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Abstract

Active compliance enables robots to carry out tasks in the
presence of significant sensing and control errors. Compliant
motions are quite difficult for humans to specify, however.
Furthermore, robot programs are quite sensitive to details
of geometry and to error characteristics and must, therefore,
be consiructed anew for each task. These factors motivate
the search for automatic synthesis tools for robot program-
ming, especially for compliant motion. This paper describes
a formal approach to the synthesis of compliant-motion
strategies from geometric descriptions of assembly operations
and explicit estimates of errors in sensing and control. A key
aspect of the approach is that it provides criteria for correct-
ness of compliant-motion strategies.
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1. Introduction

The central robot-programming problem is to enable a
robot to perform tasks despite its uncertain position
relative to external objects. The use of sensing to reduce
uncertainty significantly extends the range of possible
tasks. Sensor-based robot programs are very difficult

to write, however, as there is little theory to serve as a
guide. To make matters worse, programs written for
one task are seldom, if ever, applicable to other tasks.
These two points make the development of an auto-
matic synthesis strategy for sensor-based robot pro-
grams a key priority.

In this paper, we propose a formal approach to the
automatic synthesis of a class of compliant, fine-mo-
tion strategies applicable to assembly tasks. The approach
uses geometric descriptions of parts and estimates of
measurement and motion errors to produce fine-mo-
tion strategies. Although our description of the ap-
proach will be in the form of an abstract algorithm, no
implementation of this approach exists at present
(although implementation is in progress). The forma-
lism provides a structured way of thinking about fine-
motion strategies and, therefore, may be helpful to
human programmers of such strategies.

1.1. FINB-MOTION STRATEGIES

One important source of difficulty in robot program-
ming is that the programmer’s model of the environ-
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ment is incomplete and inexact as to the shape and
location of objects. Vision may be used to determine
the approximate shapes and positions of objects, but
generally not with sufficient accuracy for assembly by
pure position control. Even knowing object shapes
and positions sufficiently accurately is not enough. Po-
sitioning errors inherently limit the tasks achievable
by strict position control. Increasing the mechanical
accuracy of robots to levels required for assembly is
expensive and ultimately stifling. Instead, one must
abandon the paradigm of pure position control for
tasks where the allowable motions are tightly con-
strained by external objects, as they are in mechanical
assembly.

The basic method for achieving constrained motion
in the presence of position uncertainty is by the use
of controlled compliance (see Mason’s work [1983]
for an overview of compliance research). Compliant
motion meets external constraints by specifying how
the robot’s motion should be modified in response
to forces generated when constraints are violated.
Contact with a surface, for example, can be guaranteed
by moving so that a small force normal to the surface
is maintained. With this technique, the robot can
achieve and retain contact with a surface that may
vary significantly in shape and orientation from the
programmer’s expectations. Generalizations of this
principle can be used to accomplish a wide variety of
tasks involving constrained motion, for example, in-
serting a peg in a hole and following a weld seam.

The specification of particular compliant motions to
achieve a task requires knowledge of the geometric
constraints imposed by the task. Given a description
of the constraints, choices can be made for the compli-
ant-motion parameters, for example, motion freedoms
to be force controlled and those to be position con-
trolled (Paul and Shimano 1976; Mason 1981; Raibert
and Craig 1981), or the center of compliance and axis
stiffnesses (Hanafusa and Asada 1977; Salisbury 1980;
Whitney 1982). It is common however, for position
uncertainty to be large enough so that the programmer
cannot unambiguously determine which geometric
constraint holds at any instant in time. Figure 1, for
example, shows some different initial conditions that
can hold in two-dimensional, peg-in-hole insertion.
Under these circumstances, the programmer must
employ a combined strategy of force and position con-

Fig. 1. Some possible
configurations for peg-in-hole
insertion.

trol that guarantees reaching the desired final configu-
ration from all of the likely initial configurations. We
call such a strategy a fine-motion strategy.

One of the most widely studied tasks in robotics
is the two-dimensional, peg-in-hole task. Detailed
analyses have been carried out to determine strategies
that guarantee successful insertion once the peg is
partly in the hole (McCallion and Wong 1975; Simun-
ovic 1975; Drake 1977; Ohwovoriole and Roth 1981;
Whitney 1982). When the initial uncertainty in posi-
tion is large enough, a strategy must also be devised to
ensure that the peg can find the hole (Inoue 1974;
McCallion and Wong 1975). We can illustrate a
variety of strategies for one task by considering the
ways this problem has been addressed.

1. Chamfers. Chamfers on the hole entrance
and/or the peg tip increase the range of relative
positions where the peg can fall into the hole,
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at least partway. This technique is especially
effective if the peg support has lateral compli-
ance (Drake 1977; Whitney 1982).

2. Tilting the peg. Tilting the peg slightly also
increases the range of relative positions where
initial entry into the hole is guaranteed (Inoue
1974). In fact, the geometric effect of tilting
the peg is almost identical to that of providing
a chamfer (see Section 2.6).

3. Search. The simplest strategy is a search in
which the peg slides along the top surface until
it falls into the hole. In general, the search has
to pick an initial direction of motion and,
possibly, back up if the hole is not found.

4. Biased search. A slight modification to the
search strategy is to introduce a bias into the
initial position of the peg (Inoue 1974). This
strategy reduces the chances of initial entry
into the hole, but it guarantees that the peg will
be to one side of the hole.

In subsequent sections, we will consider such strategies
as tilting the peg and biased search. These are simple
strategies that employ compliant motion and do not
require modifications of task geometry or complicated
control structures.

1.2. PREvVIOUS WORK

In this paper, we present an approach to the auto-
matic synthesis of a class of fine-motion strategies. We
are aware of no previous work with the same goal.
There are, however, several bodies of work relevant
to this goal. The first of these deals with analyses of
geometry and statics of tasks with the aim of develop-
ing conditions that successful fine-motion strategies
must satisfy. The second is Simunovic’s information
approach. The third deals with attempts to derive
strategies starting from partially specified strategies,
known as skeletons, or plans. The fourth deals with
attempts to have the robot “learn” strategies from
experience and partial task information.

Quite a few authors have analyzed the peg-in-hole
assembly task in detail (Laktionev and Andreev 1966;
Andreev and Laktionev 1969; Gusev 1969; McCal-
lion and Wong 1975; Simunovic 1975; Drake 1977,
Ohwovoriole, Roth, and Hill 1980; Ohwovoriole and

Roth 1981; Whitney 1982). In most of the analyses,
the assumption is that the peg is initially partly in the
hole, possibly at a chamfer, Two important types of
insertion failure have been identified: jamming and
wedging. Jamming is due to misproportioned applied
forces; wedging is due to geometric conditions that
arise when the parts are slightly deformed. These
analyses have led to the formulation of conditions for
successful insertion relating forces applied to posi-
tions of the peg and hole. As a result, a remote center
compliance (RCC) device, a mechanical device (Drake
1975; Whitney 1982), has been built that applies the
correct forces in response to small initial errors in
positioning, A number of heuristic strategies for peg-
in-hole insertion have also been formulated, based on
more fragmentary analysis. These heuristic strategies
have been used successfully in practice (Inoue 1974,
Goto, Takeyasu, and Inoyama 1980).

Mason’s (1982) detailed analysis of pushing and
grasping operations in the presence of friction also
leads to conditions for successful task completion.
These conditions provide the basis for synthesis of
operations that succeed in the presence of uncertainty
(without requiring sensing).

Simunovic (1979) formulated the information ap-
proach to fine motion, based on the principle that
assembly is purely a relative positioning task. From
this premise, he argues that the role of an assembly
program is to determine the relative positions of parts
during an assembly and to issue position commands
to correct errors. He developed an estimation tech-
nique to infer, from a series of noisy position measure-
ments and knowledge of the geometry of the parts,
the actual relative positions of the parts. One prob-
lem with this approach is that it requires a very large
amount of on-line computation, although this could be
solved with special-purpose electronics. A more
fundamental problem is that the approach assumes
only position control and a robot capable of making
fine incremental motions. This need not be the case for
assembly; by exploiting compliant behavior, the robot
can perform high-accuracy tasks even with low-accu-
racy position control, for example, the task of follow-
ing a surface by maintaining a downward force.
Another problem is that Simunovic’s estimation tech-
nique requires knowing which surfaces are in contact.
This limits the method to situations with relatively
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small errors; in more general cases, the identity of the
contact surfaces is not known. Qur approach is based
on a different view of assembly: that the geometric
constraints should “guide” the parts to their destina-
tion without necessarily having to know exactly where
the parts are relative to each other.

One of the earliest explorations in the area of auto-
matic synthesis of fine-motion strategies from strategy
skeletons was by Taylor (1976). Taylor developed a
technique for propagating the effect of errors and
uncertainties through a model of a task. These error
estimates were used to make decisions for filling in
the strategy skeletons. For peg-in-hole insertion, for
example, the decision whether to tap the peg against
the surface next to the hole was based on whether the
error estimate for position normal to the surface
exceeded a threshold.

Lozano-Pérez (1976) also proposed a method for
selecting the motion parameters in strategy skeletons.
Each motion in a skeleton was specified symbolically
by the relationship among parts that it was designed
to achieve. The expected length of guarded moves
and their force-terminating conditions were then com-
puted from the ranges of displacements that achieved
this relationship (taking into account uncertainty in
position).

Recently, Brooks (1982) extended Taylor’s approach
by making more complete use of symbolic constraints
in the error computations. The resulting constraints
can be used in the “forward” direction to estimate
errors for particular oprations. But, importantly,
they also may be used in the “backward” direction
to constrain the values for plan parameters, such as
initial positions of objects, to those that enable the
plan to succeed. When no good choice of parameters
exists, the system chooses appropriate sensing opera-
tions (such as visual location of parts) that reduce the
uncertainty enough to guarantee success.

Another line of research has focused on building up
programs automatically from attempts by the robot to
carry out the operations. Dufay and Latombe (1983)
describe how partial local strategies (“rules”) for a task
can be assembled into a complete program by process-
ing the execution traces of many attempts to carry out
the task. The method, however, requires knowing the
actual relationship between parts achieved by each
motion, for example, which surfaces are in contact.

Fig. 2. Variations of
peg-in-hole insertion require
different strategies.
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This information can be obtained, in many cases,
from careful analysis of the forces and positions, but,
in general, the information is ambiguous in the pres-
ence of measurement and control errors. Moreover,
the rules used by the system are specific to tasks and
must be provided by the users.

A related approach to deriving a strategy from
“experiments” is based on the theory of stochastic
automata (Simons et al. 1982). The goal is to have
the robot learn the appropriate control response to
measured force vectors during task execution. The
method requires a task-dependent evaluation function
s0 as to judge progress toward its goal.

These previous approaches to fine-motion synthesis
are based on the assumption that there is a basic
repertoire of operations, such as peg-in-hole insertion
and block-in-corner placement, whose geometric
structure is known a priori. In this view, the task of a
synthesis program is to make some predefined set of
choices among alternative actions, select the values of
some parameters, and, possibly, select the order of
operations. In fact, small changes in the geometry of
parts can have significant impact on fine-motion
strategies. The different operations shown in Fig. 2,
for example, can all be classified as peg in hole, yet
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Fig. 3. Peg-in-hole insertion.
A. Original formulation. B.
Transformation to an
equivalent point (p) problem.

they require substantially different programs to ensure
reliable execution. Similarly, differences in expected
position errors call for different strategies for the same
task.

Our approach is motivated by the belief that the set
of possible geometric interactions in a task should
directly determine the structure of the fine-motion
strategy for the task. Thus, for example, the presence
of additional surfaces within the region of possible
initial contact typically requires a change in the struc-
ture of a strategy. The approach we describe in this
paper proceeds directly from geometric descriptions of
the parts to a strategy.

2. Overview of the Approach

In this section, we informally outline our approach to
fine-motion synthesis using a progression of simple
examples. In section 3, we provide a more formal
characterization of the approach.

2.1, THE BASIC STRATEGY

Consider the simple task of moving the point p from
its initial position to any one of the positions in G
(see Fig. 3B). This is a simplified problem but not a
completely artificial one. It is equivalent to the two-
dimensional, peg-in-hole problem in Fig. 3A, where
the axes of the peg and hole are constrained to be
parallel. The position of p determines the position of
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the peg. The boundary of the shaded area represents
the positions of p where the peg would be in contact
with an obstacle. The transformation from Fig. 3A to
Fig. 3B corresponds to shrinking the peg to a point
and expanding the obstacles accordingly. Note that the
sides of the hole have been moved toward each other
by half the width of the peg. In this case, the transfor-
mation produces an equivalent problem. We postpone
a more general discussion of this type of transforma-
tion until Section 2.6. The problem of moving rigid
objects among other rigid objects can be reformulated
as the equivalent problem of moving a point among
transformed objects in a higher-dimensional space,
called the configuration space (Lozano-Pérez 1981;
1983).

The basic step in our synthesis approach is to iden-
tify ranges of positions from which p can reach G by a
single motion. The directions of such motions can be
represented as unit velocity vectors, v;. For each v,,
we can compute all those positions, P;, such that a
motion along v, from that position would reach some
point of G (see Fig. 4). We call this range of positions
that can reach the goal by a single motion along a
specified velocity the pre-image’ of the goal (for that
velocity). All we need do to guarantee that p reaches G
from any point in any of the P; is to execute a motion
with commaned velocity along v;.

If no pre-image of G contains the peg’s current posi-

1. The rationale for this name stems from viewing motions as
mappings from pairs of initial positions and velocities into points
along the resulting path.
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Fig. 4. Pre-image of the goal
Jor different v,.
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tion, then we can apply the same pre-image com-
putation recursively, using each of the existing pre-
images as a possible goal. This recursive process is an
instance of the problem-solving strategy known as
backward chaining (Nilsson 1980). Each pre-image of
G, P,, serves to define a new goal set G} (the super-
script indicates the “recursion level”). This process is
repeated until some pre-image P/ contains the current
position of p (see Fig. 5). From this chain of pre-images
PPl ..., Pﬁ, we can construct a motion strategy.
The two components of the strategy are a sequence of
velocity vectors and a sequence of associated termina-
tion predicates. Therefore, the strategies may be con-
strued as a sequence of guarded motions (Will and
Grossman 1975). Each velocity vector v, defines a mo-
tion that moves from anywhere in P/ to GJ_ . When-
ever p reaches one of the goal regions, the velocity
command needs to be changed to one appropriate for
the new region, for example, from v; to v, _. The role
of the termination predicates is to detect the arrival of
p within a goal region. In the simple case we have
been discussing, termination predicates simply test to
see whether the position is in the goal region. Termi-
nation predicates are much more difficult to construct
in the presence of position upcertainty. We will dis-
cuss the issue further in Sections 2.2 and 3.

In summary, our basic approach to fine-motion
synthesis is to chain backward from the goal toward
the current position, characterizing at each step the
range of positions that can reach the current goal in
one motion, that is, the pre-image of the goal. It re-
mains to be shown how this simple approach is appli-
cable to more realistic assembly problems. To demon-
strate its applicability, we will discuss (1) the role
played by uncertainty in position and velocity, (2) the
introduction of compliant motions, (3) the handling of
friction, and (4) the notion that configuration space

Fig. 5. Backward chaining of
pre-images.

reduces assembly problems for solids into problems
involving a point and surfaces in a higher-dimensional
space.

2.2. Tae EFFecT OF UNCERTAINTY

We have assumed thus far that p’s position is known
exactly at all times and that its direction of motion
can be specified exactly. In this section we explore the
effects of relaxing these assumptions.

Let us assume that there is error between the actual
and the commanded velocity, bounded by €,. The
actual velocity is within a ball of radius €, in velocity
space (the ball of velocities centered on v is denoted
B(v)). Therefore, the path of p is constrained to be
within a semi-infinite cone centered on the commanded
path and whose apex is the initial position. The angle
between the actual direction of motion and the com-
manded direction is constrained to be less than or
equal to sin~'e,, which will be approximately €, for
small enough €,.

The synthesis approach above is based on comput-
ing the pre-images of goal regions for particular values
of commanded velocity. These are locations from
which the goal can be reached by a single motion. In
the presence of uncertainty in the actual velocity, we
define two alternative pre-images (see Fig. 6):

Weak pre-image — locations for which some mo-
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Fig. 6. Weak and strong
pre-images of a goal, with

velocity uncertainty.
A
A
/\

N _

B. Strong pre-image

7,

A. Weak pre-image

tion within the range of velocity uncertainty may
reach the goal

Strong pre-image — locations for which all mo-
tions within the range of velocity uncertainty will
reach the goal

Note that the strong pre-image is a subset of the weak
pre-image. In what follows, we will use the term pre-
image to mean Sstrong pre-image.

In addition to uncertainty in the actual velocity
along a motion, there is uncertainty in the position of
p. One source of position uncertainty is imperfect
knowledge of the initial position of the objects in the
workspace. Another source of error is inherent limita-
tions in the robot’s position sensors. For the sake of
simplicity, we will lump these two types of uncertainty
into a single upper bound on position uncertainty.
This assumption does not affect correctness of any de-
rived motion strategies, but might lead to less efficient
strategies. In practice, the two sources of uncertainty
should be treated differently.

We assume that the actual position is always within
a ball of radius €, centered at the position observed by
the robot. All possible observed positions are within a
similar ball centered at the actual position. The ball of
possible observed positions centered at a position p
is denoted B(p). The range of positions potentially tra-
versed by a motion from an observed position along a
commanded velocity is depicted in Fig. 7.

Position uncertainty makes it difficult to define
termination predicates for motions. A predicate that
simply compares the observed position of p against the
boundaries of G could terminate a motion prema-
turely. The actual position of p could be anywhere
within a ball of radius €, from the observed position.
In order to guarantee success, all possible positions of

Fig. 7. Positions reachable
by commanded motion, with
uncertainty.

p must be within the goal. We can think of this effect
of position uncertainty as “shrinking” the goal by €,
for purposes of detecting entry. Shrinking G removes
from G' any point at a distance less than or equal to €,
from any point in free space not in G, This removes
from G' any point that is ambiguous. In many cases,
this means that no part of the goal is unambiguously
identifiable on the basis of position. We will have to
rely on the effects of collisions with surfaces or on
history to identify entry into a goal region. This issue
is quite subtle; it is the subject of Section 3.1 (also see
Section 2.5).

2.3. CoMPLIANT MoTION

The example above dealt only with position-controlled
motions. Due to uncertainty in p’s position and ve-
locity relative to the task, this type of motion often
leads to empty pre-images. This indicates that position
accuracy is not sufficient for the task. We mentioned
earlier that the alternative motion regime is compliant
motion. We can visualize the effect of compliant mo-
tions as producing sliding on the constraint surfaces
derived from the obstacles. Sliding means that the
moving object confines its motions to be tangent to
the constraining surface or surfaces (Mason 1981).
When not in contact with a surface, the motion is
along the commanded velocity (to within the velocity
uncertainty).

The generalized-damping model (Whitney 1977)
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Fig. 8. Pre-images for
position control {A) and
generalized-damper motions
(B).
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can be used to implement compliant motions with the
properties described above. The desired motion is
determined by the relationship

f=B(v—yvy),

where f is the vector of forces acting on the moving
object, v, is the nominal velocity vector, and v is the
actual velocity vector. In what follows, B is a diagonal
matrix. We use B primarily to relate the units of force
to those of velocity. We assume that the control sys-
tem implements the above equation, and so the be-
havior of the robot and moving object can be ade-
quately approximated as a damper (for some limited
range of operating velocities). The Appendix provides
a more detailed treatment of the behavior of a general-
ized damper.

In practice, because of measurement and imple-
mentation errors, there is a difference between the
commanded behavior and the actual behavior of the
damper. We summarize these differences by introduc-
ing the distinction between the actual nominal veloc-
ity, v,, and the commanded nominal velocity, denoted
v¥. Throughout the paper, the asterisk will denote
measured or commanded quantities that differ from
the actual ones because of the presence of error.

The definition of the pre-image of a goal as the set
of positions that can reach the goal with one com-
manded velocity can be retained for generalized-
damper motions. Under compliant motion, however,
the moving object may reach the goal indirectly by
sliding on intervening surfaces. Therefore, compliant
motions typically produce larger pre-images than pure
positioning motions. The increased pre-image indi-
cates less sensitivity to uncertainty (compare Figs. 8A
and 8B).

10

Fig. 9. Friction cone.

Sticking
‘ Sliding

2.4. FRICTION

A crucial consideration in the analysis and synthesis of
fine-motion strategies is the effect of friction. A simple
model of friction for planar motion without rotation is
as follows. We assume that the objects are of a single
material with equal coefficients of static and sliding
friction, . The reaction force from contact at a point
on a surface will lie within a friction cone with apex at
the point of contact and center line along the surface
normal. The angle between the normal and the sides
of the cone is the friction angle, ¢ = tan~'u. If the
applied force points into the friction cone, that is, if
the angle of the force vector to the surface normal is
less than ¢, then no motion will result. If the angle of
the force vector to surface normal is greater than ¢,
sliding will result (see Fig. 9).

This model of friction can be extended to include
rotations and moments, but the details are beyond the
scope of this discussion (see Erdmann 1983). In what
follows, we need only assume that some nominal ve-
locity vectors will cause sticking on a surface and
others will cause sliding. We assume, furthermore,
that the range of nominal velocity vectors that causes
sticking for a surface can be conservatively bounded
by a cone, which may be wider than the actual cone.
The computation of pre-images must take into ac-
count the possibility of sticking on a surface. In par-
ticular, assuming the motion is generated by a damper
(with B = BI), if the range of nominal velocities for the
pre-image contains nominal velocities whose angle to
the normal of some surface is less than the friction
angle, ¢, then the motion will stop at that surface (see
Fig. 9 and the Appendix).

2.5. EXAMPLES
We now have the conceptual tools necessary to syn-

thesize a strategy for the simple example of Fig. 3. In
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this section, we illustrate one particular approach to
the synthesis of strategies based on pre-images. The
method used in this section is a subset of the general
approach described in Section 3.

Our goal is to identify some subregion P of the free
space C and a command nominal velocity v, such
that P is the strong pre-image, under v, of the goal
surface. Equivalently, P must not overlap the weak
pre-image of any surface where motion along v, may
stick or not reach the goal. We will use this constraint
to drive a simultaneous search for P and v,.

The key problem is in discovering v,. Our approach
here is to narrow in on feasible values of v, by progres-
sive refinement. We start with the complete range of
possible v,’s and remove from that range any values
that can possibly lead to failure (due to sticking or not
reaching the goal). At each step of the algorithm, we
compute the strong pre-image of the goal for the cur-
rent range of vy’s. The strong pre-image for a range of
command velocities is the intersection of the strong
pre-images for each of the velocities. These are the
positions guaranteed to reach the goal for a/l the velo-
cities in the range.? This is the same definition that we
saw in Section 2.2 for the strong pre-image in the pres-
ence of velocity error. In fact, as long as the velocity
ranges used to compute pre-images are greater than
2¢,, we need not concern ourselves further with veloc-
ity uncertainty. Once the algorithm has chosen a final
velocity range, we can pick a specific velocity from the
range such that all velocities within the velocity error
fall in the chosen velocity range. Narrower velocity
ranges will not yield such a safe velocity.

For now, we will ignore the need for backward
chaining and sketch an algorithm for synthesizing
single motions. (We will deal with backward chaining
presently.) The basic algorithm steps are as follows.

1. Compute P, the strong pre-image of the goal
surface, for the current range of commanded
velocities. If the current range of velocities is
split into disjoint subranges, then steps 1 and 2
should be repeated for each subrange (see
Fig. 10).

2. Note that the weak pre-image for a range of velocities is the
union of the weak pre-images for velocities in the range, that is,
positions that may reach the goal for some velocity in the range.

Fig. 10. Single-move,
peg-in-hole strategy synthe-
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2. If Pincludes an uncertainty ball centered at
some starting position, then return P and the
current velocity range.

3. Otherwise, if P is empty pick x to be a surface
(other than a goal) where the robot may stick,
that is, such that some velocity in the current
velocity range points into the surface’s friction
cone. If no such surface exists, then notify
failure and stop.

4. Remove from the range of commanded ve-
locities any velocity pointing into the friction
cone of x.

5. Gotostep 1.

We can illustrate the operation of this algorithm on
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our example as follows. Construct a directed graph
with nodes for each of the surfaces in Fig. 3 and one
node representing free space (C). A link is directed
from node m to node n in the graph if m and »n are
direct neighbors and m is in the weak pre-image of

n for the specified velocity range. That is, there is a
link from m to n if some velocity in the current range
may cause the robot to move from some point in m
(which is not in #) to some point in n (which is al-
lowed to be at the intersection of m and n) without
going through points in any other node. In principle,
the graph should have nodes representing the vertices;
we have left them out for simplicity. This simplifica-
tion introduces the need for the phrases in parentheses
above. See, for example, the link between 4 and B and
B and G (but not vice versa) in Fig. 10A. We will call
this the reachability graph for that range of com-
manded velocities. Th reachability graph plays a key
role in algorithms for computing the strong pre-image
of the goal.

In our example, we start out with a range of com-
manded velocities including any velocity with a y
component less than or equal to zero (we diagram
ranges of commanded velocities as sectors of a circle).
These are the velocities that will move p from nearby
points onto the goal surface G. The reachability graph
for this range of velocities is shown in Fig. 10A. In this
figure, we have indicated those surfaces where the
moving object may stick (using the electrical ground
symbol). The (potential) sticking surfaces are those
whose friction cones overlap the current velocity
range. For simplicity, we assume that the contact on
surfaces B and D are point contacts.

Figure 10 illustrates the reachability graph and
pre-image of the goal each time step 1 is executed. The
surfaces used to constrain the range of commanded
velocities (step 3) were chosen in the following order:
B, D, A, E. The particular order does not affect the
final result in this case. The algorithm terminates at
the fourth cycle. In Fig. 10D, we have shown only one
of the two velocity ranges (and corresponding P’s) that
result from discarding velocities that may stick on A
or E. The remaining velocity range leads to a pre-
image that is the mirror image (about the hole axis) of
the one in Fig. 10D. Any commanded velocity within
either of these remaining velocity ranges will reach the
goal from any position within P. Note that the single
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motion strategy developed by this approach is a biased
search (see Section 1.1). This is a good choice, since
we have not included chamfers or rotation in our
problem definition.

The example in Fig. 10 involves a single motion
(because the friction cones of the horizontal and ver-
tical surfaces do not overlap). We did not require the
use of backward chaining. After step 2 of the algor-
ithm, we can choose to refine the range of directions
or to use the current P as the goal for a recursive call to
the same algorithm. In principle, we can follow these
two paths nondeterministically. In practice, this re-
quires a search guided by such considerations as the
number of motions in the strategy thus far and the
size of P.

The example in Fig. 11 involves the use of back-
ward chaining to develop multimove strategies. In this
example, we assume that the first four steps proceed
essentially as in Fig. 10. The final pre-image of the
first example now becomes G, the goal for the next
recursion level. The method applies as before and
generates a new pre-image and velocity range. The
strategy, then, consists of choosing some velocity from
this range, moving until transition into G' is detected,
and changing the commanded velocity to one of those
from the range obtained in the first example.

We noted earlier that, for each commanded motion
in a strategy, it is necessary to define a predicate that
indicates that the goal has been reached. In multimove
strategies, this condition signals that another motion
should be commanded. Three types of basic termina-
tion conditions are available.

1. Position termination. Terminate if the mea-
sured position of p is such that all possible
actual positions consistent with the measure-
ment are within the goal region.

2. Velocity (force) termination. Terminate if the
observed velocity of p is such that all possible
actual velocities consistent with the measure-
ment can only occur within the goal region.
Note that since motions are generated by a
generalized damper, the difference between ac-
tual velocity and commanded velocity pro-
vides information about reaction forces, for ex-
ample, contact with a surface.

3. Time termination. Terminate if the elapsed
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Fig. 11. Multimove,
peg-in-hole strategy synthe-
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time is such that all positions consistent with
the commanded motion and observed data are
within the goal.

Position termination requires that all actual posi-
tions consistent with the measured position be within
the goal. This is equivalent to the measured position
being in the goal after being shrunk by €, along its

boundary with free space. If any of the dimensions of
the goal region are less than ¢, then position feedback
is not a reliable indicator that the goal has been
reached. When the goal is a surface, for exampile,
shrinking will cause the goal region to vanish. In these
cases, we must rely on velocity termination, which
requires that the observed velocities (e.g., when landing
on or leaving from a surface) be unambiguous relative
to surfaces that may be confused with the goal due to
position-measurement error. Time termination is also
useful, when applicable, as it 1s much simpler to test
than position termination.

Velocity termination is the most useful termination
condition when there is large position uncertainty.
The strategy synthesized from the example in Fig. 11
illustrates this. The first motion required by the stra-
tegy can be terminated when the x component of
observed velocity is zero, that is, when p strikes one of
walls on the right of the hole. The second motion can
be terminated when either the x and/or y components
of the observed velocity are zero, that is, when p is at
the left-bottom corner of the hole.

Figures 10 and 11 illustrate the class of fine-motion
strategies we wish to consider. The strategies operate
over a wide range of uncertainties without explicitly
computing where the parts are relative to each other.
The strategies do not keep any explicit history of
previous events, although, as we will see later, history
is implicit in the strategies.

2.6. CONFIGURATION SPACE

The basic operation in the synthesis method described
above is computing the strong pre-image of a goal. To
do this, we first transform the input problem, involv-
ing a moving object and stationary obstacles, into an
equivalent problem, involving a point and transformed
obstacles. Transformation has a number of advantages.
One is that it enables us to represent the pre-images as
areas in the transformed space. The key advantage,
however, is that transformation makes the constraints
on motion explicit. This is illustrated in Fig. 12, where
an upright peg and chamfered hole are shown to lead
to transformed obstacles similar (as far as initial entry
into the hole is concerned) to those of a chamfered
peg and unchamfered hole and to those of a tilted peg
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Fig. 12. C-space represenia-
tions that make motion
constraints explicit.
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and unchamfered hole. The transformation makes
explicit the underlying similarity of motion constraints
in these tasks. In fact, the transformation reduces tasks
involving “arbitrary” geometric interactions between
objects to the interactions possible between a point
and a set of surfaces.

In this paper, we have limited ourselves to two-di-
mensional translation. It is possible, however, to
extend the transformation approach to more general
motions by using the configuration space (C-space) of
a task (Arnold 1980; Lozano-Pérez 1981; 1983). A
configuration of an object is the set of parameters
needed to specify completely the positions of all points
of the object. The configuration of a rigid, two-dimen-
sional object, for example, can be specified by two
displacements and an angle, that of a rigid, three-di-
mensional object by three displacements and three
angles, and that of a robot arm by its joint angles. For
concreteness, we will deal exclusively with Cartesian
configurations, for example, (x y, 6) for objects in the
plane, and not joint-angle configurations. The space of
all possible configurations for an object is known as
the configuration space of that object. An object 4 is
represented as a point in its C-space; the coordinates of
that point are the configuration parameters of 4.

Stationary obstacles in the environment of a moving
object A can be mapped into the configuration space
of A. The resulting C-space obstacles are those config-
urations of 4 that would lead to collisions between A
and the obstacles. Configurations on the surface of
the C-space obstacle due to B are those where some
surface of A4 is just touching a surface of B. If 4 and B
are both three-dimensional polyhedra, the surfaces
of the C-space obstacle for B arise from each of the
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Fig. 13. Geometric condi-
tions giving rise to C-surfaces.

feasible contacts between vertices, edges, and faces of
A and B (see Fig. 13) (Lozano-Pérez 1983). Therefore,
each face of a C-space obstacle represents a particular
type of geometric constraint on 4. A range of posi-
tions (and orientations) of 4 can be represented as a
volume in the C-space of 4, and a motion of 4 is a
curve in the C-space.

As an illustration of the use of C-space surfaces,
consider the familiar two-dimensional, peg-in-hole
problem from Fig. 3. We can construct a three-dimen-
sional C-space of (x, y, §) configurations of the peg. In
this space, the hole defines an obstacle (see Fig. 14A).
Note that although the resulting surfaces are curved,
for each value of 0 the (x, y) cross section of the C-
space surfaces is polygonal. The surfaces represent
one-point contacts, and the edges at the intersections
of surfaces represent two-point contacts. Line-line
contacts also give rise to edges at the intersections of
one-point contact surfaces. Figure 14B shows cross
sections.for a peg and chamfered hole.

The C-space representation can be extended to
more general kinematic situations. In general, motions
subject to geometric and kinematic constraints can be
defined as collections of equalities and inequalities
that must hold among the parameters that determine
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Fig. 14. Cross sections of
peg-in-hole C-surfaces. A. No
chamfer. B. Chamfer.
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the configurations of the robot and the objects in the
task. These inequalitis represent C-surfaces (Mason
1981). Take the constraint that a robot hand remain
in contact with a crank handle as the handle rotates.
The constraint relating the position of the hand (x, y),
to the position of the crank axis (a constant) and its
current angle, ¢, is a curve (one-dimensional surface)
in the configuration space of the task, that is, the (x, y,
) space.

Our goal is to make the detailed analysis of assembly
operations algorithmic by casting it in terms of C-
surfaces. The purely geometric aspects of the analysis
have been exploited in earlier work on obstacle
avoidance (Brooks and Lozano-Pérez 1982; Lozano-
Pérez 1981; 1983). C-surfaces also share many of the
characteristics of “real” surfaces with respect to force
analyses. This was exploited by Mason (1981) to
synthesize compliant motions. The synthesis approach
described here also requires a mechanism for comput-
ing the effects of friction. Recent work has resulted in
a definition of friction cones for C-surfaces (Erdmann
1983). Work is underway to show that conditions for
avoiding jamming for the peg in hole can be restated in
terms of the relationship of applied forces to these
C-space friction cones.

L,

3. A General Framework

In the previous section, we illustrated an abstract
planning algorithm for fine-motion strategies. Al-
though that algorithm is representative of our ap-
proach to fine-motion synthesis, it is not the most gen-
eral formulation of the approach. In particular, that
algorithm embodies a restrictive assumption on the
class of single-motion strategies. It only considers
strategies obtained by discarding all velocity vectors
that point into the friction cones of some subset of the
task surfaces. In some cases, further restrictions of

the class of velocity vectors would produce a better
strategy. The algorithm of the previous section does
not provide a mechanism for further restricting the
range of velocities. More significantly, we have not
provided a criterion for defining what a “better”
strategy might be.

In this section, we will present a more general
framework for our approach to fine-motion synthesis.
Although the description of this approach takes the
form of an algorithm, it is not detailed enough to be
considered an effective procedure. Our goal here is to
formulate the correctness conditions for a class of
synthesis algorithms. This framework can be used to
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elucidate to what extent particular synthesis methods
(for the class of fine-motion strategies we are consider-
ing) are “optimal.” In particular, we are interested in
strategies that make the best possible use of sensory data.

Development of the general framework begins with
a description of the form of termination predicates for
motions, followed by a discussion of the pre-image
definition, and of the necessity of passing multiple
subgoals to recursive calls of the planner. The rest of
the section consists of a formal description of the
framework, expressed as an abstract algorithm, and an
extended example of its application to the peg-in-hole
problem of Section 2.

3.1. TERMINATION PREDICATES

Much of the burden of interpreting uncertain informa-
tion falls on the termination predicate, which must
decide when the current goal has been achieved. It

is obviously important that termination not be pre-
mature; otherwise subsequent motions will proceed
on a false assumption. On the other hand, failure to
terminate the motion when the goal is demonstrably
attained is also bad; the missed opportunity could
prevent successful completion of the task. Hence it is
important that the termination predicate make the
best possible use of the available information.

One restriction is placed on the form of the termi-
nation predicates: we will exclude predicates that
record sensory data for later use. The decision to ter-
minate the motion must be made based on current
sensor readings alone. As we shall see, another mecha-
nism encodes some history, so this constraint is not as
debilitating as it may first appear. If later develop-
ments suggest that this restriction should be relaxed,
the framework can be modified by allowing a state
function to be defined along with each predicate.

The form of the termination predicate will be intro-
duced first with the assumption of perfect sensing
and control. Consider the situation just after a com-
mand has been issued. Given perfect knowledge of
the initial position, a perfect controller, and good dy-
namic models, the planner could predict the subse-
quent trajectory of the robot. If the position and force
sensors were perfect, it would be a simple matter to
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watch the sensors, or the time, and halt the motion
when the robot reached a goal.

To address more realistic problems, we will first
relax the assumption of perfect sensing. The planner
still knows what trajectory the robot will follow, but
the sensing information cannot be taken at face value.
It is necessary to construct an interpretation of the
sensory data, which will be the set of all positions and
velocities consistent with the sensory data and with
the trajectory. Once this is accomplished, termination
is again simple: if this interpretation of the sensory
data is a subset of a goal, the motion is terminated.

The final step is to relax the assumption of perfect
control and known initial position. Suppose we have a
set of possible initial positions and a set of possible
nominal velocities. Each different combination of ini-
tial position and nominal velocity will give a different
robot trajectory. Without knowing which trajectory
is the “real” one, the predicate must terminate the
motion within a goal. To see how this is done, imagine
that there is a different robot, for each trajectory and
that all of the trajectories are being executed simulta-
neously. For each robot, we can apply the procedure of
the previous paragraph: (1) form the set of positions
and velocities consistent with sensory data, (2) inter-
sect with the trajectory, and (3) check for inclusion in
a goal. If the robots all agree that a goal has been
achieved, the motion is terminated. This approach
guarantees that for any initial position and nominal
velocity consistent with the robot’s information, and
for any position and velocity consistent with observa-
tions, termination will occur only if a goal is attained.

In constructing the termination predicate, it is
important to bring all possible information to bear, so
that the set of “virtual robots” can be made as small
as possible. Thus far, we have concentrated on the
information encoded in the sensory data, but there is
another important source of information. Formulating
a subgoal R and calling the planner recursively have
two important effects. First, the robot moves to R.
Second, and more to the point, when the recursive call
returns and the motion is executed, the planner knows
that the robot is in R. Consider, for example, that a
robot is lightly touching a vertical wall, and suppose
that the subgoal R is the wall. Although the robot is in
R, this fact might not be apparent to the robot if the
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contact force is small and if the position sensors are
noisy. Hence the planner is called recursively to
“move” the robot to the wall. Presumably, the planner
will plan a horizontal motion into the wall. When the
motion command is executed, the robot will not
move, which the termination predicate will interpret
as evidence that the “motion” was successful. When
the recursive invocation of the planner returns, it will
have accomplished its mission, even though it did not
move the robot at all.

Another, more familiar, example illustrates the use
of this information to construct the termination pred-
icate. Suppose the planner is applied to the point-in-
hole problem, with the position sensor giving a posi-
tion at the lip of the hole (Fig. 15). Using the position
sensor alone, the planner would have to admit the
possibility of the robot being positioned anywhere
inside the disk centered on the sensed position. To at-
tain the goal with a single motion would be impossi-
ble. However, if the accomplished subgoal R is also
consulted, the set of possible initial positions is re-
duced — the robot must be in the intersection of R
with the disk. Starting from this smaller set of possible
initial positions, with a command nominal velocity
down to the right, it is easy to confirm that all the
virtual robots will achieve the goal.

Thus the history of the robot, represented by the
accomplished subgoal R, must be taken into account
to construct the termination predicate. When the set of
feasible trajectories is constructed, initial positions
outside the subgoal R should be excluded. That the
termination predicate is dependent on the accom-
plished subgoal R is an important observation, which
profoundly affects the ultimate form of the planning
algorithm.

3.2. DEFINITION OF PRE-IMAGE

The fundamental element in our approach to planning
is the ability to construct a pre-image: a set of points
from which the goal can be attained in a single motion.
In Section 2, the pre-image depended on the goal G
and a range of command nominal velocities. By pro-
ceeding more formally in this section, we find that the
pre-image need not depend on the command nominal

Fig. 15. Some history,
represented by the subgoal
R, is required to proceed into
the hole.
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velocities, but that it does depend on the accom-
plished subgoal R.

Conceptually, we can approach this problem as
follows: For goal G, and for every possible observed
initial position c¥, and accomplished subgoal R, con-
struct the set S(c%;, R, G) of all command nominal
velocities such that the termination predicate, con-
structed as in Section 3.1, is guaranteed to terminate
the motion. If S(c%,, R, G) is empty, there is no single
motion that can be guaranteed to work for accom-
plished subgoal R and observed initial position ¢} If
S(c*,., R, G) is “nonempty,” then any element of
S(c¥,, R, G) is sufficient to attain the goal. Now if the
actual initial position of the manipulator is ¢;,;, the
observed initial position c¥; could be anywhere in the
sphere B(c;,;,) centered on ¢;,; with radius equal to the
tolerance on the position sensor. ¢;,;, should be in the
pre-image if and only if every possible ¢, gives a non-
empty S(c%;, R, G). Hence we can define the pre-
image Px(G) of a goal Gt

Pr(G) = {Cinyy € RV cti € Bleyy), Schys R, G) # ?3.

The subscript R is used as a reminder that the pre-
image depends on R. Note also that the definition of
PR(G) excludes points outside R. To have a point in
P(G) but not in R wouldn’t make much sense—such
a point would be a good place for the robot to be,
provided that it is somewhere else!
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3.3. RECURSIVE CALLS AND MULTIPLE GOALS

When the planner is first called, the robot might be
anywhere in configuration space C. If the set of strate-
gies guaranteed to attain the goal G from any point in
configuration space S(ck;,, C, G) is nonempty, then
the planner can choose and execute one of these strat-
egies. If S(ck,,, C, G) is empty, the planner must con-
struct suitable subgoals and initiate a recursive call to
the planner to achieve these subgoals.

Clearly, the planner should specify as subgoals only
those sets from which it can achieve the goal, other-
wise a recursive call will serve no purpose. To charac-
terize these subgoals more precisely, let us look ahead
a bit and imagine that the recursive call to the planner
has just returned. The recursive call guarantees that
the robot’s position is now in R. Thus the planner
must plan a single motion, from initial position ¢;,; in
R, which attains the goal . By construction of the
pre-image, such a motion exists only if ¢;,, is in the
pre-image Pr((). This observation serves to define
suitable subgoals: R should include only those points
that are also in Px(G), that is, R C Pg(G). Since, by
construction, R O Pr(G), we can restate this observa-
tion: R is a suitable subgoal if and only if R = Pg(G).

Thus, any set satisfying the equation R = Pg(() is a
suitable subgoal. In general, a multitude of sets satis-
fies this equation. For instance, if R satisfies the equa-
tion, so does any subset of R. The question is what to
do with this multitude of subgoals. Do we pass them
to recursive calls one at a time? Needless to say, the
branching factor in this search can be rather large.
Another issue takes precedence, however. Situations
occur in which the planner can be certain to attain
one of two goals, but it cannot be known in advance
which of the two goals it will attain. If the planner
were passed either one of the two goals individually,
it would fail to find a predicate guaranteed to termi-
nate the motion. With both goals in hand simultane-
ously, it can plan a motion with confidence that it will
ultimulately report which of the goals was attained.
Hence we will pass all subgoals to the recursive call.
This suggests that the approach be implemented with-
out search, but we are not certain whether such an
implementation will be possible

Since the planner will be passed multiple goals

18

rather than a single goal, some adjustment of the nota-
tion is required. The set of goals will be written {G,)},
the set of strategies guaranteed to attain one of the
goals for given observed initial position ¢}, and ac-
complished subgoal R will be written S(ck,, R, {G,)),
and the pre-image will be written Pr({G,)}).

3.4. A FORMAL STATEMENT OF THE FRAMEWORK
3.4.1. Nomenclature

Nomenclature used in the formal statement of the
framework is as follows.

¢ is configuration.

Cinz 18 configuration at the beginning of a motion.

v is velocity.

v, is nominal velocity.

c* is observed configuration.

c*, is observed configuration at the beginning of a
motion.

v* is observed velocity.

v¥ is commanded nominal velocity.

tis time

C is C-space, that is, the set of all configurations.

B(c) is the “uncertainty ball’ of configurations, that
is, the set of all configurations whose distance
from cis within the tolerance of the position sensor.

B(v) is the uncertainty ball of velocities.

B(v,) is the uncertainty ball of nominal velocities.

{G,)} is the current goal set. We wish to move the
robot to one of the goals and return the identity
of the goal.

p(c*, v*, ) is the termination predicate. For each
goal in {G,} it returns one of the following: BUG,
indicating that no possible trajectory is consis-
tent with any interpretation of the sensory data;
CONTINUE, indicating that at least one possible
trajectory exists, consistent with the sensory data
not just at the goal; or WIN, indicating that all
possible trajectories consistent with the sensory
data are in the goal.

S(ct,, R, {G,)) is the set {(vf, p(c*, v*, 1)|p termi-
nates}. By construction of the predicates, guaran-
teed termination implies guaranteed attainment
of a goal. So for a given observed initial configu-
ration and accomplished subgoal R, this gives
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the set of all winning strategies, where a strategy
comprises a command nominal velocity and a
termination predicate.

Pr({G,}) is the pre-image {¢;n; € RVch; € B(Cin),
S(chi, R, (Go)) #9).

{Rp) 1s the sets of configurations R such that the
pre-image Px({G,)) includes all of R; that is,
Pr({G,})) = R. This is the subgoal set. Satisfaction
of an element of this set by a recursive call will
allow us to satisfy the current goal set.

R is the subgoal attained by a recursive call to the
planner.

MotorCommand (vf): execution of this program
statement transmits the commanded nominal
velocity to the controller, causing the manipula-
tor to execute the planned generalized-damper
strategy.

D, ;(?) is the actual trajectory; it returns (c, v), the
actual configuration and velocity at time ¢, for
initial position ¢, ; and nominal velocity v, ;

3.4.2. The Algorithm

Procedure FM({G,})
Compute (Rg}
If Cis in {Rp}
Then R — C
Else R — FM({R.})
V5, p) < choose (S(chi, R, {Ga)))
t—0
MotorCommand (vf)
L (Vo) —ple*, v% 1)
ForEach a Do If V== BUT Then Error
ForEach a Do If V,, = WIN Then Return(G,)
Increment ¢
Go L
End FM

3.5. AN EXAMPLE

This section applies the algorithm of Section 3.4.2 to
the two-dimensional, peg-in-hole problem (Fig. 16).
FM is called with an initial goal set containing the
single element G: the bottom of the hole. Let D, ;(2)
denote an actual trajectory; it returns (c, v), the actual

Fig. 16. Task illustrating
construction of p.
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configuration and velocity at time ¢, for initial position
Cini; and nominal velocity vy ;.

First, we construct an example illustrating construc-
tion of the termination predicate p(c*, v*, ). Such a
predicate must be constructed for each (c¥;, v, R).
Here is the predicate for (¢}, v§,, R), assuming that
R includes B(c},).

Procedure p, 5(c*, v*, 1)
Flag — False
For all (Ciui» vo,j) € Blchiz) X B(s2)
(c, ) — Dy, (0
If (¢, v) € B(c*) X B(v*)
ThenIfc€ G
Then Flag < True
Else Return(CONTINUE)
If Flag then Return{WIN)
Else Return(BUG)

S(ck,, R, G) is the set of all (¢v§, p) that are guaranteed
to WIN if executed at a point in B(c};) N R. For our
example point, this set is empty. For example, the
command nominal velocity v§, is not in S(c},,, R, G)
because trajectories from the left and right edges of
B(c¥,,) will never reach the goal.

The example predicate results in the behavior spec-
ified in Sections 3.1 and 3.4, and is therefore “cor-
rect.” The form of the predicate is not completely sat-
isfactory, however. Goal attainment is tested simply
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Fig. 17. Singleton R’s.

by testing whether all possible predicted trajectories
have attained the goal. This satisfies the requirements
of the formalism because of the way control error is
modeled — we have assumed that the control error is
constant during a trajectory. A more realistic model of
error would yield more robust predicates, combining
position, velocity, and time information to detect
presence at the goal.

The first step in the algorithm is to compute a set of
subgoals {R;). Recall that each element R of (R} is a
set giving a pre-image Pr({G,}) that is equal to R. The
simplest way to begin is to construct the sets consist-
ing of a single configuration. Such a set R = {¢} is
valid if and only if it gives a pre-image P,({G,}) equal
to {¢}). Suppose the recursive call reports that the
manipulator is at ¢. Then the question is whether a
single motion command can move the manipulator to
the goal G. This is possible for all configurations ¢ in
the shaded region of Fig. 17. This region is the union
of two half planes and a circular disk (Turk 1983). A
point in one of the half planes, such as ¢;, can move to
the hole by selecting a velocity that is guaranteed
either to fall to one side of the hole and slide in, or hit
the hole directly. A point in the circular region, such
as ¢,, can move to the hole by selecting a velocity that
is guaranteed to hit the hole directly.

Any set R satisfying R = Pg({G,}) must be a subset
of the region indicated in Fig. 17. The shaded region
does not itself constitute a good R, however. For
instance, as in the earlier example, the planner might
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be unable to tell whether the robot is to the left or
the right of the hole. Hence we must look for sub-
sets R of the shaded region, each of which is equal to
the corresponding pre-image Pr({G,}). Three differ-
ent such subsets are shown in Fig. 18. Consider, for
example, the set shown in Fig. 18C. There are three
different regions in this set: one region to the left of
the hole, one region to the right of the hole, and one
region in the hole. We can demonstrate that this R

is equal to the corresponding Px({G,}) as follows.
Suppose that a recursive call has reported that the
manipulator is in R. We now consult the position
sensor. If ¢k, is to the right of center, the manipula-
tor cannot be in the left region, and the left-sliding
command shown for point ¢; in Fig. 17 will work.
Similarly if ¢f,, is to the left of center, a right-sliding
motion will work. This set works because any “incom-
patible” subsets — the left and right regions in this
case—are separated by a distance of at least 2¢,.

The sets shown in Fig. 18 are maximal; they are not
subsets of any other subgoals. Since the subset of any
valid subgoal is itself a valid subgoal, it would make
sense to pass only the maximal sets to the recursive
call. However, situations do occur for which maximal
sets do not exist, so we will simply pass all valid sub-
goals to the recursive call.

Once the subgoal set {R,} has been determined,
there is a recursive call to FM. As in Section 2.1, we
will use a superscript numeral to indicate the “recur-
sion level.” Thus we write that the recursive call’s goal
set is the original call’s subgoal set by writing (G} —
{R%). Construction of a predicate for a multiple-goal
set is a simple variation of the predicate constructed
earlier.

Procedure p; ,(c*, v*, 1)
Flat — FALSE
For All « Win, <— TRUE
For All (Cpuiyi Do,) € (R N B(chi1)) X B§,)
(¢, v) == D;; ()
If (¢, v) € B(c*) X B(v*)
then Flag < TRUE
For All o If ¢ & G, Then Win, — FALSE
If Flag Then If For Some o« Win, = TRUE
Then Return(WIN)
Else Return(CONTINUE)
Else Return(BUG)
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Fig. 18. Maximal R’s.
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Now the recursive call must construct subgoals. In this
case, the set of all configurations C is a valid subgoal.
No further recursion is necessary, because one of the
goals can be attained from any configuration whatever
by use of a single motion command. The recursive
call may immediately choose and execute a motion
command. When the predicate terminates the motion,
the identity of the subgoal attained is returned to

the original call, which then chooses and executes a
motion command carrying the manipulator to the
bottom of the hole.

4. Conclusion

This paper has presented a formal approach to the
synthesis of a class of fine-motion strategies. The ap-
proach operates directly from geometric descriptions
of the task and explicit bounds on errors in sensing
and motion. The basic method is structured around
the computation of the pre-image of a goal region,
that is, a set of configurations that can reach the goal
using a single, compliant motion. We saw that the
presence of errors in motion and sensing gives rise to a
number of difficult problems in specifying motions
and in deciding on termination conditions. Further
work is in progress.

Beyond presenting a specific synthesis approach, the
paper has attempted to (1) illustrate the usefulness of
modeling compliant, fine-motion strategies as general-
ized damper motions that slide on C-surfaces (corre-
sponding to geometric constraints), and (2) establish
correctness conditions for fine-motion programs oper-
ating under error in sensing and control. Our ap-
proach to these issues provides the foundation for our
synthesis method. Moreover, we hope it may be useful
to human programmers engaged in fine-motion syn-
thesis.

The approach in this paper is part of an attempt to
develop a unified approach to robot-motion planning,
spanning-obstacle avoidance (Lozano-Pérez 1981;
1983; Brooks and Lozano-Pérez 1983), compliant mo-
tion (Mason 1981), pushing (Mason 1982), grasping
(Lozano-Pérez 1981; Mason 1982), and (now) fine-
motion strategies. We believe that if sophisticated,
sensor-based motion strategies are to be routinely used
in robotics, the analysis and synthesis of these strate-
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gies cannot (or should not have to) be done by human
programmers on a task-by-task basis. Moreover, we
are in need of a theoretical basis for the development
of the programming and control mechanisms best
suited for sensor-based motion. For these reasons,
there is a vital need for a unified (preferably mechaniz-
able) approach to analysis and synthesis of robot mo-
tion. This paper is a step toward this goal.

Appendix: Compliance via Generalized
Damping

Generalized damping is a very simple and flexible
mechanism for implementing active compliance?
(Whitney 1977). The basic approach is to define the
desired behavior of the robot by the relation

f=B(v— ),

where f is the vector of forces acting on the moving
object, v, is the nominal velocity vector, and v is the
actual velocity vector. In general, f is a vector of six
Cartesian forces and torques, and v and v, are vectors
of six linear and rotational velocities. In our examples
here, we limit ourselves to forces and linear displace-
ments in the plane.

Allowing the damping matrix B to be an arbitrary
matrix can produce unusual behavior. One popular
example is to relate forces in the —Xx directions to
displacements in the -+ y direction so that the robot
will climb over obstacles. We will, however, limit our-
selves to simple damping matrices. In particular, we
assume B to be the a diagonal matrix oI, with b > 0.
Note that the damper equation is now simplified to

f = b(V - VO)

or, alternatively,
v=vy,+ —l—f
0 b .

3. See Mason’s paper (1983) for a discussion of generalized damping
versus the generalized stiffness and hybrid control approaches to
compliant motion.
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Fig. 19. Geometry for
generalized-damper analysis.

ey

Consider an object controlled by a generalized
damper with v, (at an angle 6 below horizontal) on a
rigid surface whose normal points are along the y axis
(see Fig. 19A). When the object strikes the surface, the
objection can (1) slide to the right, (2) slide to the left,
(3) remain motionless. We can use Coulomb’s law to
determine which of these three possibilities will occur.

First, consider case 1, in which the object slides to
the right; the velocity v is horizontal. Coulomb’s law
dictates that the contact force f will make an angle
¢ = tan™!y with the surface normal. Using the damper
equation in a simple construction in velocity space
(Fig. 19B), we see that the nominal velocity angle 6
must be less than 77/2 — ¢. Case 2, in which the object
slides to the left, is quite similar and yields the con-
straint that 6 must be greater than 7/2 + ¢.

Finally, consider case 3, in which the object sticks
(remains motionless). The velocity v is zero. Cou-
lomb’s law gives a constraint on the force
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where « is the angle that the force f makes with the
horizontal. Again, the damper equation implies a cor-
responding constraint on 6:

g—¢s0s + .

ST

The analysis above yields constraints on the nominal
velocity v,, given the motion of the object. We are
also interested in the opposite: given the nominal ve-
locity v,, what will be the resultant motion? In the
present analysis, this is easily obtained. If the nominal
velocity angle 6 is less than 7/2 — ¢, only case 1, slid-
ing to the right, can occur. If the nominal velocity
angle 0 is greater than 7/2 + ¢, only case 2, sliding to
the left, can occur. If the nominal velocity angle € is in
the interior of the friction cone, that is,

T T
§_¢<¢<§+Q

then only case 3, sticking, can occur. The only ambig-
uous cases occur when 6 = 7/2 + ¢ or when 6 =

n/2 — ¢. These cases are often referred to as cases of
“impending motion.”

Thus the class of nominal velocities that gives a
desired motion on a given surface is easily charac-
terized in terms of the friction cone of the surface,
making the generalized damper an ideal control func-
tion for synthesis of fine motions.
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