload the addition, subtraction, and division operators have been 
omitted for brevitv. 

ercing vectors and rotations to transformations would also be 
useful. 

4.2 Coordinate Frames and Affiient 

Coordinate transformations arise naturally from part- 
subpart relationships in both robot and CAD programming. If 
the location (i.e., position and orientation) of Part A relative to 
the workstation is given by a transformation, frame-a, and 
t r an s-ab gives the location of a Subpart B relative to A, then 
the location of B relative to the workstation is given by 
f r ame a” t r an s a b. Similarly, if the location of C relative 
to B is&en by tr ans bc, then the location of C relative to 
the workstation is given by 
frame a*trans ab’trans bc. In practice, these ex- 
pressions become very cumbersome and tend to interfere with 
the readability of programs. To get around this, AL [ 141 intro- 
duced the concept of affixment, in which part-subpart relation- 
ships and similar dependencies were declared explicitly, as in 

AFFIX part-b TO part-a AT trans-ab; 

Programs then simply referred to par t-b to get the current lo- 
cation of Part B. If Part A was moved or if a new value for its 
location was determined by sensing, then the location value for 
Part B was updated automatically. 

One of the interesting aspects of the AL implementation of 
affiient [23] was that recomputation of coordinate frame val- 
ues was deferred until they were needed, but the values were 
saved to eliminate needless recomputation. This saving can be 
quite important in robotic applications where parts are being 
moved about the workstation and where the expressions in- 
volved in recomputation may involve a long chain of affixments. 
An AML/X implementation of much the same idea is shown in 
Figure 10. Once again, classes and operator overloading are 
used to provide a new data type, frame, whose value corre- 
sponds to a coordinate system. 

Figure 11 illustrates the use of this data type in a simple as- 
sembly application. Figure 11 (a) shows a box and cover plate 
being delivered to an assembly station on a small tray. The co- 
ordinates of the box and cover are initiahy known relative to the 
tray. Furthermore, grasping points relative to the box and cover 
have been defined. The problem is to use vision to locate the 
tray, then use a vision routine to locate the box and cover more 
precisely, based on the tray location. Finally, place the cover 
on the box and pick up the box. A program to accomplish this 
is sketched in Figure 11 (b). 
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rotat ion: CLASS(ss DEFAULT 0.0, vv DEFAULT null vector MUSTBE <vector>) - 

I VARS 
s: PRIVATE EXPOSED NEW REAL(ss); 
v: PRIVATE EXPOSED NEW vv; 

END ; 

$=: METHOD(r) <s,v> = <r.s, r.v>; END; 

polar: CLASS METH(axis MUSTBE <vector>, angle) 
RETURN(rot%tion(cos(angle/2), sin(angle/2)“axis.uvect())); 

END ; 

euler: CLASS METH(a, b, c) 
RETURN(rotation.polar(z_axis,a) ’ rotation.polar(y-axis,b) * rotation.polar(z-axis,c)); 

END ; 

$“: METHOD(p MUSTBE <rotation,vector>) 
SELECT (?p) 

CASE rotation THEN RETURN(rotation(s*p.s-v*p.v, 
CASE vector THEN RETURN((SELF”rotation(O,p)/SELF 7 

.s*v+s”p.v+v”“p.v)) 

.v) 
END; 

END ; 

$/: METHOD(p MUSTBE <rotation>) 
RETURN(rotation(s”p.s+v”p.v, p.s*v-s”p.v-v**p.v)) 

END ; 

$/: MOD METH(p) 
IF p NE 1 THEN RAISE EXCP($EXCP-invalid-inv,,<p,SELF>,TRUE); 
RETURN(rotation(s,-VT); 

END ; 

euler parms: METHOD0 
ad:- 
bc: 

BIND ~““2 + v.z”“;; 
BIND v.x*“2 + v. ““2; 

beta: BIND acos((ad-bc /(ad+bc)); Y 
gpa: BIND atan2(v.z, s); 
gma : BIND IF beta NE 0 THEN atan2(v.x, v.y) 

ELSE BEGIN rslt: BIND RAISE EXCP($EXCP degen rot,, gpa, TRUE); 
IF is 3 reals(rslt) THEN RETURN‘rrslt)-ELSE 0.0; 

END; ##See also Figure 9 
RETURN(<gpa-gma, beta, gpa+gma>); 

END; 

polar parms: METHOD0 
s sqd: BIND ~““2; 
RETURN(IF s-sqd EQ 0.0 THEN <z axis, 0.0’ 

END ; 
ELSE <v7sqrt(s_sqd), acos(s”“2-s-sqd)>); 

is 3 reals: SUBR(va1) -- 
RETURN( ISAGG(va1) CAND AGGSIZE(VAL) EQ 3 CAND ALL(?VAL EQ 

END ; 
REAL) 1; 

END; 

EXCP degen rot: BIND HANDLER FALSE; ## Default: i nore except 
null-rot: STATIC CONSTANT rotation.polar(z-axis, 03; - 

Figure 8. Class definition for rotations 

ion 

The declarations create an “affiient tree” of frames. The 
instance variables associated with each frame specify the parent 
frame, the offset of the frame relative to its parent, the present 
value of the frame-i.e., its transformation relative to the 
workstation- a “mark” counter used to determine whether the 

value is valid, and a flag specifying whether the affixment is 
“rigid”. The mark counter is incremented every time a new 
value is saved, and a frame’s value is valid if and only if its mark 
counter is greater than its parent’s. “Rigid” affixments are those 



hand-vector: STATIC CONSTANT vector(O,O,g); 

solve arm: SUBR( f MUSTBE <frame> ) 
t: HIND f.xfO; ## Frame transformation 
cj: BIND t.v - t.r * hand vector; 
RETURN( <cj.x, cj.y, cj.zy # (t.r).euler-parmso 1; 

EXCP degen rot: HANDLER SUBR(a, b, ang-sum); 

END; 
ii;ETURNT<ang-sum, O., ang-sum>/Z); 

END; 

Figure 9. Simplified kinematic solution procedure for a Cartesian robot such as the IBM 7535: This subroutine returns an 
aggregate of six real numbers giving joint values corresponding to specified hand frame. Note the use of an exception 
HANDLER subroutine to override the default handling of degenerate wrist rotations. 

in which updates to the frame value are to cause the parent’s 
value to be updated as well. 

The initial assignment statement causes the value of tray 
to be updated, and its mark to be incremented. The second 
statement fit causes the value of cover to be computed as 
partof thecall to locate-object. Since tray hasbeenup- 
dated, its mark counter is higher than that of cover, so the 
value is obtained by obtaining a valid value for tray and then 
composing the result with the offset stored for cover. The as- 
signment then updates the value stored in cover a second time. 
The third statement repeats the process for box. 

Subsequent statements call subroutines to pick up the cover, 
place it on the box, etc. The fragments from grasp-object 
and move object illustrate the use of affiient to simplify 
programn&g. grasp-o b j ec t moves the robot to the specified 
grasping point, closes the gripper, and then affixes the object (by 
assumption, the most remote rigidly affixed ancestor) to the ro- 
bot. Subsequent motions of the robot will cause all location at- 
tributes of the object to be updated. move-objet t verifies 
that mot i on frame is affixed to the robot and then moves the 
robot so thatthe value of mot i on-frame is equal to des t i - 
nation. 

5.0 Imvlementation 

AML/X is implemented by a portable interpreter written in 
C. It runs on the IBM 370 family of machines under VM/CMS, 
on the IBM PC under DOS and XENIX, on the IBM RT/PC 
under AIX, and on several other machines. Facilities exist on 
all machines for writing C subroutines callable from AML/X; 
on the VM/CMS implementation, there are also interfaces to 
Fortran and PL/ 1. 

6.0 Exwrlence and Conclusions 

AML/X has now been in use for about a year in our research 
in robotics, computer-aided design, and machine vision. Exe- 
cution speed of the interpreter has proved adequate for robotics 
applications. As anticipated, however, the interpreter is too 
slow for production use in the lowest layers of more complex 
systems, especially in CAD applications. We have begun work 
on a prototype compiler that should resolve this issue. Mean- 
while, several of our researchers find AML/X sufficiently ex- 
pressive that they prototype low level geometric data structures 

and algorithms in AML/X and recode in C where necessary for 
efficiency. Classes, including operator overloading, are often 
used in this work, and the resulting programs are both readable 
and modifiable. 

AML/X has also been used as a programming “front-end” 
to a powerful geometric modelling system [17]. In this case, 
class definitions for geometric objects have been written in 
AML/X but the actual data representation is created and ma- 
nipulated by the modelling system. Each class instance essen- 
tially contains a “handle” on the data maintained by the 
modelling system. Methods implement geometric operations by 
passing these “handles” to the modelling system, which then 
does the necessary computation. Our initial (limited) experience 
with this use of AML/X in the higher layers of a system is that 
it provides a very powerful programming environment with very 
reasonable performance. The drawing in Figure 11 was 
produced by an AML/X program running on this system. 

The need for concurrency can to some extent be met by 
simple interfaces to operating system services. However, in re- 
sponse to the requirements of automation programming, we 
have begun to consider providing concurrency directly in the 
language. 

Providing interfaces to other languages has allowed us quick 
access to a variety of existing code, ranging from mathematical 
subroutines, to graphics routines, to a large modelling system. 
We expect that AML/X will continue to be used at the highest 
layers of large systems built from existing components and that 
using it in this way will help us to integrate various automation 
technologies. 
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frame: CLASS(afx DEFAULT NULL MUSTBE <REF,frame>, 
ofst DEFAULT transo, 
rigidly DEFAULT FALSE MUSTBE <BOOLEAN> KEY) 

frame-counter: STATIC LONG-INT(0); 

I VARS 
parent: PRIVATE EXPOSED NEW IF ?afx EQ REF THEN afx ELSE Bafx; 
offset: PRIVATE EXPOSED NEW trans.coerce(ofst); 
value: PRIVATE EXPOSED NEW IF parent EQ NULL THEN 

trans() ELSE (!parent).xfo*offset; 
mark: PRIVATE EXPOSED NEW frame counter++* 
rigid: PRIVATE EXPOSED NEW BOOLEAN(rigidlyj; 

END; 

$=: METHOD(f) 
value = trans.coerce(f); 
IF parent NE NULL THEN 

IF rigid THEN (!parent) = value/offset 
ELSE offset = (l/(!parent).xf())*value; 

mark = frame counter++; 
RETURN(%value); 

END; 

$*: METHOD(b) RETURN(SELF.xf() * b); END; 

$/: METHOD(b) RETURN(SELF.xf() / b); END; 

xf: METHOD0 SELF.validate(); RETURN(%value); END; 

unfix: METHOD0 parent = NULL; rigid = FALSE; END; 

affix-to: METHOD(afx MUSTBE <REF,frame>, ofst, 
rigidly DEFAULT FALSE MUSTBE <BOOLEAN> KEY) 

IF ?ofst EQ DEFAULT THEN SELF.validate(); 
SELF.unfix(); 
rigid = rigidly; 
parent = IF ?afx EQ frame THEN Eafx ELSE afx; 
IF ?ofst EQ DEFAULT THEN 

offset = (l/((!parent).xf()))*value 
ELSE 

BEGIN mark = 0; offset = trans.coerce(ofst); END; 
END; 

validate: PRIVATE METHOD0 
if parent EQ NULL then RETURNS; 
(!parent).validate(); 
IF mark LE (!parent).mark THEN 

END; 
BEGIN value = (!parent).value*offset; mark = frame-counter++; END; 

rigid ancestor: METHOD0 
RETURN(IF rigid CAND parent NE NULL THEN (!parent).rigid-ancestor-0 ELSE SELF); 

END; 

has ancestor: METHOD(f) 
RcTURN(IF SELF EQ f THEN TRUE 

ELSE IF parent EQ NULL THEN FALSE 

END; 
ELSE (!parent).has-ancestor(f)); 

END; 

Ficwre 10. Class definition for Cartesian frames and affixments 
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ly=TRUE); 

(b) 
tray: NEW frame(); 
cover : NEW frameftray, trans(...)>; 
cov-gr asp : NEW frametcover, trans(...), rigid 
box : NEW frameftray, trans(...)); 
box-top : NEW frametbox, trans(...)); 
box-grasp: NEW frame(box, trans(...), rigid 

tray = locate object(DEFAULT, . ..I. ## no a p 
cover = locateobject(cover, . ..I. ## locate 
box = IdcateIobject(box, . ..I. ## locate 

ly=TRUE); 

riori info 
cover better 
box better 

grasp object( cover grasp, . ..I. 
move object( cover ,-box-top, . . ) ; 

## grasp the cover 
## move it 

release object( . . . ); 
grasp o6ject( box 

## let go 

move i5bjecti . ); 
grasp, . . . ) ; 

- 

grasp-object: SUBR(grasp-frame, . . . 1; 
. . . 
move robottgrasp frame, . ..I. 
close gripper-( ..3; 
(grasp frame.rigid-ancestor()).affix_to(robot); 
. . . 
END ; 

move object: SUBR(motion frame, destination, . ..I. - - 
. . 
IF NOT motion frame.has-ancestor(robot) THEN 

RAISE EXCPT .._ ); 
move-robot(destination/motion framelrobot, .._ 1; - 
. . 
END ; 

Figure 11. Simple robotic assembly task: (a) Initial situation and (b) Sketch of program. The models in (a) were implemented 
using an AML/X front-end to the IBM Geometric Design Program [ 171. 
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