Stanford Artificial lntélligence Laboratory July 1976
Memo AIM-282

Computer Science Department
Report No. STAN-CS-76-560

A Synthesis of Manipulator Control Programs
From Task-Level Specifications

by

Russell Highsmith Taylor

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494
and
National Science Foundation

COMPUTER SCIENCE DEPARTMENT
Stanford University

Stanford Artificial Intelligence Laboratory July 1976
Memo AIM-282

Computer Science Department
Report No. STAN-CS-76-560

A Synthesis of Manipulator Control Programs
From Task-Level Specifications

by

Russell Highsmith Taylor

ABSTRACT

This research is directed towards automatic generation of manipulator control programs from
task-level specifications. The central assumption is that much manipulator-level coding is a
process of adapting known program constructs to particular tasks, in which coding decisions are
made by well-defined computations based on planning information. For manipulator
programming, the principal elements of planning information are: (1) descriptive information
about the ob jects being manipulated,; (2) situational information describing the execution-time
environment; and (3) action information defining the task and the semantics of the execution-
time environment.

A standard subtask in mechanical assembly, insertion of a pin into a hole, is used to focus the
technical issues of automating manipulator coding decisions. This task is first analyzed from the
point of view of a human programmer writing in the target language, AL, to identify the specific
coding decisions required and the planning information required to make them. Then,
techniques for representing this information In a computationally useful form are developed.
Ob jects are described by attribute graphs, in which the nodes contain shape information, the
links contain structural information, and properties of the links contain location information.
Techniques are developed for representing object locations by parameterized mathematical
expressions in which free scalar variables correspond to degrees of freedom and for deriving
such descriptions from symbolic relations between object features. Constraints linking the
remaining degrees of freedom are derived and used to predict maximum variations. Differential
approximations are used to predict errors in location values. Finally, procedures are developed
which use this planning information to generate AL code automaucany

The AL system itself performs a number of coding functions not normally found in algebraic
compilers. These functions and the planning information required to support them are also
discussed.

This dissertation was submitted to the Department of Computer Science and the Committee on
Graduate Studies of Stanford University in partial fulfiliment of the requirements for the degree
of Doctor of Philosophy.

T his research was supported by the Advanced Research Projects Agency of the Department of
Defense under Contract MDA 903.76-C-0206 and the National Science Foundation under
Contract NSF APR 74-01390-A02 . T he views and conclusions contained in this document are
those of the author(s) and should mot be interpreted as necessarily representing the official policies,
either expressed or implied, of Stanford University, ARPA, NS F,or the U. S. Government.

Reproduced in the U.S.A. Available from the National Technical Information Service, pringfield,
Virginia 22151.

© Copyright 1976
by
Russell Highsmith Taylor

Acknowledgements

I am indebted to a great many people for advice, support, and encouragement in this work.
This short note attempts to express my gratitude to them, collectively and individually.

I must express special appreciation to Professor Jerome Feldman, my dissertation advisor,
for help in understanding how the different pieces of my work fit together and for many
suggestions improving the coherence of this document. 1 am.also grateful to Vint Cerf and
Tom Binford, the other members of my advisory committee, for their constant guidance and
availability, which went above and beyond the call of duty.

I am especially indebted to Dave Grossman for his constant willingness to listen to my
harangues, for his patience in reading successive versions of difficult chapters, and for
innumerable helpful suggestions. Likewise, Cordell Green, with whom 1 had many useful
discussions when this work was at an early stage, and Lou Paul, who has been a constant
source of information, advice, and encouragement, deserve special mention.

My thanks go also to the many colleagues, both at Stanford and elsewhere, who read parts
of this document or discussed with me various aspects of my work: Dave Barstow, Bob
Bolles, Randy Davis, Ray Finkel, Ron Goldman, Pitts Jarvis, Doug Lenat, Hans Moravec,
Brian McCune, Shahid Mujtaba, John Reiser, Ari Requicha, Mike Roderick, Bruce
Shimano, Victor Scheinman, Herb Voelker, Richard Waldinger, Peter Will, and many
athers.

The work reported in this dissertation was performed at the Stanford Artificial Intelligence
Laboratory. I am grateful to Professor John McCarthy, the laboratory director, and to all
the members of the technical staff responsible for the magnificant research facilities there.
A special vote of thanks must go to Lester Earnest, the laboratory executive officer, for
constant help in making the documentation system work.

. Financial support was provided, at various times, by the National Science Foundation, by
the Advanced Research Projects Agency, and by the Alcoa Foundation. My thanks go to
all these agencies.

Finally, this work is dedicated to my parents, Charles and Nancy Taylor, for their constant
love, confidence, and support through what has been a long and sometimes discouraging
period.

iv Table of Contents

Section

1. Introduction
.1 Requirements of Programmable Automation
1.2 The Goal
1.3 Relation to Automatic Programming Research
1.4 The AL Manipulator Programming System
1.6 Overview of the Document

2. A Discussion of Manipulator Programming
2.1 Introduction
2.2 Characteristics of Automatic Assembly Domain
2.2.1 Example Task
2.2.2 Task Repetition
2.2.3 Variability
2.2.4 Complexity of Tasks and Programs
2.3 Programming Paradigms
2.3.1 Tape Recorder Mode
2.3.2 Augmented Tape Recorder Mode
2.3.3 Formal Languages
2.4 Overview of Formal Language systems
2.4.1 “Pseudo-machine” Languages
2.4.2 “High Level” Languages
2.4.3 “Very High Level” Languages

3. AL, The Anatomy of a Manipulator Language
3.1 Introductory Remarks
3.2 Overview of the language
3.3 Structure of the AL System
3.3.1 Runtime System
3.3.2 Compiler
3.4 Sample AL Program
34.1 The Task
3.4.2 Declarations and Aflixments
3.4.3 Grasping the Pin
3.4.4 Initial Program
3.4.5 Critique of Initial Program
3.46 Error Detection
3.47 Error Recovery
3.4.8 Refined Program
3.4.9 Further Discussion
3.5 Frames, Good and Bad
36 Affixment

4. Planning Models
4.1 Introductory Remarks
4.2 Planning Information in Algorithmic Languages
42.1 An ALGOLish Fragment
4.2.2 Getting the Computer Involved

Page

D O e IR =

35

S ——— Y

Table of Contents

Section
4.3 Planning Information in Manipulator Programming
4.4 Ob ject Models
4.5 Situational Information
46 Action Information

5. The AL Planning Model

51 Planning Model Requirements for Manipulator AL
52 Structure of the Model
5.3 Data Base Primitives
54 Simulation of Language Constructs
5.4.1 The Basic Step
5.4.2 Rewriting Motion Statements
5.4.3 Conditional Compilation
5.4.4 Conditional Statements
54.5 Loops
546 Parallelism
54.7 Complications with Motion Statements

6. Ob ject models

7. R

6.1 Introduction

6.2 Basic Constructs

6.3 Ob ject Nodes

6.4 Object Links and Link Attributes
6.5 Feature Nodes

6.6 Other Properties

epresentation of Location and Accuracy Information

7.1 Introductory Remarks

7.2 Contact constraints

7.3 Inequality Constraints

7.4 Objective Functions

1.5 Linear Constraints

76 Algorithms
76.1 Finding relevant relations
76.2 Generating the constraint equations
76.3 Merging the constraint equations
76.4 Converting the Constraint Equations
76.5 Computing Rotation Ranges

7.7 Experience

1.8 Differential Approximation

7.9 Algorithms

7.10 Experience

7.11 Other Uses of Differential Approximation
T.111 Sénsitivity Analysis
7.11.2 Vision :
7.11.3 Runtime Updating

Page
65
66
67
68

69
69
70
71
72
72
73
4
76
81
84
86

83
88
89
90
92
94
95

98

98
101
106
108
110
113
114
116
119
122
123
126
127
133
135
136
136
138
142

vi Table of Contents

Section ' Page

8. Automatic Coding of Program Elements 144
8.1 Data Structures 145

8.2 Initial Computations 148

8.3 Grasping the Pin 149

8.3.1 Assumptions 150

8.3.2 Grasping Position 150

8.3.3 Approach and Departure Positions 154

8.3.4 Hand Openings 154

8.4 Moving to the Hole 155

8.5 Accuracy Refinements 157
8.5.1 Axis Misalignment 157

8.5.2 Error Along the Hole Axis 159

8.5.3 Errors in the Plane of the Hole 161

8.6 Selecting a Strategy 163

8.7 Code Generation 164

8.8 Example 166

9. Conclusions and Future Work 172
10. Bibliography 180
Appendix Page

A. A Summary Description of AL 189
A.l Data structures 189

A.2 Control structures 191

- . -A.3 Motion Specifications 192
B. Notational and Arithmetic Conventions 195
C. Automatic Updating Implementation 198
C.1 Overview 108

C.2 Semantics of Affixment 198

C.3 Data Structures 199

C.4 Algorithms 200

C.5 Fine Points 202

D. Ob ject Model for Box Assembly 204
E. Examples of Location and Accuracy Calculations 210
E.l Box in a Fixture 210

E.2 Screw on Driver 213

F. The POINTY System 217

2.1.
3.1
32
3.3.
34
3.5.
36.
6.1.
6.2.

6.3.

6.4.

7"
7.3.

74.
7.5.
76.
7.7.

7.8.

8.1.

8.2.

E.l.
E2.
F.l1.
F2

List of Figures

Figure
Box Assembly Sequence
The AL System
Before .
After ,
Possible Grasping Positions
Box Held by Vise :
Finding the Box by Centering
Box Assembly Relations
Representation of a Screw
Coordinate System of an Edge
Coordinate System of a Hole
Picking Up a Carburetor
Feature Coordinate System Conventions
Ob ject in a Box
Computing Rotation Range: Iteration k
Computing Rotation Range: Iteration k+1
Premature Termination Bug
Crankshaft in Vise
Gears Must Mesh
Error Footprint
Approaching the Pin
Box in Fixture
Screw on Driver
Pointing at a Feature
POINTY Display Scene

vii

Page
12
33
36
36
39
45
52
91
91
96
96
99
105
112
124
125
127
129
139
147
155
211
212
218
219

“Another letter. To the E.B. Huyson Agency, New York,
US.A. 'We beg to acknowledge receipt of order for five
thousand Robots. As you are sending: your own vessel,
please dispatch as cargo equal quantities of soft and hard
coal for R.U.R, the same to be credited as part payment of
the amount due to us.”

Karel &apek
R.U.R.
1921

Chapter 1.

Introduction

Over the past ten years, a new and potentially revolutionary class of machines has emerged:
arm-like “manipulators” operating under control of a computer. These devices have two
important characteristics:

l. They are general purpose machines which can be redirected to new tasks
with little or no hardware modification.

2. Their behavior can be modified during the execution of a task, based on
sensory data obtained from the environment. Further, the response to
sensory data can be both complex and readily reprogrammed.

The flexibility inherent in this combination offers a number of significant advantages over
current fixed automation. Errors in the positions of parts can be tolerated, thus reducing
the need for expensive precise fixturing. Inspection can be integrated into automatic
manufacturing processes. Capital costs can be spread over many products. Finally,
increased standardization of equipment within a plant eases maintenance problems and
allows more flexible production scheduling.

These advantages will soon make it possible to replace human workers in a number of
situations in which automation has so far been economically feasible only for very large
production runs, if at all. This work focuses on mechanical assembly as an example
application area which seems particularly likely to make use of programmable manipulators.
However, it should be remembered that assembly is not the only use for these devices.
Many of the techniques developed here are directly applicable to other manipulatory
domains.

2 Introduction

1.1 Requirements of Programmable Automation

Before programmable automation can be applied to a particular class of tasks, the
requirements of function and programmability must be met. Function includes basic
hardware, motion control, and sensory capabilities necessary to perform the tasks in the
domain. Programmability requires the development of a suitable formalism for specifying
how these capabilities are to be applied to the tasks.

Most research on manipulators has been devoted to the first category. Functional capability
for mechanical assembly was demonstrated by Paul and Bolles in 1973 at Stanford, using a
Scheinman electric arm [802181), and in subsequent experiments at Stanford [84),
General Motors [110], IBM [112,113), MIT [56), and several other laboratories. These
experiments demonstrate the .importance of sensory feedback and programmed control
structures for reliable and efficient assembly without extensive special tooling.

Perhaps as a result of the emphasis on function, relatively little attention has been paid to
programming formalisms until recently. Languages for manipulator control were not so
much designed as grown. As functional capabilities were developed to the point where
sophisticated ‘applications became feasible, however, it was recognized that better languages
wouldhave to be developed, if the full potential of manipulators were to be realized. In the
past two years, several advanced manipulator languages — notably, MAPLE[31] and
AL[37, 18] — have been developed. These programming systems resemble PL/I or
ALGOL and offer gains in programmability roughly comparable to those offered by
algebraic compilers over assembly language.

Although these languages provide a fairly direct way for describing actions by the
manipulator system, the production of assembly programs is far from trivial. ~The process
of generating such programs may be broken down (crudely) into two components:

l. A task-level specification, in which the job is described as a sequence of
" assembly oriented operations, such as fitting a part into place or driving a
screw into a hole.

2. A manipulator-level specification, in which the functional capabilities of the
manipulator are applied to perform the individual assembly steps.

Although the task-level description is frequently straightforward, the coding effort required
to produce the corresponding manipulator-level specification is still substantial. One must
decide what motions to make, what forces to exert, what sensory data to check, error
conditions to monitor, etc. To make these decisions intelligently, one must consider the
design of the object being assembled, where the parts are at each point in the program
execution, how accurately their positions can be known, how precisely the manipulator can
be controlled, and many other similar factors. Once made, the decisions must then be
reflected in code written to satisfy the requirements of the available formalism.

1.2 The Goal

The research reported in this dissertation is directed towards computer automation of
manipulator-level coding.

The central assumption is that the process of generating manipulator-level specifications for
common assembly opeérations is generally one of deciding how to adapt known program
constructs to the particular task at hand. Furthermore, these decisions can be characterized
in terms of well-defined computations, based on planning information. If the computer is to
make these decisions, it must have access to much the same information that would be used
by a human programmer. This information includes:

. Descriptive information about the ob jects being manipulated.
2. Situational information about the execution-time environment.

3, Action information defining the task and the semantics of the manipulator
language.

Eventually, we would like a system capable of generating complete manipulator programs
from object models and task-level descriptions of assembly sequences. The construction of
such a system is an immense undertaking. The requirements include:

. Development of an adequate manipulator-level target language.

i 2. Development of a formalism for task-level specification of a large class of
" assembly operations.

i . 8. Development of a suitable representation for object models, together with
means for automatic construction of the representation from whatever is
available from the Computer Aided Design (CAD) system, and for
computing relevant values required by the planning system from the
representation. This problem is especially severe, since computer
representation of shape information is still in early stages of development.

4. Development of means for representing situational information, including
where things are expected to be and how accurately their positions will be
known when the programs are executed.

5. Development of a large “knowledge base™ of manipulation techniques
required to implement the assembly operations, together with computational
descriptions of the individual decisions that must be made to tailor code
sequences to particular situations. '

'6. Development of means for making coherent assembly strategies, so that
interactions between assembly steps do not lead to inefficient programs.

" Since any early system will necessarily have many deficiencies and limitations, another
requirement js:

4 Introduction

7. Development of good ways to ask for and accept help from the user. Since
such help may require the user to write manipulator-level code for at least
some operations, this means that the system must “understand” manipulator
programs well enough to update its situational models appropriately.

Clearly, some of these requirements are more difficult than others. When this work was
begun, it was believed that the key problem was (6), the production of a coherent and
efficient program in the face of interactions between component subtasks. Early research
was therefore directed towards ways to resolve partial orderings of subtasks (e.g., “Put in two
aligning pins; then put on the engine head; then insert four head bolts; etc”), select
workpiece positions that were convenient for several subtasks, and so forth. It proved fairly
easy to produce a system which could make these decisions, based on tcy data in the form of
declarative assertions liké “In stable position upright, the box can be grasped at position
gposl”. The success of this program was very encouraging until the time came to make the
transition to real data. The difficulty of representing planning knowledge about the
manipulator environment in a computationally useful form and then applying it to actual
assembly problems turned out to be much greater than anticipated.

Consequently, the focus of this work has shifted from “global” optimization to more “local”
coding decisions. These decisions must still be based on planning information about the
manipulator’s environment. Since we wish to focus on the use of such information, rather
than on provision of elegant descriptive formalisms, some simplifications have been possible.

We have concentrated on the coding decisions required for a single task-oriented operation:
insertion of a pin into a hole. This has allowed us to demonstrate the feasibility of
program automation while, at the same time, keeping the required systems development
effort within some reasonable limits. The modelling requirements for this task are
sufficiently broad to include essentially all of the elements — where things are, what can go
wrong, what methods are available to correct errors — found in other tasks.

1.3 Relation to Automatic Programming Research

Earlier, we described manipulator programming as a process of figuring out a sequence of

operations which will get the task done and then expressing those operations in terms of

available functional primitives. This combination of problem solving and coding activities

is not unique to manipulator programming. A recurrent theme in the development of

programming systems has been the provision of more convenient levels of abstraction, with
the computer taking over many of the “low-level” coding responsibilities.

Thus, symbolic assemblers keep track of address assignments, fill in numerical values for
symbols, and perform other similar tasks. Algebraic compilers, in turn, take over many of
the coding responsibilities of an assembly language programmer, such as allocation of
variables, register management, loop control, translation of expressions into machine
instructions, and so on. Recently, there has been a great deal of interest in “very high level”
languages, in which the user describes his task in terms of abstract “information structures”
and problem-oriented operations, and relies on the computer to implement his specification

A e A e Ay e g

[
k
E

Relation to Automatic Programming Research | - 5

in terms of available data structures and computational primitives.l Within this framework,
automatic generation of manipulator programs from task descriptions may be viewed as
provision of a very high level manipulator language. Although a full discussion of
automatic coding in other domains is beyond the scope of this document, several points are
worth making.

In order to construct an automatic coding system for any domain, we must do several things.
First, we must analyze the coding task being automated to identify-the specific decisions
that must be made. As we will see in Chapter 3, the decisions for manipulator coding
include where to grasp ob jects, selection of motion destinations and intermediate points,
choice of sensor tests, anticipation of likely error conditions, and determination of recovery
strategies. Second, we must identify the planning information needed to make the decisions.
As we stated in the previous section, this information includes object descriptions,
situational information about expected locations and accuracies, and action information.
Third, once the relevant decisions and planning information have been identified, we must
find ways to represent the information that are “understandable” by the computer, in the
sense that we can perform well-defined computations to make the necessary coding decisions
and produce the appropriate output programs. This problem is especially severe for
manipulator coding. Much of the research effort reported here has been directed towards
development of computationally useful representations of physical situations. The use of
these representations to make coding decisions for a typical task (insertion of a pin into a
hole) is the sub ject of Chapter 8.

1.4 The AL Manipulator Prograinming System

Any discussion of automatic coding must necessarily include some attention to the process
being automated — here, the production of manipulator-level programs. This research has
been done within the context of AL [37,18,19,39], which was designed at Stanford as a
successor to Paul's WAVE system [80,82], and whose implementation has proceeded
concurrently with the work reported here. AL is the “highest level” manipulator control
language yet implemented, and, consequently, seemed like a natural target language for an

automatic coding effort.2

Although this document does not attempt a complete description of AL, some attention is

, given to several important aspects of the system. Of particular importance is the fact that

AL, itself, performs a number of coding functions not normally required of an algebraic
compiler, including tra jectory planning, rewriting motion statements, and resolving situation-

! For ‘example, the work of Low [66), Rovner(67]), Green [43), Barstow [7], Schwartz
(98], Early, and many others [5). It is interesting that the term “automatic programming”
was first applied to compilers. Today, we tend to react with amusement to this usage.
However, it iIs perhaps unfair to do so. The basic process — automation of coding decisions
based on information maintained by the computer — is, after all, the same as attempted by
most “advanced” systems. In twenty years, we will perhaps also consider automatic
generation of ALGOL programs to be a “naive” form of automatic programming.

2 The fact that I was actively engaged in the design and implementation of the language
was, of course, also a relevant factor. '

6 Introduction

dependent conditional compilation requests. These functions require that the compiler keep
track of much more situational information than might otherwise be the case. In particular,
it must keep track of expected frame values, affixments between location variables, and
user assertions about runtime states. Since this thesis is largely concerned with the use of
planning information to ‘make automatic coding decisions, we will discuss the techniques
employed to keep track of this information, how the information is used, and the problems
encountered. The basic paradigm used to keep track of information in AL is also used by
the task-to-manipulator-level translation primitives, which are the heart of this work.

1.5 Overview of the Document

The scope of the material covered in this dissertation is quite broad. Considering the
nature of the problem attacked, this is inevitable. I recognize that not everything will be of
equal interest to all readers. This section is intended to provide an overview of how
everything fits together, and to indicate which parts are most important to understanding
the basic theme of this research: how coding decisions for manipulator programming can be
automated.

Chapter 1. Introduction
Presumably, you've already read it. Congratulations on your good taste!
Chapter 2. A Discussion of Manipulator Programming.

This chapter is intended to establish a basis for discussion about manipulator
programming. It is divided into three major components: (a) A discussion of the
mechanical assembly domain. The key points are that programs must be flexible enough to
handle variations in the execution environment and that sensory feedback is important in
obtaining that flexibility. (b) Next, we discuss the advantages, disadvantages, and
intellectual requirements of different programming paradigms for manipulators. The
paradigms discussed are tape recorder mode, augmented tape recorder mode, and “formal”
languages. The principal point is that many assembly tasks are complex enough to require
the fiexibility of formal language specifications, but that such systems require more from the
user than do more “iconic” methods. (c) Finally, we provide an overview of existing formal
language systems. If you are willing to believe these points, or don't care about them, then
you can skip over this chapter without losing too much.

Chapter 3. AL, the Anatomy of a Manipulator Languagé.

This chapter provides an overview of the target system, AL, and describes the process
which we are seeking to automate: generation of manipulator-level specifications of assembly
operations. This is done by writing successively more complete versions of a program for
accomplishing our prototype assembly task — inserting a pin into a hole. This approach
allows us to show off several important features of AL, to identify the coding decisions that
must be made, and to explain the factors that must be considered in making them. Finally,
I cannot resist spending a few more pages discussing the two salient characteristics — as |
see them — of AL: the use of coordinate frames to specify motion and the use of frame
affixment to simplify book-keeping. You should read this chapter, even if you skip over

Overview of the Document 7

everything else in the thesis. Section 3.4 is especially important, since it analyzes the
coding decisions whose automation is described in Chapter 8.

Chapter 4. Planning Models

A vital point about programming is that it is a form of planning — ie, making prior
decisions about actions to be performed at a later time. To make these decisions rationally,
we must necessarily base them on our expectations about the circumstances in which they
will be executed. If we wish to get the computer to take over some of the coding burden, we
must find a way for it to represent and maintain the necessary planning information. This
chapter discusses the relation between automatic coding and the maintenance of planning
information, first within the *familiar” context of ALGOL programming, and then within
the context of AL programming, using the pin-in-hole task of Section 3.4 as an example.
The discussion explores how each category of information (object models, situational
information, and action information) enters into the programming process. This is a short
chapter and probably should be read by everyone, although those whose sole interest is in
manipulation may want to skip over Section 4.2 rather quickly.

Chapter 5. The AL Planning Model

The AL compiler itself performs a number of coding functions, such as planning
tra jectories and rewriting motion statements, not ordinarily found in algorithmic languages.
These functions require that the compiler keep a better model of situational information —
especially, the expected value of frame variables and affixments — than might otherwise
be the case. This chapter describes how the compiler maintains and uses this information
and discusses many of the difficulties encountered. The approach is to associate a data base
of assertional “forms” with each control point in the program graph, using simple simulation
rules to. propagate facts. Persons who are not particularly interested in the technical issues
involved can get by without reading this chapter in detail. The important points are that
the same mechanism — a multiple world assertional data base — is used by the automatic
coding procedures discussed in Chapter 8 and that “understanding” manipulator level
statements is necessary, though often very difficult, if the system is ever to incorporate user’s
“advice” with its own coding decisions.

Chapter 6. Object Models

As we mentioned earlier, techniques for computer representation of shape are not yet well
developed. Unfortunately, manipulator programming necessarily involves some decisions
based on such information. Since the number of problems that can be solved in one
dissertation is, alas, finite, we have had to adopt a fairly ed Aoc solution to this one. Ob jects
are modelled by "attribute graphs”, in which shape information is represented in the nodes,
structural information by links, and location information by properties of the links. Within
this framework, many important facts —.such as the available “free area” around an ob ject
feature or the expected penetration of a pin into a hole — are represented explicitly, even
though, in principle, they are computable from more primitive shape representations. This
chapter describes some of the details of this representation scheme. You don't need to read
it closely, unless you are particularly interested. I've just told you most of what you need to
know. The most interesting point is that coding decisions can generally be based on “local”
properties of ob jects.

8 Introduction

Chapter 7. Representation of Location and Accuracy Inforination,

In manipulator programming, the most important forms of situational information are the
expected location of the ob jects being manipulated and how accurately their locations will be
known at execution time. A substantial part of the research effort reported here has been
the development of techniques for representation of this information in forms that permit
reasonable coding decisions to be made. The principal results are methods for expressing
“semantic” relations between ob ject features in terms of mathematical constraints on scalar
“degrees of freedom” and for applying linear programming techniques to predict limits in
inter-ob ject relationships. Depending on the interpretation placed on the free variables,
these techniques may be used to predict either locations or accuracies. In addition to
describing these techniques, this chapter presents a number of applications, such as vision
planning and parts tolerancing, which are not strictly part of our automatic coding effort.
The discussion is rather mathematical, although nothing beyond freshman calculus and
linear algebra is required. Try not to get bogged down in the details. By reading Section
7.1 through Section 7.5, Section 7.8, and the examples of Appendix E, and looking
at those special applications that interest you, you can get enough of a “feel” to follow the
uses made by our coding procedures of the methods discussed in this chapter.

Chapter 8. Automatic Coding of Program Elements

This chapter applies the modelling mechanisms developed above to automate the coding
process described in Chapter 3. If you have read everything that comes before, you
shouldn’t have any trouble understanding how this feat is performed. If you have skipped
material, you may have to take some things on faith, but you should be able to understand
enough to see that decisions are being based on very definite computations on the planning
model.

Chapter 9. Conclusions

The principal conclusion? is that I claim to have demonstrated a sufficient basis for the
automation of at least some manipulator coding decisions. Additional points are that all the
machinery built, or some better replacement, is also necessary to the process and that a great
deal remains to be done before an integrated automatic programming system can be “put
up” for users. This chapter also contains the traditional description of the direction further
work should take. '

. 3 Of course

I — A robot may not injure a human being, or, through
inaction, allow a human being to come to harm.

2 — A robot must obey the orders given it by human beings
except where such orders would conflict with the First Law.

3 — A robot must protect its own existence as long as such
protection does not conflict with the First or Second Law.

Isaac Asimbv
Handbook of Robotics, 56th Edition
2058 A.D. ‘

Chapter 2.

A Discussion of Manipulator Programming

2.1 Introduction

The underlying goal of any manipulator programming system is to provide the user with an
effective means of specifying what actions must be taken by the manipulator and its related
hardware to achieve a desired result. The requirements placed on the manipulator
programs and, consequently, on the programming system depend to a great extent on the
characteristics of the task domain for which the programs are being produced. These

characteristics include:
. The number of times the program must be executed.
2. How much the environment may vary each time the program is executed.
3. The complexity of motions required to perform the task.
4. The complexity of the control sequences required.

For instance, one of the earliest uses of manipulator-like devices was for handling
radioactive chemicals from a safe distance. More recent applications of the same idea —
giving the user a way to manipulate objects when it would be dangerous, difficult, or
unpleasant for him to do so with his own hands — include under-ocean or outer-space
repairs, disarming bombs left by terrorists, or arming bombs for use against an enemy. In
these teleoperator systems, the human takes a more or less active role in direct control of the
device. Each situation is treated as a new problem, and the “programs” are executed as they
' are written and then thrown away. The motions required may be quite complicated, often
requiring careful monitoring of and control over the forces involved, rates of motion, and

10 A Discussion of Manipulator Programming

the like. The principal requirement is to provide the user with an efficient way of
specifying particular motions and reacting to the sensory data from current environment.
Typically, this is done by providing the user with a joystick, control yoke, or other
contrivance for indicating the motions to be made and for accepting feedback from the
hardware. Since the motions are specified in real time and on a once-only basis, questions
of generality of specification, provision for alternative situations, etc., never arise.

In applications where the manipulator is expected to run on its own, without direct control
from a human operator, it becomes necessary to construct a program. Perhaps a few words
about just what is meant by a “manipulator program” are in order. Any definition is
- necessarily somewhat clouded by the close interrelation between the hardware and support
software of manipulator systems. Some systems close the control loop for the manipulator
through a computer. Should these servo routines be considered part of the manipulator
program? Suppose the runtime system contains a facility for centering the manipulator’s
hand on an object. It may be possible to describe the necessary motions in terms of sensor
tests and incremental arm motions. Should this code be included? What if the runtime
system contains a genie capable of figuring out how to put any ob ject together by looking at
it?

If our hypothetical genie were available — i.e, if it were possible to defer al! decisions about
what to do until the time came to act — then “programming” would scarcely be necessary.
All we would have to do would be to roll the robot up to a work station, turn on power,
and say “go to it, fellah”. The robot would then function very much like a teleoperator
system, with a computer program playing the role of the human operator. Unfortunately,
such a device seems to be beyond the current state of the art.! The key point about writing
a program is that, by specifying how executable primitives in the system are to be applied
to perform a particular task, we can reduce the remaining decisions to those that can be
handled efficiently at run time.

Thus, the distinction between a programmable manipulator and a teleoperator system is that
programming necessarily involves prior decisions about how to apply general capabilities to
particular problems. In our discussion, we will mainly be concerned with the level at which
pre-execution specification of the program begins to become unique to the problem -
typically, at the level of motion or sensor control statements, conditional branches, or the
like. '

2.2 Characteristics of Automatic Assembly Domain

We have chosen to study manipulator programming for small to intermediate-scale
mechanical assembly applications.

Why Study Assembly Programming?

There are several reasons why this domain is a “natural” one for the study of manipulator
programming:

' Even if such a device were available, it probably would be too expensive to be practical
for many applications.

e

g, s L

Characteristics of Automatic Assembly Domain 1

I. It represents a “live” application for manipulators.
P PP P

2. A universal runtime system that can figure out on its own what to do is
beyond the current state of the art. Consequently, programming of specific
tasks is, in fact, necessary. -

3. Task environments are constrained enough so that efficient, non-trivial
programs can indeed be written.

Of course, many characterists of assembly tasks may .also be found in other manipulation
domains, and much of what we have to say will be more generally applicable.

221 Example Task

The photographs in Figure 2.1 illustrate a.simple assembly task well within the

capability of current manipulator systems.2 We are presented with parts of a metal box, and
wish to put it together. We do this as follows: '

1. The box is picked up off a “conveyor” and placed in a vise.
2. Aligning pins are inserted into two holes in the top surface.
3. . A metal cover plate is fitted on over the pins.

4. The plate is secured with two screws.

5. The aligning pins are removed and replaced by screws.

6. The box is removed from the vise and returned to the conveyor.

2.2.2 Task Repetition

We are concerned principally with production runs ranging roughly from 1000 to 100,000
units. These numbers are somewhat arbitrary. The low end for any particular application
is determined by the point at which the programming and setup costs for the manipulator
outweigh the benefits of automation. The high end is given by the point at which it
becomes economical to construct a special purpose device. To push the applicability region
downwards clearly requires that programs be made easier to specify, with detailed
specification being automated as much as possible. However, increased flexibility is just as
important since elaborate special tooling is generally not economical where only a few items
are being produced. The principal requirement for pushing the applicability reigon
upwards is to increase the efficiency of programs. Typically, this involves ways to speed up
motions, avoid wasteful motions, and to increase accuracies, so as to require less fumbling
around.

2 A similar assembly — putting the head and head gasket onto a Model-T Ford waterpump
— was performed by Paul and Bolles in late 1973 [21).

12 A Discussion of Manipulator Programming

Figure 2.1. Box Assembly Sequence

Characteristics of Automatic Assembly Domain 13

2.2.3 Variability

We are aiming at about the level of variability one might expect on an assembly line.
These variations can occur at several times:

. Between task repetitions within a single production run.
2. Between production runs of the same task.
3. Between tasks.

Within Production Runs

Within a production run, there is generally little need to vary the order in which the
constltuent parts are put together or the basic technique used in each individual assembly

operation.3 Most assembly operations require that the parts be in some relative orientation®
and that the position errors between parts be kept within certain bounds for the operation
to be performed successfully. Typically, this is accomplished by a combination of fixtures to
hold the parts in place and sensory information to observe locations directly or to infer
errors from indirect data like forces between parts. In our box assembly, aligning pins are
used to make the holes in the cover plate line up with those in the box body, and the body
itself is held in a vise while the assembly is done. Since the vise is not a precise fixture, the
exact location of the box may vary slightly with each assembly. The use of sensory
feedback to accommodate such variations is described in Chapter 3.

Location of Tools and Parts

Tools and fixtures usually can be kept at more or less the same place on each iteration of a

" production run. Parts either may come packed together in a “kit” — which may be more or

less neatly arranged — or be introduced separately to more or less well defined reigons of the

work station. Any of a number of techniques may be used, with widely varying degrees of
control over part orientation. Some examples:

1. Parts unoriented -and unseparated — tote bins

2. Parts unoriented but separated — egg cartons

4 The principal exception to this is the case where several different models are being
assembled concurrently. Depending on how different the assembly sequences are, this may
be handled by using whole separate programs for each model, or by using conditional
statements within a single program.(Of course, the former may be considered merely a
degenerate case of the latter). It is interesting to note that a computer controlled device may
exhibit more fiexibility in this respect than a human, in the sense that it is less apt to
become confused by a large number of different model requiréements presented in random
sequence. The principal requirements are that there be some ‘means of specifying which
model is to be built each time and that the work station setup be compatible wnth all
versions of the task.

9 In this discussion, "orientation”, posmon and the like will be used rather loosely; usually,
both translation and rotation are meant.

14 A Discussion of Manipulater Programming

3. Parts sit in one of several “stable positions”, but otherwise more or less
unrestricted — table top

4. Part orientation fixed approximately — loose fixturing, “careful” placement
on a surface, simple vise.

5. Part orientation fixed precisely — “better” fixtures.

The choice for a particular problem depends on the fexibility of the manipulator and on
the time available. For instance, parts are frequently delivered to human assemblers in tote
bins — each bin containing a great heap of some kind of part all jumbled together. The
assembler picks parts individually out of the bin, orients them manually, and uses them for
the assembly. Unfortunately, present-day manipulators lack the sensory capability and
dexterity to accomplish this efficiently.

Fixtures

At the other extreme, we find cases where parts are kept carefully oriented by fixtures from
the very beginning of the assembly process. Generally, this rigid control is most useful in
high volume applications where automatic machines are being used; efficiency is gained by
avoiding the need for any sensory adaptation, which is often non-existent on special
~ purpose machines and (in any case) may take time, and by avoiding the need for any waste
motion in reorienting parts or in getting around awkward workpiece positions. Where it is
impractical to store or transport parts so as to maintain the required orientation, special
purpose devices — vibratory feeders, shake boxes, and other ingenious gadgets — are
frequently used, and the orienting operation may be done in several stages. For instance, a
vibratory feeder might be used to align parts sufficiently well so that they may be grasped or
placed unambiguously into a fixture which, in turn, will reduce alignment errors to the point
where assembly can proceed.

Where a human is being used as the assembly device, precise fixturing for absolute
positions is not generally useful, since people rely much more on sensory feedback than on
absolute accuracy in fitting things together. However, where great accuracy is required or
where sensory feedback doesn't work so well, fixtures may be used as alignment aids. The
advantage of such alds, again, is that a simpler problem — loading a fixture — is substituted
for the harder problem of accomplishing the assembly directly.

Between Production Runs

Frequently, small batches of a particular product may be produced at intervals. When the
station is being set up for the new run, it is frequently desirable to alter its arrangement
somewhat from that used before. For instance, some tools required by the task being set up
may already be mounted at the work station, only not in the same place. Depending on how
important placement is to efficiency, it may be desirable to leave them alone. Even if the
location of everything is more or less the same, there usually will be small differences. If a
human is doing the assembly, these differences will make no difference at all. Indeed, they
may not even be noticable without careful measurements. 'On the other hand, many
automatic assembly devices rely on knowing absolute locations to within very narrow
tolerences. If the device is programmable, it may be possible to save the program in a form
that allows it to be reused after a suitable recalibration phase. The ease to which such

T

[

F e

b el ey b et a1 L P

Characteristics of Autoinatic Assembly Domain 15

recalibration can be done can have a substantial influence on whether it is economical to
automate odd-lot production items.

Between Tasks

Clearly, much more variation occurs between tasks. One does not expect to assemble a
stapler with exactly the same sequence of operations as used to assemble a pencil sharpener.
On the other hand, standardization through the use of common fixtures, tools, fasteners, etc.,
and through similarities in the operations themselves is often possible. For example, many
tasks require bolts to be driven into threaded holes; it is possible to devise general purpose
bolt drivers, dispensers, and — to some extent — methods for accomplishing this. Aside from
the obvious savings in setup and tooling cost that such standardization makes possible,
there is also a substantial gain from increased ease in retraining or instructing workers in
performance of a new job, since one doesn't have to teach basic skills each time. For
programmable manipulators, we would like to have to a library of standard procedures for
common operations, such as picking tools up from tool racks, dispensing and using standard
fasteners, and actual assembly operations such as inserting pins into holes, fitting things

together, etc.

In addition to standardization at the individual operation level, a group of tasks may
exhibit a great deal of overall similarity. An extreme case of this is where the same ob ject
is to be assembled using different configurations of the work station, as discussed earlier..
Model changes may require that only a few parts of the assembly procedure be modified.
Workers familiar with the old task should find it easier to pick up the new task than
comparably able workers new to the entire assembly. Where programmable devices are
being used, such retraining corresponds to modifying an earlier program rather than
generating a new one from scratch whenever the task is modified.

2.24 Complexity of Tasks and Programs

Generally speaking, assembly tasks may be described as linear or partially ordered sequences
of operations. For instance, the alignment pins in Section 2.2.1 may be inserted in either
order, though they must both be in place before the cover plate is put on. '

The operations themselves may be rather more complicated, and (indeed) may be beyond
the capability of current machines. For instance, reorienting a part taken from a bin is
frequently performed by shifting it in the hand while it is being transported to the
workpiece. Similarly, it is sometimes necessary to reach inside a workpiece, compress
something, thread a limp ob ject through a hole, or perform some other feat in order to get a
part into place.

On the other hand, many assembly operations may be accomplished by extremely simple
motions. The part is merely transported to a desired location and released; it literally falls
into place. Typical intermediate cases might involve the activation of a tool, such as a
power screwdriver; subsidiary locking motions, as with a bayonet thread; or some amount of
careful fitting-together. Force sensing may be used to a greater or lesser extent for guiding
the terminal phases of motion and to verify that the operation has been completed
sucessfully.

16 A Discussion of Manipulator Programming

The current state of programmable motion control for manipulators is still rather limited
The systems are still too clumsy to to perform many operations, although sometimes a
special-purpose fixture or attachnent can be devised for a particular task. Much of this
clumsiness comes from limitations in existing hardware and control software, especially for

general-purpose end effectors.” However, limitations in programming formalisms and
doctrine are at least as important. Even if the hardware is theoretically capable of
performing some action; we still must know exactly what we want done and must have a
way of expressing our desires in a way understandable to the machine. At present, our
understanding of manipulation and of how to describe manipulatory actions is still quite
limited. Extensions to basic hardware capabilities are thus, to some extent, dependent on

progress in ways to enhance the programmability of the devices.®

Specific capabilities vary widely from system to system. We will mainly be concerned with
manipulator programs in which motions are described by sequences of discrete manipulator
positions, without explicit specification of what happens in between, and where limited
forms of force and touch sensing are available. 7 These capabilities are sufficient for a
number of common assembly operations, including:

i. Inserting pins into holes. This includes the important subcase of driving in
bolts and screws. '

2. Mating one part surface to another.

8. Fitting things over studs. This includes putting washers and nuts on over
the end of a bolt.

4. Placing parts into fixtures.

Of course, it is possible to find instances of any of these operations that are too hard for our
existing techniques. The interesting point is that a substantial subset of cases can be
covered. Furthermore, the additional flexibility offered by programmability and even
limited sensory feedback makes this subset somewhat larger than for comparable fixed
automation machines.

5 The current “canonical” device is a two or three fingered grasper.

® For instance, a five fingered hand is certainly constructable. Nevertheless, work proceeds
with two fingered grippers, in part because no one has any good way to specify motions
using anything more complicated. Where sensory data is concerned, the problem is even
more pronounced. For instance, digitized TV data has been obtainable for some time now,
but only recently has there been much progress in applying vision to industrial applications.

7 This will exclude many continuous servoing operations such as fitting a disc over a
spindle. However, many of the considerations relevant to the use of such techniques — such
as where objects are and how much accuracy is required — are the same as for the
constructs we will be using. As more advanced manipulation primitives are developed,
therefore, we hope that the lessons learned here will still be applicable.

17

2.3 Programming Paradigms

This section will discuss several different approaches to manipulator programming, each of
which offers some advantages and disadvantages. . Crudely, these approaches may be
divided into “textual” and “non-textual”, and are superficially quite different. We will see,
however, that they are not at all Incompatible. Indeed, they may be combined so as to
increase their power substantially.

2.3.1 Tape Recorder Mode

This method, also called “teach mode”, is the only programming method that is in common
industrial use today. Essentially, it is an attempt to adapt teleoperator control experience
directly to the preparation of manipulator programs. A joystick, button box, or similar
device is used to describe all motions of the manipulator. To make a new program, the user
sets up the work station exactly as it will be at the start of task execution. He then uses the
manipulator as a teleoperator to perform a sample execution of the task. Successive
positions in this sample execution are then identified (usually, by pushing a button) and

remembered in a control memory.B The position sequence is then “played back” to cause the
manipulator to mimic the example, and, so, to accomplish the task.

Usually, though not always, there are simple “interrupt” provisions to allow an external
signal, such as might be generated by a limit switch or completion of an NC machine
program, to start or stop the motion sequence. These facilities can be used to provide a
degree of synchronization between machines as well as some slight degree of sensory
adaptability (e.g, one sometimes can close the manipulator’s “hand” until a switch is
triggered). Generally, however, programs written in this manner rely.on the absolute
repeatability of the manipulator, together with accurate fixtures, to accomplish the task.

Intellectual Requirements

This method requires very little “programming” ability, since it does not require the user to
associate textual or otherwise abstract symbols with future manipulator motions. To “write”
a program, one merely needs to be able to drive the manipulator around and to identify
important points.? Programming is made very concrete, and the effects of each action are-
immediately reflected in the configuration of the work station. '

A significant advantage of the formalism is that maximum use is made of the human

® There are several forms in which the necessary information can be saved. The most
“direct” is simply to save the joint angles of the manipulator. More sophistocated systems
generally save the position of the manipulator's end effector. This offers several
advantages; one is that calibration changes do not cause the program to be invalidated.

? Actually, of course, the joystick or control buttons are formal specifications, and the
remembered position sequence constitutes a formal program. However, the immediate
feedback from the manipulator makes things somehow less intimidating to someone who is
unused to computers. Less explaining is required to teach someone how to program the
machine, although proficiency in controlling the device or in producing efficient programs
may require considerable experience.

18 A Discussion of Manipulator Program ming

programmer’s geometric intuition and problem solving abilities. No “computerable” model
of the work station, parts, fixtures, etc. is needed, since the information is supplied by the
real world. Similarly, the human's expertise on how the manipulator hardware can be used
to accomplish his task is applied in a very direct manner.

Task Requirements

Teach mode makes the fundamental assumption that the task being programmed can be
described adaquately specified by a sequence of absolute positions. This assumption has
several consequences: :

I. Ob ject positions and other relevant aspects of the work station must remain
unchanged from iteration to iteration of the task.

+ 2. The manipulator and Jigging must be sufficiently accurate so that the task
can be performed without active accomodation by the control program.'©

3. The task definition cannot include any specifications inherently requiring

force monitoring, such as “compress to three pounds”, or “tighten to three

foot-pounds”.'!

W here these assumptions are not met, it is necessary to use force, tactile feedback, vision, or
other techniques to produce the necessary corrections. Unfortunately, it is very difficult to
describe sensory feedback methods within a pure teach mode paradigm.

Flexibility

One unfortunate consequence of specifying motions by means of absolute locations is that
the resulting programs are fairly inflexible. For instance, suppose that the manipulator has
been programmed to put the head and head bolts onto an engine block. If the fixture
holding the block is moved, the programming must be done all over again. One solution is
to define the remembered positions relative to calibration points. However, to do this purely
within a teach-mode paradigm can be quite cumbersome, since several calibration frames
will generally be needed. The user must continually specify which frame is to be used, as
well as what points are to be remembered, and much of the conceptual simplicity of the
method is lost.

'" Passive accomdation refers to techniques used to build compliance into the hardware,
such as mounting a fixture on springs or vibrating a part to break friction. Active
accomodation refers to modifying what the manipulator is to do in order to overcome
variations,

"' One could conceivably produce a system that remembered forces as well as positions, and
which sought to exert the same force each time the program was played back. However, in
the absence of of task-related knowledge (eg., “this motion is part of a sanding operation.”), -
it is very difficult for the system to decide whether force or position should take precedence.
Attempts to resolve such questions lead one naturally into the “augemented” or “formal”
systems discussed later. :

Programming Paradigms 19

Contingencies

Another limitation of the method is that there is no good way to describe contingencies.
This applies both to error recovery and to “normal” conditional actions. For instance,
consider the use of a manipulator to sort boxes. The manipulator is to move to a certain
position and close its hand until it grasps a box. It is then to place the box in an inspection
device, which will signal either “good” or “bad". If the box is good, the manipulator is to
regrasp and move the box to a conveyor belt. If bad, the box is to be dropped onto a trash
heap. If the box slips out of the hand during any motion, the manipulator is to stop and a
bell is to be rung. Here, all the positions may be defined in terms of absolute locations, and
no active accomodation is required. The manipulator may be led through either motion
sequence with no difficulty. The problem is that there is no way to refer to the sequences,
so it is impossible to say “if so-and-so, then do thus-and-such.” We have thus made a trade-
off: the user doesn’t have to “understand” formal program structures; on the other hand, he
cannot talk about them.

Documentation and Editing

Another drawback arising from the purely iconic nature of a tape recorder mode program
is that there is-no self-evident way to describe what it does. Either another specification,
written in English or some other language, must be used or else the program must be run
and observed. Coupled with the inability to refer to particular motions or sequences
explicitly, this means that teach-mode programs are very difficult to edit or modify. Some
facility may be provided to allow a user to “retract” a position that was_just remembered.
One can generally “play back” a program until the place where the modification is to occur
is reached, “teach” some more motions, and (if one is very lucky) continue with the rest of
the program. However, the lack of any explicit means of representing the program to the
user makes it easy to become hopelessly lost.

2.3.2 Augmented Tape Recorder Mode

This paradigm, which is being pursued vigorously at SRI [89,90], preserves many of the-
characteristics of simple tape recorder mode: the user sets up the work station just as it will
be at the start of each program run and then guides the manipulator through a trial run,
which is then played back each time the task is to be performed. However, the number of
“built-in” functions is substantially increased, typically including

1. Differential motion commands, such as “move up one inch”.

2. Simple sensory commands like “push down one pound” or "move left until
you hit something”. -

3. A variety of special purpose “fine motion” primitives for common tasks,
such as insertion of screws, fitting of nuts, operation of tools, etc. Typically,
these primitives are capable of using sensory inputs to accommodate small
differences in ob ject position or to make simple local decisions. E.g., “detect
color at a given spot relative to the hand; if red, then operate the welding
gun; otherwise, do nothing.”

20 A Discussion of Manipulator Programming

Character of Programming

Selection from this repertoire can be made by any of a number of means: pushing an
appropriate button, speaking into a microphone, typing at a terminal, etc. A typical
programming session might look something like:

User moves manipulator over screwdriver handle

“grasp“
Manipulator closes until touch sensors on fingers indicate object is firmly held.
“up 3 inches”

Manipulator moves up 3 inches. Note that since the screwdriver holder is in
a fixed place, the user could just as well have used a strazglatforward absolute
positioning command to get the desired effect.

User positions manipulator so that screwdriver is just over a bolt head.
“Drive_down 3 foot-pounds”

Manipulator engages driver to head of bolt & tightens it to the indicated
torque

lup lll
el cetera

Software "tools”

In many ways, the “fine motion” primitives resemble an array of special-purpose tools that
happen to have been implemented in software. Each “tool” has a particular function; the
user has no responsibility for the inner workings of the primitive, nor can he modify it
beyond (perhaps) specifying some parameters. Calling one of these primitives corresponds
to sending an “operate” signal to a hardware device. Since the user has no control over the
inner structure of the primitives, there is little functional difference, so far as he is
concerned, between active and passive accomodation. For instance, a primitive that
modified the manipulator's motions a small amount in responses to forces on the hand
would look pretty much like one that relied on springs in the wrist to accomplish the same
end. The difference lies in the speed with which the software “wrist” can be changed.

Advantages
Augmented tape recorder mode retains many of the advantages of pure teach mode. Most
of the necessary modelling is done by the user interacting with physical parts, and
programming is still very concrete. The principal new advantages offered by the technique
are:

l. More tasks can be performed.

Programming Paradigms 21

2. Absolute accuracies need to be less, thus reducing fixturing costs.

8. Programs may be shortened, since some of the special functions may include
" several motions.

Intellectual Requirements

However, the added facilities give programming a somewhat more “symbolic” character and
require a better programming understanding on the part of the user. These requirements
include:

I. The use of parameters. Since the parameters are still concrete, this doesn't
differ much from setting up measurements on a machine tool. The hard
step — which will come up later — is Introducing the idea of variables.

2. Modelling of future situations that are not absolutely identical to the
sample. The addition of “move until touch” and “move relative” commands
allows the manipulator to handle somewhat greater variations than before.
To use these commands effectively, the user must understand how positions
can be defined relative to other positions and must consider whether the
expected runtime variations are sufficiently limited so that the manipulator
will always hit what he expects it to. Similarly, the special function
operations will generally have an associated “capture radius” defining how
close the actual position of the object being worked on must be to the
nominal position built into the program. The user must understand these
limits and consider whether they are sure to be met.

Evaluation

To the extent that programs written in this paradigm retain the use of absolute locations to
specify motion sequences, they will share the inflexibility of simple teach mode. If an ob ject
is moved more than a small amount, then the program must be rewritten. Similarly, since
program structures are not explicitly available, editing and contingency handling are still
difficult.

In many ways, augmented tape recorder mode represents an awkward “stopping point” for
manipulator programming. For instance, one would like to use the “move until touch”
facility to define a location which can be remembered and used as a base for future motions.
Without some way of naming things, there is no good way to do this. Similarly, the runtime
system necessary to support many of the augmenting features — especially, the special
functions — is a good deal more powerful than that required for a simple tape recorder
mode, and the fuctions themselves are generally coded up using a formal programming
system. These facilities would be very useful to the usér, provided they were “packaged” in
an appropriate manner. For instance, we would like to avoid forcing a user to write his
programs directly in the machine language of the computer used to control the manipulator.
Indeed, we would like to insulate the systems programmer who is producing the service
functions as much as possible from this sort of bit fiddling. It is much more reasonable to
design an augmented teach mode system around a formal programming system; with care,
this can be done so as to allow simple guiding programs to be prepared in the way we have
described, while at the same time avoiding the inherent restrictions of tape recorder mode.

22 A Discussion of Manipulator Programming

2.3.3 Formal Languages

As we mentioned earlier, any of the programming methods described so far is “formal” in
some sense. The semantics are well-defined, even if limited. A program is constructed and
stored in the machine. Once the internal representation is built, how it was built becomes
rather moot. We would like to distinguish “formal language systems” from the methods
previously discussed by stressing the key notion that such systems have ways to talk about
program constructs and that these ways are made accessible to the user. The principal
consequences are:

. Control structures are made explicit. The facilities provided vary from
rudimentory to quite sophistocated. Generally, however, they are at least
sufficiently powerful to allow for handling of contingencies, simple iterations,
and other commonly needed features.

2. Variables are named entities which can be set and retrieved under control
of the program. '2

Text

Generally, we will be dealing with textual languages, although text isn't strictly necessary.
One of the principal advantages of text is that it can be read by humans. It is much easier
to edit text programs, to save them away in understandable forms, and do various other
generally useful things. On the other hand, it is frequently much easier to describe
positions by pointing than by measurement schemes (such as cartesian coordinates). This
suggests that iconic programming techniques can be retained for such purposes. The
program structures produced can be “decompiled” into a more readable form, edited, and
merged into the overall program. Thus, joysticks, etc, can be viewed as useful “shorthand”
tools for defining certain tedious (to program) steps.

The Role of Variables

The introduction of variables makes a tremendous difference in the flexibility and efficiency
of programs, since the program can acquire and remember information learned after it is
written and use that information to modify its behavior. For instance, suppose we are
removing parts arranged neatly in a shipping container. The container may be displaced
slightly, but the manipulator can locate it precisely by centering the hand on a locating tab
affixed rigidly to it. An augmented tape recorder program for accomplishing the job might
look something like this:

position hand around fiducial mark
“center”
Iopenll

“go left 2"

'2 Of course, the “name” doesn’t have to be an identifier like BOX or BILLY; it may be a
number, a reference generated by pushing a button, or even something implicitly defined,
such as the top of a stack.

Programming Paradigms

“go down 17 .
“grasp”

“go up 5"

put object away
position hand around fiducial mark
“center”
“open”

“go left 4"

"go down 1"
“grasp”

put object away

et cetera

“center”

“remember this spot as fiducial "
“go to place 2 left of fiducial”
“go down 1"

“grasp”

put object away

“go to place 4 left of fiducial”
“‘go down 1"

“grasp”

put this object away

position hand around fiducial mark

23

By using a variable to remember where the fiducial mark was, and then defining motion
targets relative to that variable, we can eliminate much wasted motion.

advantage is magnified in cases where the variable values can be obtained without

24 A Discussion of Manipulator Programming

groping around (e.g., from a vision system) or during an initialization phase. In these cases,
even the first centering operation can be eliminated.

The syntax in this example has deliberately been left fuzzy. There are several different
ways the variable fiducial could be used to produce the desired effect, depending on the
system being used.

Control structures

The addition of even primitive control facilities allows much more general programs to be
written, since the restriction that the same sequence of operations must be performed in all
cases is now relaxed. For instance, suppose our part unpacker program doesn’t know in
advance how many parts will be in a particular crate, although it is known that the parts
will be lined up nicely. When a crate is empty, it is to be discarded and the machine is to
wait for a new one to be introduced to its work station. A program for accomplishing this
task might look something like this:

I. Wait for a crate full of parts to be introduced to the work station.
2. center on fiducial tab, as before.
3. spot « place 2 left of fiducial.
4. Open the hand, and move manipulator to spot.
5. Move manipulator down | and grasp. If the hand fails to grasp anything,
open the hand and go on to step 7. Otherwise, put the part away and go
on to step 6. '
6. spot « place 2 left of spot. Go back to step 4 to get the next part.
7. Pick up the crate and dispose of it. Go back to step 1.
Once again, we have left the syntax very informal. Actual languages range from primitive
formalisms resembling computer assembly languages to sophisticated languages resembling
ALGOL or PL/L. There are several generally applicable points illustrated here, however.
Contingencies
First, the action performed by the manipulator depends on whether or not the hand
succeeds in grasping a part. In one case, it puts the part away; in the other, it discards the
empty crate. Another common use of a conditional branching facility is checking for error
conditions. For instance, the program could be modified so that if step 2 fails to locate the
fhducial tab, it will stop, print a message to the operator, ring a bell, and generally make a

nuisance of itself until the problem is remedied. Alternatively, there may be some error
recovery actions that can be attempted before the program gives up.

Programming Paradigms 25

Iterations

The second point is that the program contains a loop. It can perform the same series of
actions repeatedly until some condition, such as the box being empty, is fulfilled. This is
fundamentally impossible in a tape recorder mode; the program will execute exactly the
steps you guide it through and will perform them exactly the same number of times you do.
But the correct number of iterations cannot be predicted ahead of time. This indeterminacy
comes up again and again in “fine” operations. Some task, such as insertion of a screw into
a hole, is attempted, and a test is made for success. If the test succeeds, the program
proceeds to the next operation. If it falls, a correction is computed and the task is retried.
The process is repeated until either the operation is successfully completed or a decision is
made to give up (for instance, because the proposed correction exceeds some threshold or
because the program includes a limit on the number of iterations allowed for the loop).

Finally, even if the number of parts per crate were constant, the loop makes the program
much shorter. In a tape recorder mode, each part has its own pickup point, and, hence,
requires separate motions. This requirement is not altered by the use of a variable to
correct for misalignments. The way we win is to alter spot to point to the next part. In
other words, we are using spot as a parameter to the loop body.

Disadvan'tages

The principal disadvantages with formal language systems are that the features they offer
require somewhat more runtime support than simple tape recorder mode systems, although
not significantly more than augmented tape recorder mode, and that they require a greater
intellectual effort on the part of the user. If the facilities offered by tape recorder mode are
fully adequate, there may be little reason to incur the overhead of any more powerful
system. If this is not the case, however, we are led to the question of why programming
seems so hard for so many people.

User Engineering is Important, but Neglected

One reason, unfortunately, is that the user engineering of most manipulator programming
systems is rather poor. In part, this stems from the early concentration on functional
¢rapability at the expense of programming formalisms. The problem, of course, is that it
Isn't enough for a machine to be able to do something. One must also be able to say what
one wants done.

A related problem is that the initial system design is often far too conservative, perhaps
_because of a desire to get something up quickly or “on the cheap”, and allows insufficient
~room for subsequent growth. The drawbacks here generally apply about equally to
language and execution-time system. This means that adding new features or fixing
hortcomings in the original system can only be done with chewing gum and bailing wire.
ventually, the whole thing collapses of its own weight. Although an accomplished

togrammer can generally get around such defects, albeit (assuming he has been exposed to
Lur things) with much grumbling, a novice — who also must learn some basic concepts
L programming — is almost hopelessly handicapped.

26 A Discussion of Manipulator Programming

Intellectual Requirements

Even with “the best of all possible” formal structures and ideal system support, writing
programs still requires more from the user than does simple teach mode. In the first place,
the user must understand the semantics of the formalism. Generally, formal languages offer
a wider variety of manipulator functions than do more restrictive formalisms. These
functions must be understood before they can be used effectively. Even if only basic
motions are desired, it is still necessary to connect symbolic descriptions with future actions
of the manipulator. Also, conditional execution of statements and iteration are concepts that
require some understanding before they can be used. This understanding, in turn, must be
based largely on the concept of a program state. The user must keep track of what is
expected to be true in each set of circumstances that his program will face, and must
understand, more or less, how the program will behave in those circumstances. Since
greater variations in the task environment may be handled than for teach mode programs,
the utility of carrying along a nominal case as a crutch may be somewhat weakened,
although it is still quite useful. Modeling must be more abstract, and the user must be able
to distinguish “generally” true aspects of his sample case from the merely “accidental”, lest

the program rely on false assumptions.'3

A program's model of the world rests on the assumptions built into it — constants, program
tests, etc. — and on the use of variables. To use a variable intelligently, user must employ
several kinds of knowledge:

l. The semantic meaning of the variable: what quantity does a variable
represent, how is the mapping of meaning to quantity established, how can
the value be used, and so on.

2. The syntactic requirements for variables: declarations, scope rules, and the
like.

3. What values variables may have at different points in the program.

4. How accurately variable values may be expected to reflect the quantities
they model.

These points will be discussed at greater length In subsequent chapters.

2.4 Overview of Formal Language systems

This section provides an abbreviated overview of the various sorts of manipulator
languages. It is intended to provide some indication of the scope of formal languages, and
not as a complete survey of the field. If your favorite language is missing, please don't be
offended. Instead, as an exercise, try to decide to which class it belongs.

'3 An analogy to this may be found in geometry, where a carelessly drawn figure may lead
to conclusions that are only true in particular cases, if ever.

Overview of Formal Language systems 27

2.4.1 “Pseudo-machine” Languages

Almost all manipulator programming languages in existence today are “low level”
formalisms that somewhat resemble machine-level assembly languages, in which program
control is described by skips and jumps. The following short program (written in Paul's
WAVE system [80,82]) illustrates the characteristics of this class of languages. The
problem is to pick up a small metal box and move it to a new position. If the grasping
operation fails, the manipulator is to move out of the way and ask the operator for
assistance.

open 2 jOpen hand 2 inches

move gboxl z 4 nil0 ;Move to a position 4 inches over box
{0: go ghoxl iMove to grasping position

center 0.3 jGrasp it

skipe 2 ' sTest to see if there

jump U iYes, we have won

open 2 iINO, move out of the way

move ghoxI z 8 nil 0

wait the box is missing ;Complain

jump [0 iTry again
{I: move ghox2

Other languages which preserve this same general character include the target language for
the AL compiler [18), ML and EMILY, which were developed at IBM [113], :

2.4.2 "High Level” Languages

Recently, several “high level” languages, notably AL and MAPLE [31], have been
developed. These languages offer ALGOL or PL/I control structures, variables, arithmetic
capabilities, and many other nice features. AL will be discussed in Chapter 3. MAPLE is
very similar in many respects, although the actual capabilities of the two systems differ in

many others.'® The MAPLE code for picking up our box would look something like this:'®

flag = 03
open to 2;
move to gboxl translated by (00,4}
until flag = 1 do;
move to ghoxl;
call centerandgrasp(.3)

15 For instance, MAPLE lacks the AL affixment mechanism. On the other hand, it has
closed subroutines, which AL lacks. (AL uses macro calls instead.)

. ' I am indebted to Dave Grossman for this coding example.

28 A Discussion of Manipulator Programming

if gap < 2 then do;
move by (0,0.8);
write("the box is missing™)

stop;

end;
else

Sflagel;
end;

move to ghox2;

2.4.3 “Very High Level” Languages

- The idea of a “very high level” language is that the user describes what he wants done in
terms of task-oriented primitives, and the computer writes the corresponding manipulator
program. So far, no such systems have been implemented. Indeed, the whole point of this
dissertation is the establishment of a basis for automatic coding in this domain. Several
attempts at providing a suitable descriptive formalism for the input language have been
made, notably, in the AL report [37] and in AUTOPASS[64], a language designed at

IBM.'® In such languages, our box-moving example would be trivial:

move box to new_place;

'® Work on implementing AUTOPASS is under way, but it is too early to say much about
Just what the final system will look like.

29

Chapter 8.

AL, The Anatomy of a Manipulator Language

3.1 Introductory Remarks

The work reported in this dissertation has been done primarily within the context of AL,
* which was developed at the Stanford Artificial Intelligence Laboratory as a successor to
Paul's WAVE system. The design and implementation of this system has involved a
substantial effort on the part of several people, including myself; a full exploration of all the
issues raised by the system is clearly beyond the scope of our present discussion. :

Although this chapter discusses AL, it is not intended to be a “complete” introduction, in
the sense of covering the entire system, or even all constructs that are used in subsequent
ch:zlpters.I Instead, we provide a brief overview which emphasizes the salient characteristics
of the language and programming system. These characteristics are then illustrated by an
extended programming example, which allows us to examine what goes on in writing an
AL program, what the necessary tradeoffs are, etc. Finally, some problems and some
advantages of AL’s underlying formalism will be discussed in more detail.

3.2 Overview of the language

Superficially, AL programs look very much like ALGOL programs. The language is block
oriented, and variants of the usual ALGOL structures are used for program control. Since
the programs must be executed in a real-time environment, where several things can be
happening at once, additional control structures for concurrency and synchronization are
required. The necessary capabilities are supplied by the well known cobegin ... coend and

event signal and wait primitives.?
Data Types

In Chapter 2, we stated that one of the key attributes of a formal language for manipulator
control was the use of named variables to describe positions, forces, and other relevant data.
In principle, this could be done using only the data types of ALGOL. However, such an
approach can be rather tiresome, tends to make programs hard to read, and increases the
chance that a program will contain bugs. AL seeks to avoid these difficulties by providing
data types and “arithmetic” operations for the physical and geometric entities required for
describing manipulation. The most important of these special types are frames, which are

''A “nutshell” description may be found in Appendix A. Further discussion of the AL
system design may be found in the AL report [37], in the Stanford NSF reports
[17,18,19), and in Finkel's dissertation [39]

2 Various flavors of these primitives come under many names. See, for instance, [27) for
further discussion,

30 . | AL, The Anatomy-of a Manipulator Languay ¢

used to represent coordinate systems, and transes, which tell how frames are related. 3 Al.
programs use frames to describe hand positions, object locations, and other similar
information; the set of frame variables and their associated values thus constitute a ma jor
part of a program’s execution-time model of the world.

Affixment

In manipulation tasks, it is common to have several frames associated with the same ob ject,
with each frame playing an important role in the program. When the ob ject is moved, the
frames all assume new values. AL provides two distinct ways for handling this. One way
is to use a trans variable to recompute each frame value each time it is needed. Thus, a
user might write an expression like

boxagrasp_xf

to specify the proper hand position for grasping the ob ject whose coordinate system is given
by the frame box. This approach can get rather tedious where the same frames are being
referenced repeatedly, and tends to hide the “intent” of a program behind a smokescreen of
frame transformations, with a corresponding increase in the chance that a bug will creep in
undetected. The alternative method is to use a separate frame variable for each frame of
interest. This makes motion statements (described below) and other constructs easier to read
and write, but means that all associated variables must be updated whenever something is
changed. Again, this is very tedious, tends to obfuscate programs, and opens the chance for
a terrible bug if something is forgotten. The affix construct in AL allows the user to
specify that a variable is to be “continuously” computed from other variables. For instance,

affix box_grasp to box at grasp_xf

would cause the assignment statement

box_grasp « boxsgrasp_xf

to be performed automatically every time box is updated. ¥ When one ob ject is assembled to
another, or when an object is grasped by the manipulator, it is customary to affix their
location variables. For example,

3 Aside from this difference in usage, frames and transes are isomorphic. There is a
distinguished frame, called station, which corresponds to the coordinate system of the work
station. The value of any frame is given by the transformation needed to carry it from
station to its current location. Thus, both frame and trans values consist of a position
vector giving the location of the origin, together with a rotation specifying the orientation
of the axes. A much fuller description of these, and other, AL data types, and the
operations used to manipulate them may be found in Appendix A.

? Actually, this is an over-simplification. box_grasp would merely be marked as invalid and
a new value recomputed when required. The problems associated with affixment will be
discussed in more detail later in this chapter and in Appendix C.

Overview of the language 31

affix cover to box;

and
affix box to blue®

The data structures associated with affixments thus form another important part of an AL
program’s model of the world.

Motion Statements

Motion statements are the raison d’etre of AL. Ultimately, all manipulator motions must be
described in terms of joint motions, since joints are what the runtime system can control.
However, this representation is a very awkward one for user level specifications and
introduces a needless degree of hardware dependency if it is used. In the tasks for which
Al. was designed, the hand is the only part of the manipulator that interacts directly with
other objects. The position of the rest of the arm is generally irrelevant, so long as it

doesn't collide with anything.® Thus, AL programs describe motions by sequences of frame
values through which the hand must pass. For instance,

move blue to box_grasp via grasp_approach;

Since the purpose of manipulation is to move ob jects, rather than to get the manipulator’s
hand to a particular place, this concept has been generalized to allow the user to describe
motions in terms.of frames other than the hand itself. Thus,

affix box to blue;

move box to new_box_place via midair_point;

Here, the system has been told (by the affix statement) that changes in the value of the
blue hand are to cause corresponding changes in the value of box. This information is
then used to produce hand positions that will cause box to pass through midair_point and
wind up at new_box_place. This sequence of destination points is translated by AL into the
corresponding joint behavior by a combination of compile-time planning and execution-
time revision, which will be discussed further later.

Although a simple list of destination points is sufficient for some purposes, many tasks
rrquire a more detailed specification of how motions are to be performed. Items of interest
include the time to be spent on each motion segment, forces to be exerted by the hardware,
external forces to which the manipulator is to be compliant, and conditions to be monitored
during the motion. This information is supplied in AL programs by the use of modifying
clauses. For example, '

¥ The manipulator hardware at SAIL consists of two Scheinman arms, one of which is
anodized blue, and the other, gold. Thus, blue and yellow “are predefined AL frames
corresponding to the hands of the two arms. (At the time of this writing, only blue has
been interfaced to the runtime system)

* Indeed, the ideal AL manipulator would be a disembodied hand, which wandered about
without any visible means of support.

32 AL, The Anatomy of a Manipulator Language

move carburetor to inspection_station
via unloading_point _
where force(xhat}=0,’
force(yhat)s0,
duration > 2ssec
via epproach_point
on force(zhat) > 8+0z do
stop
on electric_eye_interrupt do
- signal passed_checkpoint;

might occur in a carburetor assembly program, where a carburetor has been assembled in a
fixture and now must be moved to an inspection station. The statement specifies a three
segment motion. During the first segment, when the carburetor is removed from the fixture,
the arm is made compliant to forces in X and Y, and the motion is constrained to take at
least two seconds. The carburetor is then moved. to the inspection_station via an
intermediate approach point. To avoid the possibility that a small pesitioning error might
cause the manipulator to shove the carburetor through the table, the motion is terminated
- as soon as force in the Z direction exceeds a half pound. Finally, as soon as an electric eye
detects something, an external control signal is generated.

3.3 Structure of the AL System

The overall structure of the AL system is illustrated in Figure 3.1 There are two ma jor
components: a compiler, which resides on a large, time-shared computer (PDP-10); and a
runtime system, which resides on a moderately powerful minicomputer (PDP-11/45). 8
Superficially, this structure looks a great deal like that for any algebraic language: the
compiler gobbles down source text, grovels over it, and spits out code which is executed by
the runtime system. However, the requirement that the program produce more than purely
computational results makes a substantial difference in the internal structure of both the
compiler and runtime system.

3.3.1 Runtime System
The runtime system of AL consists of three principal components:

l. A kernel, which is a real-time operating system with some special features
added to facilitate programming of the rest of the system.

2. An interpreter, which is responsible for all computation and control flow
done by the AL program. The “pseudo-instructions” executed by this
interpreter may be thought of as the instruction set for a machine explicitly

—— ——— —— ——

7 xhat, yhat, and zhat are unit vectors in the x, Y. and z directions.

& The large machine can examine and modify the memory of the small machine, and either
one can interrupt the other. '

}8 of the AL System

(interpreter
pseudo-code)

USER
________ (source text)
I—Eompiler + —}
| |
PARSER

I f<-~—PDP|o
I
l (parse |
: y frees) [
| PREPROCESSOR {
|
| (rewritten (planning ;
} parse trees) values) |
| [
I CODE EMISSION :
|
| :
R]

{trajectory files)

Fﬁﬁﬁ““‘“”““*_“j
system
{ v Y {‘-—PDP-|V45
CONTROL
:INTERPRETER CODE :
L1 %
DEVICES

Figure

3.1. The AL System

33

—

LT e

34 AL, The Anatomy of a Manipulator Language

designed for AL-like languages.®
3. Control code, which actually runs the manipulator and other devices.

The design and implementation of this runtime system raised many interesting “systems”
issues outside the scope of this document. However, several points are important for
understanding our subsequent discussion.

*

Tra jectories

One of the central design decisions in AL was the use of polynomial joint “tra jectories” as
the basis for motion control. As we have seen, motions are specified in AL programs by
giving a list of positions through which an ob ject is to pass. The runtime system, however,
must servo the individual joints. The required coordination is achieved by solving the
joint angle equations for each position. These data points are then used to produce

polynomials (in time) which describe the behavior of each joint.'®

Unfortunately, the computation required for preparation of these polynomials is non-trivial.
Consequently, the compiler must pre-compute trajectories, based on a planning model of
expected affixment and frame values. These precomputed polynomials are modified by the
addition of higher order terms just before the motion is executed, so that the positions
reached correspond to the actual runtime values. This approach produces well behaved
motions, so long as the required modifications are not too-great. However, it does create a
number of problems for the compiler, which must maintain . the planning model.
Eventually, it is hoped that trajectory planning can be done completely at run time. This
will simplify the compilation of present-day AL programs, and greatly increase the flexibility
of the system. However, it will not eliminate the need for a planning model, which is used

for other purposes, as well.!!

3.3.2 Compiler

The compiler is responsible for translation of AL source text into a form that can be
executed by the runtime system. This process involves many activities, such as parsing,
assignment of storage, and code emission, common to any compiler for an algebraic
language with real-time extensions. In addition, however, the compiler must perform
several functions that are closely tied to the special requirements of the manipulator system.
These will be discussed below. Translation is accomplished in three phases:

9 At present, this code is interpreted by means of jump table. However, it would be fairly
well adapted to “direct” implementation in microcode, should anyone ever want to build a
true “AL" machine. :

' This method was developed by R. Paul, and is reported in [80). More recent
refinements may be found in (18] and [39). In his recent work, Paul has abandoned
polynomials in favor of an interpolation scheme [90).

'!'As present capabilities are extended, we will probably also want to include other facilities
(like collision avoidance) which .are too expensive to be done at runtime, and, so, require
pre-planning.

Structure of the AL System 35

A I. Parsing. The source text is read in and translated into an internal

Faie structure (program graph) that is understandable by the rest of the
compiler. This is a very straightforward process. The principal “unusual”
activity at this stage is to check for consistency of physical units used in
arithmetic expressions.

2. Preprocessing. The AL program is simulated to build up a detailed
planning model of the expected state at each point in the program graph.

This is an activity which is not commonly found in algebraic compilers,’
but which plays an important role in AL. This planning model, which is
discussed at length in Chapter 5, contains information about the affixment
structure and the expected value of location variables. This information is
needed by the code emission phase for calculation of joint trajectories. In
addition, a number of important details are incorporated into the program
graph, which may be rewritten somewhat. For instance, affixment
statements are translated into sequences of lower-level “graph assignment”
statements. Similarly, the modeled affixment structure is used to turn
statements like “MOVE a TO b"” into more explicit statements involving a
specific arm, like “MOVE BARM TO but".

8. Code emission. Joint trajectories are computed for all motion statements,
based on the expected location values contained in the planning model.
These tra jectories are written into output files. Similarly, interpreter code is
produced from the refined program graph and written into an output file.

3.4 Sample AL Program

Thus section illustrates the use of frames, affixment, and force feedback to accomplish a
sunple assembly operation — the insertion of an aligning pin into a hole — which is a
typical subtask for many assembly programs. In addition to showing off some of the
tratures of the language, the discussion should provide some insight into the process of
wiiting an AL program.

1 his discussion will be rather extended. One of the points it makes is that manipulator
programming is a non-trivial intellectual activity, even for simple tasks. We will proceed
roughly as follows: First, an outline for the program will be developed. A simple, “first cut”,
program will be developed to implement the task outline. We will then examine the
fiexibility and “toughness” of this program. Method for error detection and recovery will be
discussed, and a new, more elaborate, program will be produced. Finally, we will include
further discussion of the role of error handling in AL programs.

DB o S P e RS S

36

AL, The Anatomy of a Manipulator Language

Figure 3.3. After

Sample AL Program 37

3.4.1 The Task

The bare-bones description of the task is quite simple. Initially, the pin sits in a tool rack,
and a metal box with holes in it sits on the table in some known position, as shown in
Figure 3.2 Our mission is to get the aligning pin into one of the holes, as shown in Figure
3.3. After a suitable period of omphaloskepsis, we conclude that the way to do this is to
grasp the pin between the manipulator’s fingers, extract it from the rack hole, transport it to
a point over the hole, and, finally, insert it into the hole. Thus, our program, in outline,
looks something like this:

begin "pin-in-hole”

{ Declarations and initial affixments }
{ Grasp the pin }

{ Extract & transport over hole }

{ Insert })

{ Let go of the pin }

end

3.4.2 Declarations and Afixments

T he declarations for this task include frame variables for the pin, hole, and other points of
interest. In addition, we must write affixment statements describing how the various frames
are linked. At first glance, this may seem like a purely descriptive task. Upon further
reflection, we see that certain strategy decisions are actually embodied in this part of the
program. For instance, we need to declare a frame, pin_grasp, for use in the grasping
operation. It seems natural to affix this frame to pin. But where? Some of the candidates
are illustrated in Figure 3.4 If there is any®chance that the pin can bind in the rack or
box hole, then it will probably be a good idea to twist the pin during extraction and/or
insertion operations. To do this effectively, we must grasp the pin so that its axis lines up
with the wrist axis. Alternatively, grasping the pin at an angle may be better for reasons of
collision avoidance or may allow us to produce a more efficient program by reducing arm
motion times. In this case, we've decided to twist the pin, so that the “end on” grasping
position must be used. This is reflected in the declaration and affixment portion of the

program:'3 '

frame pin, pin_grasp, pin_grasp_approach;
frame pin_holder, pin_withdraw;

frame Aole, in_hole_position, hole_approach;
frame box;

affix pin_withdraw to pin_holder

at trans(rot(zhat,30xdeg),vector(0,0,4xcm));
pin_holder « frame(nilrotn,vector(/5«inches,/0«inches,0));

SIn AL, rot(axis,angle) specifies a rotation of angle about the vector, axis. xhat, yhat and
zhat are unit vectors in the x, y, and z directions, respectively. See Appendix A for more
details.

38 AL, The Anatomy of a Manipulator Language

affix pin_grasp to pin at trans(rot(xhat,I80+deg),vector(0,0,2¢cm));
affix pin_grasp_approach to pin_grasp at trans(nilrotn,vector(0,0,-3ecin));
pin « pin_holder;

affix in_hole_position to hole rigidly

at trans(nilrotn,vector(0,0,-I+cin)):
affix hole_approach to hole at trans(niirotn,vector(0,0,+/scm));
affix hole to box at trans(nilrotn,vector(5scm,4scm, 3¢cm));
box « initial_box_position;

The declarations embody a number of other strategy assumptions;'? these will be discussed
as we come to them. Usually, one doesn’t sit down and write all the declarations before
writing any code. This has been done here largely for convenience of exposition.

Before we proceed, it is perhaps worth noting that there may be several choices of what
atfixments to make, as well as where to make them. For instance, we have affixed
pin_grasp to pin. One consequence is that, if pin should be rotated, the position of the
hand (with respect to the tool rack) when the pin is grasped will also be rotated. The
rotation won't make much difference in this case, since pin is assigned an explicit value and
since the arm configuration won't be much changed by rotations of pin, anyhow. In other
circumstances, arm solution or collision avoidance considerations may make it desirable to
affix pin_grasp to pin_holder, instead.

3.4.3 Grasping the Pin

To grasp the pin, it is necessary to open the fingers an appropriate amount, move the hand
to pin_grasp, and close the fingers. The corresponding AL code is

open bfingers to 1.0sinches;
{ The L.OxINCHES is sort of arbitrary. }
move blue to pin_grasp;
close bfingers;
affix pin to blue;
{ The pin will move if the hand does. }

There are several difficulties with this code. The most serious is that the manipulator may
collide with something on the way to pin_grasp. Since the AL compiler does not do
collision avoidance, we must tend to this detail for ourselves by specifying enough
intermediate points so that we stay out of trouble.'> What points are required will depend
on where the manipulator is before starting the motion, which we haven't specified, and on
what other objects are in the workspace. For the moment, we will assume that the
manipulator is “clear” of any extraneous obstructions, and consider only the possibility that

'“ Note, for instance, that the intermediate position pin_withdraw is twisted and above the
initial pin position, pin_holder.

'S This raises an important issue concerning the adequacy of frames for specifying motion,
which we will discuss further later on.

Sample AL Program

Figure 3.4. Possible Grasping Positions

39

40 AL, The Anatomy of a Manipulator Language

the fingers might collide with the pin while moving to pin_grasp. Catastrophe may be
avoided by moving through an intermediate point, pin_grasp_approach, affixed to
pin.grasp in such a way that the final part of the motion will take place along the wrist

axis of the hand.'® Note that this affixment structure guarantees that the fingers will stay
out of the way of the pin even if we change the relation of pin_grasp to pin.

Another difficulty is that the execution-time value for pin_holder may be inaccurate. If the
rack is bolted to the table, the close statement may overstrain the manipulator. This
problem can be avoided by adding some compliance to the motion:

close blue
with force(xhat)=0, force(yhat)-0;

An alternative is to use the center statement, which makes the motion compliant to the
touch sensors on the finger pads.

3.4.4 Imitial Program

Once we have grasped the pin, we can use a single motion statement to perform the
extraction, transport, and insertion operations. After the pin is in the hole, we can let go of
it and move the arm back out of the way, again being sure not to hit the pin with the
hngers while moving off. Writing the statements for these operations and combining them
with the (revised) grasp code gives us the following program:

begin "pin in hole"
{ Declarations and initial affixments }

{ Grasp the pin }

open bfingers to 1.0sinches;

move blue to pin_grasp via pin_grasp_approach;
center bfingers;

affix pin to blue;

{ Extract, transport, and insert }
move pin to in_kole_position via pin_withdraw, hole_ap proach;

{ Let go of the pin }

open bfingers to l.0xinches;

unfix pin from blue;

move blue to bpark via pin_grasp_approach;

end;

The value of pin_grasp_approach in the final move statement will have been updated as a
consequence of its (indirect) affixment to pin. If we had chosen to affix pin_grasp to

'® For this reason, Paul calls z the “approach” axis of the manipulator. We will adopt this
usage occasionally, also.

Sample AL Program 41

would be rather wild, We could always invent a new variable and affix it to Aole.
Alternatively, we could compute the withdrawal point directly, as in:

move blue to bpark via bluettrans(niIrotn.ve'ctor(0.0.-Btcm));

This works because the values of all points in the destination list are computed before the
motion is begun. If we have a number of such motions, it may be convenient to invent a
frame and affix it to the manipulator: ' - '

frame withdraw_3;
affix withdraw_3 to blue at trans(nilrotn.vector(0.0.-Btcm));

move blue to bpark via withdraw_3;

3.4.5 Critique of Initial Program

The program we have Just written is complete in the sense that it describes a sequence of
operations that should transfer the pPin to the box hole. Whether it will work reliably
enough is another question,!” Certainly, any “easy” things that we can do to make the code
more robust ought to be given careful consideration,

We have already built one important form of flexibility into the program by using
variables, rather than constants, to describe locations. This has several advantages. The
code is easier to understand, since an identifer like “pin_holder” is generally mare
formative than an expression like "frame(nilrotn.vector(!5tincbes.m*inches.o))".
Modification of Programs to accommodate changes in part locations is much easier, since the

values only appear explicitly once, '8

These advantages could also have been derived from the use of compile-time variables or
macros for symbolic definition of constants. An advantage unique to execution-time
variables is the fact that valyes can be recomputed and saved when the program is run,
T'hus, our program will work correctly for many different initial box positions, so long as
the built-in assumptions (that the box is upright on the table, in reach of the arm, etc.) are

not violated.!®

L Murphy [71] has investigated the reliability of systems in some detail, Experience has
verified that his results apply with special force to manipulator programming.

'" Indeed, one can write programs like the one developed in this section at one’s desk. The
'*quired location values can then be measured during initial setup. (For instance, using a
‘ystem like POINTY, which is discussed in (48,19)), and in Appendix F. There are
number of tradeoffs involved in this mode of programming, the principal advantage being
the reduction of Manipulator downtime while a new application js Programmed, and the
principal disadvantage being the loss of immediate feedback while the program is being
written. These considerations are discussed in more detaj later.

9 Actually, the fact that AL Preplans arm ' trajectories means that the underlying
Alsumptions are rather more restrictive, though still quite broad.

3.4.6 Error Detection

Missing the Hole

in_hole_flag « trye; { Assume it will work }
move pin to in_hole_position
via pin. wimdraw.i)o!e_appmack
on force(pinszhat) > 207 do
begin
Stop; { Stop the motion }
e‘n,_kole__f{ago-false; { We lost }
end

Sample AL Program 43

move pin to pin+rot(xhat,/0+deg)

on torque(xhat) > /0+oztinches do
begin
stop;
in_hole_chechetrue;
end

on arrival do
begin
{ If the motion goes all the way, we lost }
in_hole_checkefalse;
end;

Two ob jections (not necessarily fatal) to this check are that the extra motion statements take
time and that the box may be moved inadvertently.

Always Stop on Force

A nother possibility is to alter the insertion statement so that the successful insertion, as well
As a near miss, will trigger a force monitor that stops the motion. Success and failure can
then be distinguished by looking at how far the motion actually went.

move pin to in_hole_positionsvector(0,0,-. 3xinches)
via pin_withdraw,hole_ap proach.
on force(pinszhat)> 8+0z do
stop;

distance_off « zhat - inv(in_hole_position)spinsvector(0,0,0);

if distance_off < -.2xinches then
missed_box_flag « true

else if distance_off > .2sinches then
hit_top_flag « true

else
in_hole_flag « true;

An additional advantage of this “plan to hit something” strategy is that it is much less
vuinerable to small errors in the vertical position of the hole. If a fixed destination point is
weed, and the hole is slightly higher than the runtime value says it is, then the forces
produced as the arm tries to servo to the “nominal” position can become quite large. If the
hole is slightly below nominal, then no real damage will be done for this particular task,
since the pin will most likely drop into place when released. However, other tasks are not so
forgiving. If we are inserting a screw, for instance, the initial insertion must bring the screw

threads into contact with the threads in the hole.° In such cases, it is much better to get a
positive contact than to rely on brute force accuracy.

ro Actually, this is a slight oversimplification, since we will probably push down while
driving the screw.

4 AL, The Anatomy of a Manipulator Language

“Tapping”

not always be so lucky. For example, the box might have been placed in a vise, as in
Figure 3.5 Instead of aligning pins, we could be inserting screws that go in only a short
distance before the threads engage. In such cases, it is sometimes possible to win by
deliberately missing the hole on the first attempt and then using the result to tell us where
the box surface is. This might be done as follows:

move pin to spot_on_surfacesvector(0,0,-1.0¢inches)
via pin_ruirkdraw.:pat_on__surfacewector(0.0.l.Otinches)
on force(pinszhat) > 8+oz do stop
on arrival do
begin
{ This should never happen }
abort("Help! Help! The box has been stolen");
end; '

correction + zhat - inv(spot_on_surfacelrpinavector(0,0,0);

move pin to in_hole_position via hole_approach
on force(pinezhat) > 8+0z do stop;

distance_off + zhat inv(in_hole_po:irion)#pintvector(0.0.0) - correction;
{ et cetera }

Alternatively, one could use correction to make an appropriate modification to the box or
hole location. For instance,

box « box « vector(0,0,correction);

It is possible to take advantage of affixment to do away with the need for any explicit
mention of correction. For instance,

affix spot_on_surface to box rigidly ... ;
{ move down until hit the spot }
move pin to spot_on_surfacesvector(0,0,-1.0xinches)

on force(pinszhat) > 8+0z do stop;

{ Say that's where we got to }
spot_on_surface « pin;

The rigid affixment asserts that whenever either frame is updated, the other is to be
updated appropriately. Thus, the assignment statement will translate the box location to

Sample AL Program 45

T

Figure 3.5. Box Held by Vise

acvount for whatever distance the pin actually travelled. This technique has some
arlvantages:

I It is easy to write, since you don't have to invent variables or figure out
complicated arithmetic expressions.

2. It is easy to read, since the code is terser. Also, the assignment statement
more nearly reflects the “intent” of the motion statement, which was to get
the pin to spot_on_surface.
' the other hand, there are a number of difficulties associated with using affixment to
inter ob ject locations from local measurements. These will be discussed in Section 3.6.

3.4.7 Error Recovery

" tar, we've been discussing ways for the program to discover that it has lost.2! Once a
tilire has been detected, we must do something about it. The simplest course is to give up.

"' An optimist would say “discover that it has won”, but this is unjustified. The laws of the
hriverse state that there will be at least one failure mode for which a program check has
been left out. This is God’s way of teaching humility to engineers (who rightly regard the
Label affair as a management, and not a technical, failure) and computer programmers
(who seem to like a profusion of languages). Even if it were, in fact, possible to anticipate
and test for all failures, it would not necessarily be economical to do so.

46 AL, The Anatomy of a Manipulator Language

if not in_hole_flag then
. abort("Pin is not in hole.");

A somewhat more graceful termination might include some cleaning up to get ready for the
next iteration.

if not in_hole_flag then
begin { Put your toys away } :
move pin to pin_holder via pin_widthdraw;
{ We really should do some checking here, too }
open bfingers to 1.0¢inches;
unfix blue from pin;
move blue to bpark via pin_grasp_approach;
abort("Pin is not in hole.”);
end;

In many cases, this is perhaps all that can be done. On the other hand, it would be nice if
some degree of error recovery could be built into the program,

Searches

Even if the first attempt to find the hole misses, it is plausible to assume that it is (at least)
somewhere near where the runtime model says it is. This suggests that we try searching the
vicinity of our first attempt. The original AL design included a very complicated search
construct for doing this. This construct has since dropped from sight; the desired effect can
still be had by means of a loop, however:

if not in_hole_flag then
begin
vector dp;
scalar n;
dp « vector(0.Ixvinches,0,0);
for n « I step I until 6 do
begin
dp « rot(zhat,60+deg)edp;-
{ Try to put pin in perturbed hole }

move pin to in_hole_ positionsdpsvector(0,0,-I.«inches)
via ho!ehappraacﬁ+dp+vector(0.0,f¢inches)
on force(pinszhat) > 8+0z do stop;

{ Check distance travelled, etc. }

if in_hole_flag then
ne7; { This terminates the search)
end;

if not in_hole_flag then
abort("The hole doesn't seem to be there™);
end;

Sample AL Program 47

Obviously, there are many variations possible on this theme, depending on how large an
area is to be searched, what pattern is to be used, etc. If vision is available, we may want to
use it to compute a correction for the next trial. The possibilities are endless.

3.4.8 Refined Program

Combining a search loop with the other refinements we have discussed, and adding a “free”
theck to be sure that the pin is successfully grasped, we get the following program:

begin "pin-in-hole”

frame pin, pin_grasp, pin_grasp_approach;
frame pin_holder, pin_withdraw;

frame hole, in_hole_position, hole_approach;

frame box; '

affix pin_withdraw to pin_holder
at trans(rot(zhat,30+deg),vector(0,0,4+cm));
pin_holder « frame(nilrotn,vector(/5sinches,/0Orinches,0))

affix pin_grasp to pin at trans(rot(xhat,180+deg)vector(0,0,2¢cm));
affix pin_grasp_approach to pin_grasp at trans(nilrotn,vector(0,0,-3+cm));
pin « pin_holder;
affix in_hole_position to hole rigidly
~ at trans(nilrotn,vector(0,0,-Ixcm)); .
affix hole_approach to hole at trans(nilrotn,vector(0,0,+I+cm));
affix hole to box at trans(nilrotn,vector(Sscm, 4+cm,3«cm));
box « initial_box_position;

{ Grasp the pin }
open bfingers to l.0sinches;
move blue to pin_grasp via pin_grasp_approach;
center bfingers
on opening < 0.Isinches do
begin
stop;
abort("Grasp failed to pick up pin");
end; . '
affix pin to blue;

{ Extract, transport, and insert }
move pin to in_hole_positionsvector(0,0,-. 3¢inches)
via pin_withdraw,hole_approach
on force(pinszhat)> 8+oz do
stop;

distance_off « zhat * inv(in_hole_position)rpinsvector(0,0,0%

48 AL, The Apatomy of a Manipulator Language

if not (0.2+inches > distance_off > -0.2xinches) then

begin

vector dp;

scalar n; boolean in_hkole_flag

dp « vector(0.I+inches,0,0)

in_hole_flag « false; n0;

while (nen+l) s 6 and not in_hole_flag do;
begin
dp + rot(zhat,60+deg)rdp;

{ Try to put pin in perturbed hole }

move pin to in_hkole_position+dp+vector(0,0,-1.xinches)
via hole_approach+dp+vector(0,0,1xinches)
on force(pinszhat) > 8+oz do stop;

{ Check distance travelled, etc. }

distance_off + zhat - inv(in_kole_position)rpinsvector(0,0,0);

if 0.2¢inches > distance_off > -0.2¢inches then
in_hole_flag+true;

end;

if not in_hole_flag then
abort("The hole doesn't seem to be there™);
end;

{ Let go of the pin }

open bfingers to I.0sinches;

unfix pin from blue;

in_hole_positionepin; { Update our model }
move blue to bpark via pin_grasp_approach;

end;

3.4.9 Further Discussion
The Cost of Error Recovery

An important consideration in writing error recovery code, such as the loop above, is that it
is not always cheap. The amount of programming involved can frequently rival that
required for the “main” part — as, indeed, is the case here. If a useful purpose is served,
this cost is generally relatively unimportant, except, possibly, for Procrustean

considerations.22 A more important cost is the extra time required in execution. Unless

2 If the program won't fit into the runtime space available to it, then it is necessary to
decide what to cut out. In many cases, the answer may be to get a larger machine.
Computers are already cheap, compared to other components in a manipulator system, and
are getting cheaper by a factor of ten every five years. This suggests that manipulator

Sample AL Program 19

something really hairy is contemplated, the extra computer time spent in “head scratching”

isn’t likely to be an issue.2 The time spent in manipulator motion is another matter. For
instance, each iteration through the loop may take nearly as long as the initial attempt. In
an assembly line, this kind of delay can get very expensive, although some provision for
buffering between stations can help to smooth things somewhat.

Fortunately, some forms of error recovery impose almost no additional manipulation cost.
The principal example here is the use of previous measurements to correct future behavior.
For instance, suppose we are putting screws into all the holes in the box. As each screw is
inserted, its location can be noted and used to update the value of box. Since the remaining
hole locations are updated implicitly, the likelihood of our having to search decreases with
each screw. Vision is especially Important in this regard, since the computations can be
done in the background, in parallel with necessary motions. For example, suppose there is
some chance that the pin may be misaligned in the fingers. If a picture is taken when the
pin is removed from the rack, one hopes that the actual pin-fingers relation can be

computed during the time that the pin is being transported to the hole?* This correction
can then be used to get the insertion right the first time.

Multiple Error Sources

in our discussion of this task, we have mainly proceeded as if the only source of error was
an inaccuracy in the location of the box. Actually, of course, we must consider errors from
many sources; for instance:

I. There may be manufacturing errors in the ob jects being manipulated. For
example, the hole may be drilled slightly off: center, the height of the box
may vary, or the pin may be slightly shorter than expected.

2. The hand will never be quite where the system thinks it is, due to the
limited accuracy with which joint angles can be read. For the Scheinman
arms at Stanford, the net error is usually on the.order of around 0.05 to 0.1
inches in position and 0.25 to 0.5 degree in orientation, although these
numbers depend somewhat on manipulator position.

3. The pin may be misaligned in the hand, as was mentioned earlier. This
error, in turn, may depend on other errors introduced earlier in the
program. For instance, when the pin is grasped, the hand's position won't
be known precisely; this will be reflected in the pin-to-hand affixment.

systems should be designed for easy expansion, since the marginal cost of going to a whole
new system is considerably greater than expanding a pre-existing one.

23 Several systems to do “problem solving” at runtime to figure out how to correct errors as
they arise. See for instance, [42). Sproull [101] has investigated the question of when
runtime planning is cost-effective.

24 Bolles [23] is currently investigating techniques for accomplishing exactly this kind of
task; although his system isn't quite up to the real time requirements described here, his
results indicate that the task could be performed with essentially the present hardware,
provided that someone wanted to do the necessary programming on the runtime machine.

50 AL, The Anatomy of a Manipulator Language

Alternatively, the fingers might be slightly misshapen or the pin might slip
while being extracted from the rack hole.

Critical Tolerances

In trying to anticipate problems and decide what checks are appropriate, it is necessary to
consider how all these errors interact with the critical tolerances of the task. In this case, the
important requirements are on how accurately the relation between the pin tip and the hole
can be determined. The horizontal error (in the coordinate system of the hole) must be small
enough so that the pin tip will make it into the hole, and the orientation error must be small
enough so that the pin doesn't get stuck before making it in. The allowable thresholds here
depend primarily on the relative geometry of the pin and hole (taking taper, chamfer, etc.
into account) and, to a lesser extent, on the accomodation available during the insertion
operation. For the pin and hole illustrated in our pictures, the relevant numbers are about
0.1 inches and about 5 degrees, respectively. On the other hand, small vertical errors will
not necessarily prevent the pin from going into the hole; here, the critical tolerance is
determined by the requirements of the verification method chosen. If distance travelled is
used, as here, then the maximum difference between the actual and calculated pin-hole
distance must be enough smaller than the difference between what would be observed for a
hit or a miss so that an unambiguous test can be made. Since the pin goes in about a half
inch, this means that if the combined error in pin and hole along zhat of Aole is sure to be
less than, say, 0.25 inches, we should be safe.

Influence of Different Errors

It is instructive to consider how various error sources influence our ability to meet these
criteria. Since the box used in this example was turned out on a milling machine with a
basic accuracy of about 0.001 inches, it is plausible to ignore any manufacturing errors.
Unfortunately, arm errors are not so negligible. If we have positioning errors of 0.05 inch
during both the pin grasp and insertion operations, the pin can miss the hole, even if
everything else is perfectly accurate. Of course, the errors may may not always be this big
or may well cancel, so that the first attempt will win, at least some of the time. On the other
hand, it appears that our pessimism in including a search loop was justified. Also, it may
be worth while considering ways to reduce these errors. One alternative, already mentioned,
1s vision, which may, or may not, be available. Another would be to use grooved fingers to

“center” the pin, thus removing an important uncertainty in the pin-hand relation.?

If there are location errors in the box, they also must be taken into account. If the initial
errors are large enough, then the hole occasionally may be displaced beyond the radius of
the search loop. This can be fixed either by increasing the scope of the search, which seems
unpalatable in terms of execution time, or by doing something to locate the box better. For
instance:

2% Errors along the pin axis would be unaffected by this fix. However, these are ignorable
for this task. If they were not, a “tapping” scheme, such as discussed earlier, could be used.
Here, it is interesting to note that a strategy of hitting the box surface with the pin tip will
reduce the tip-hole uncertainty without necessarily affecting the pin-hand uncertainty,
whereas tapping a known surface (eg., the table top) will fix the pin-hand relation, but may
require further checks to fix the plane of the hole.

Sample AL Program 51

{ INustrated in Figure 36 }
frame box_grasp_l.box_grasp_2;

affix box_grasp_1I to box rigidly
at trans(rot(xhat,90sdeg),vector(0,0,/¥inches));
affix box_grasp_2 to box rigidly
at trans(rot(zhat,90+deg)srot(x hat,90,deg).vector(0,0,/+inches));

open blue to 4.5+inches;
move blue to box_grasp_I;
center blue;

box_grasp_1 « blue;

open bilue to 3.5¢inches;
move blue to box_grasp_2;
center blue;

box_grasp_2 « blue;

This code should pin down the box position to within the accuracy of the hand, assuming
that the initial errors are small enough to guarantee that the hand doesn’t crash into the
box. Consequently, displacement errors of about 0.5 inches can be reduced to errors on the
order of 0.05 inches at the cost of two moves by the manipulator. Since search time goes up
with the area of the error footprint, this can represent a significant improvment in efficiency.

3.5 Frames, Good and Bad

As we have seen, the dominant paradigm in AL is the motion of an object’s coordinate
frame through a sequence of destination values. One consequence of this is that the
runtime “world model” of AL programs consists principally of frames and affixments, with
little other geometric information except for what may be implicit in the program itself.2®
This section discusses some of the consequences, both good and bad, of the use of frames as
a command and descriptive paradigm. To a great extent, of course, this use depends on
affixment, which is discussed in the next section. On the other hand, a discussion of
affixment depends on frames, so we might as well begin here.

The principal advantages derived from using frames to describe mations have already been
mentioned: increased clarity and ease of programming and greater hardware independence
of the resulting programs. These advantages are not unrelated. The tasks we wish to
describe involve motions and interactions of objects; the manipulator is merely a means to
an end. Thus, motion statements written in terms of ob ject frames are a much more direct
means of describing the programmer’s intent than joint angles or even sequences of hand
positions would be.

In addition to increased clarity, this directness leads to .more durable programs.
“Toughness”, as applied to computer programs, is a somewhat fuzzy concept. Generally, we

information without representing it explicitly.

52 AL, The Anatomy of a Manipulator Language

4

Figure 3.6. Finding the Box by Centering

are interested in a measure of how sensitive a program is to changes in the environment in
which it is executed or in the task for which it was written; small changes in assumptions or
specifications should not require us to rewrite major chunks of code.

From this point of view, frame specifications are distinctiy better than joint specifications.
Changes in the work station configuration are generally easier to describe in three
dimensional Euclidean space than in joint angle space. More importantly, there are
understandable language constructs (affixment, frame transformation, etc.) that allow us to
describe how the behavior of the program should depend on the relevant input parameters.
This means that variations in the initial position of the box in the previous section require
that only a single assignment statement be changed for the program to work in the new
situation. The advantage is magnified immensely when one considers the fact that the
programs can be written to perform information-gathering operations themselves, thus

allowing them to handle many situations without further human intervention. 27

A further advantage of treating the manipulator as a disembodied hand is that the user
doesn't have to rewrite the program if a different arm is used; the programming system
assumes responsibility for translating his directions into the appropriate (hardware-
dependent) joint trajectories. Of course, manipulators are not ideal objects, and the fact
that different designs may have somewhat different characteristics necessarily introduces
some degree of hardware dependence into programs. Since AL has, as yet, only been

27 In principal, it is possible to devise systems that allow a similar degree of adaptability

using purely joint-angle formalisms. However, it seems likely that the resulting programs
would be extremely difficult to write and read.

it b sl o -

S e e T b e

B

I\

sl

W ity s b g O B L) v

i

L

=

Frames, Good and Bad 53

implemented on one manipulator, it is hard to get a firm handle on exactly where the limits
to its “universality” lie. Nevertheless, there is good reason to believe that the language
allows at least approximately manipulator-independent programs. The following
observations tend to support this view: :

1. The characteristics of the Scheinman arm are not uniform through its
entire useful “working radius”, due (in part) to differences in joint
sensitivities, gravity loading, and other factors that are not entirely
compensated by the runtime system. Nevertheless, AL programs exhibit a
reasonably high degree of stability over much of this space. Programs
break down when hidden assumptions about the capabilities or behavior of
the manipulator are violated. Typical causes of trouble include:

A position is no longer reachable by the arm, due to joint
limits being exceeded. 22

- The motions of the manipulator in getting to the required
destination frames are different in some deleterious way.
Typically, this results from the fact that several arm
solutions can exist for a particular frame specification, as
will be discussed later.

The arm’s elbow (or wrist, or finger) hits something.

The accuracy of the manipulator is degraded to the point
where some critical tolerence is no longer met.

The interesting thing about these causes for failure are that they are of the
same character that one might expect from changing manipulators. Also, it
is interesting to note that the fixes seldom require much recoding.
Generally, changing a grasping position or adding a via point does the
trick, although degraded accuracy is much harder to get around.

2. Recalibrations or modifications to the manipulator have been made
periodically during the development of the system. These usually don’t
affect the validity of programs.

3. Two Scheinman arms, having somewhat different link sizes and joint limits,
were interfaced to the WAVE system. Programs written for one arm could
be used or adapted for the other with little difficulty.

Program toughness s further enhanced by the use of ob ject frames, rather than the hand
rame, to describe motions. Variations in ob ject shape or manipulator characteristics, for
. Instance, may require that an object be grasped with the hand in a different relative
orientation. If the manipulator motions are all specified in terms of hand positions, then
any statements using the revised grasping position may have to be rewritten. If the motions
e specified in terms of object frames, then only the grasp sequence needs revision.

* Between manipulators of different designs, the failure might also be due to loss of a
egree of freedom, or some other kinematic difficulty. ’

54 AL, The Anatomy of a Manipulator Language

7

Actually it is possible to write all motion statements in terms of expressions computing hand
positions from the destination desired and the current relation between the hand and the
ob ject being moved. Indeed, the AL compiler rewrites motion statements into exactly that
form as one step in the compilation process. The point is that having the translation done
automatically makes it easier to produce programs that take advantage of the capability.

We have already discussed some limitations in the “hardware independence” assumption.
Several other points in this regard should, perhaps, be mentioned. Difficulties with the
assumption fall, roughly, into two catagories:

I. The frame specification may assume capabilities not possessed by the actual
hardware. The paradigm is based on an ideal six degree of freedom
manipulator operated by levitation. Since real arms differ from this model,
it is almost inevitable that certain other assumptions must be built into the
programs. Limiting factors like link configuration, joint limits, accuracy,
strength, and speed all fall within this catagory. Their effects are generally
pretty obvious; this discussion won't dwell further on them.

2. The manipulator may possess important attributes that are impossible (or
very difficult) to express in terms of the hand frame. One obvious example
Is special sensory hardware; to some extent this must be handled as special
hardware (For instance, touch sensors are a good example. AL programs
use “on fouch_sensor do .. " and similar constructs to handle them.)
However, the limitation is rather more severe in dealing with kinematic
properties, since these are what frames were supposed to be used for.
Examples include:

There are frequently multiple arm solutions for a given
hand position. There is no direct way for a user to say
which solution he wants used, so the system makes its best

guess. This can make a difference in the path followed by

the arm in moving to its next position?; occasionally, the

effects are rather dramatic (and confusing).

If the manipulator has more than six degrees of freedom,
then the number of solutions possible is much increased. In
such cases, it seems especially unfortunate not to let the user
say more about the desired joint configuration, since the
extra freedom can be extremely useful in collision
avoidance.

In principle, these difficulties may be resolved by the use of enough via
points and the addition of extra frames to pin down extra degrees of
freedom. However, these solutions are not particularly palatable; eventually,
some better way for the user to say what he means must be found.

29 Here, it is important to recall that, although the manipulator may be able to reach any
position, the joint limits may require that it follow a rather devious path in going from one
point to the next, even when the successive positions are “near” to each other.

Frames, Good and Bad _ 55

In addition, there are several difficulties with frames that are not tied quite so strongly to
differences between manipulators. The first of these is that measurement of locations in not
always trivial. A significant part of the effort in writing an AL program is spent in
producing the initial frame values and affixments. Eventually, one hopes that the
affixment trees for the ob jects being manipulated can be produced automatically as a by-
product of computer aided design programs. However, the problem of “surveying in” the
initial positions would still remain. One partial solution is to provide the user with more
natural descriptive formalisms for saying where things are. For instance, let him say, “The
box is held in the vise with surface A against jaw I and the bottom surface resting on the
table top.” Chapter 7 describes how such descriptions can be used to generate position
estimates. Other options include use of vision or the manipulator hardware to construct the
necessary structures. Of these, the latter is the more commonly used. We have developed a
system which allows the user to define frames and affixments interactively, using the
manipulator as a measuring device. Once the structures are built, the corresponding AL
declarations and statements are then written into a file, which can then be used in an AL
program. This system is discussed further in Appendix F. One interesting point about
this approach is that it introduces a certain calibration dependency into programs. The
values assigned to frame constants are chosen, not so much because they are the “most
accurate” model of actual positions as because using those values gets the manipulator to the
"right” place.

Another difficulty is that representing ob jects as affixment trees of frames fails to account
for some very important aspects of the objects (like shape) and may introduce artificial
restrictions into a motion specification. This problem can be especially severe where
tymmetries are involved.

For instance, consider the pin we've been playing with throughout this discussion. We've
assigned its coordinate frame so that the z axis lies along the axis of symmetry of the pin.
The definition of the other two axes is rather arbitrary. Unfortunately, the variable
grasp_pin must be affixed to pin in a fixed place. This means that we cannot say
something like "grasp the pin in the position most convenient for the arm, provided only
that the approach vector of the hand intersects the z of the pin at 150 degrees and the
finger pads grasp a point 1.3 inches along z.”

The problem gets even worse when we consider the pin insertion step. hole is also
tymmetric; its affixment to box, consequently, is somewhat arbitrary. The program specifies
that pin is to to be made to coincide with a frame, in_kole_position, affixed to hole. If we
grasp the pin at an angle, then the program will not work unless the rotation of
in hole_position with respect to the manipulator base is acceptable. Unfortunately, this
means that our affixment decision cannot be made independent of the anticipated position
of the box. Once again, we really want to be able to say something like “make the pin axis
correspond with the hole axis, using whatever symmetry seems most appropriate.”

It 15 possible to get around this difficulty by adding additional calculations to program to
totate pin and/or in_hole_position into good symmetries just before the motion statement is
executed. However, such calculations are sometimes complicated, make programs harder to
. read, and are good breeding grounds for bugs. Eventually, a more direct formalism must be
£ found.

i Finally, we should note that an unaugmented frame paradigm is insufficient for collision

56 AL, The Anaromy of a Manipulator Language

avoidance. It is most undesirabie for the manipuiator to go crashing into things.3° The
only way to handie this in AL is to suppiy enough via poinis so that the machine stays out
of trouble. This can be a bothersorne probiem; we would like the programming system to
take over and do it for us. To do so, shape intormation 1s clearly needed. As we have
noted, this information is missing from a frame tree.

Collision avoidance is a very messy problem; it wili not be addressed in this document. No
one knows how to do a good job yet. However, it is fairly clear that any software likely to
be developed soon will be too slow and large to be executed 1n reai time. This suggests that
the next step is likely to be a moduie that executes as part of the compiler (or automatic
programming system) and generates a set of via points, based on an expected model of the
runtime environment.

3.6 Affixwment
A fiixment performs two ma jor fuactions in AL programs;
1. 1t allows description of motions in terms of ob ject frames.
2. It provides for the automatic updating of variables.

The use of frames for motion specification was discussed in the previous section. This
section won't go much further. It is perhaps worthwhile to note, here, that the compiler
assumes responsibility for transforming object destination expressions into - the
corresponding hand expressions. This is largely a consequence of the decision to pre-plan
tra jectories: the expressions must be computed in order to get planning points for the
tra jectory calculator, and it seemed wasteful to put the corresponding symbolic reduction
capabilities into the runtime code. The principal consequence (as seen by the user) is that
certain options — such as deciding at runtime which of several arms to use — are ruled
out3! There are aiso a number of consequences for the compiler's planning model, which
is discussed in Chapter 5.

The importance of automatic updating v simplitying programs can hardly be
overemphasized. For example, without this capability, each pin moving statement in our
sample program would require a number of assignment siatements:

move pin to pin_insert ... ;

pin_grasp « pinstrans(rot(xhat,/80+deg).vector(0,0.2¢cm));
pin_grasp_approach « pin_ gra:p-.rtrans(nilrotn.vector(0.0.-J*cm));

For more coinpiex structures the plowup is even worse. Ailthough it is true that not all

30 Excepr deliberately, as when a nail is being artven or a caretess experimenter is within
reach.)

31 Not strictly true, since code for each arm tan be compiled, but the cost usually gets rather
high.

Aflixment 57

frames have to be updated after every motion, if we make a practice of leaving things out,
then the chance of creating a buggy program is much increased.

In addition to enhancing convenience and bug-resistance, affixment increases the toughness
of programs in roughly the same ways as the use of frames does: if we introduce a new
linkage or modify an old one, we only have to modify one spot in the program in order to
account for the change. An interesting point here is that reliance on a side ¢ffect produces a
marked improvment in program clarity. Side effects have acquired an evil reputation
among ‘computer scientists, since they frequently make programs very hard to analyze.

Aside from any problems they may cause the programming system,32 it is often very difficult
to track 'down bugs which are produced by statements far from the place where the
symptoms first appear, or to understand code which modifies variables whose names do not
appear in the statements concerned. Indeed, an incorrect affixment in an AL program can
produce spectacular and puzzling results. What saves us from total confusion is the strong
connection between affixment and the semantics of moving an object: when the ob ject
moves, its subparts also move. Thus, affixment helps us to partition the problem of
writing (or understanding) a manipulator program into “descriptive” and “active”

components roughly corresponding to physical reality.

One way to implement affixment would be to emulate a programmer writing in a language
lacking the construct. lLe., keep track of what is affixed to what and then insert the
appropriate assignment statements wherever they are needed. This approach would be
consistent with that taken in rewriting motion statements. However, several ob jections come

up.

l. Many extra assignment statements would be produced. This would tend to
make the ob ject programs very expensive, both in size and execution time.

2. It is very difficult to keep track of all the affixments in a program. If,
somehow, we should lose track of some of them, then the variables involved
would not be updated correctly, and the manipulator could then run

amok.3?
A natural alternative to resolving affixments at compile time is to build a data structure that

supports runtime updating. The solution we have adopted is to represent affixment in
terms of “continuously evaluated” expressions. For instance,

"7 AL is not excepted. Affixments do indeed cause difficulties for the compiler’s planning
model, which is needed in the preparation of tra jectories.

* It might be argued that this is a system bug, and we are no worse off, in any case, since
the compiler needs to know about affixments in order to compile motion statements.
However, such is not the case. If an affixment link between the hand and an ob ject is lost,
and we say “move object”, then the compiler will discover that it has lost. If a subpart link
i3 lost, then there is no such check. Trajectories planned with incorrect nominal targets
may still be useful, provided that the runtime values are correct; if the compiled code fails
to produce the correct runtime updating, then there isn't much hope of winning,

58 AL, The Anatomy of a Manipulator Language

affix hole to box rigidly at Aolexf;
would be represented by two expressions:

hole <= boxsholexf;
box <= holexinv(holexf);

where “<=" is read as “is computed by". From the user's point of view, any change to the
value of box should cause the assignment statement hole « boxrholexf to be executed.
Similarly, changing hole should cause box « holexinv(holexf) to be executed. This
information may be represented in the runtime system by keeping a list of compiled
statements to be executed whenever a variable value is changed. affix and unfix are then
implemented by compiling code to add and delete the appropriate links to the resulting
graph structures. As stated, there are several problems with this approach, one of the most
important being that changes to popular variables may cause much needless recomputation
of values that may change many times before they are needed. Therefore, AL takes a
slightly different tack: keep “validity” information with each variable. When a variable is
changed, invalidate all values that depend on it; whenever a variable is needed, but its
value is invalid, run through the set of expressions associated with it, looking for one which
can be used to compute a valid value. Information associated with each runtime variable
thus includes the following:

1. value — a frame, vector, scaiar, or what-have-you.
2. validity mark

3. dependents — list of nodes in the “graph structure” to be invalidated
whenever this one is.

4. calculators — list of expressions that may be used to recalculate this
variable.

5. side effects — list of additional statements that are to be executed whenever
this variable is changed.

The actual algorithms, which are given in Appendix C, include a number of refinements
not apparent from this rough description.3* This approach has proved to work quite well,
and has been flexible enough to allow a number of useful extensions beyond our original
reasons for adopting it. For instance, quantities parameterized by time or some other
external signal — eg., the position of a moving conveyor belt — are readily represented. An
interesting potential limitation is that the affixments themselves are no longer explicit in the
data structure. For present AL programs, this is no particular limitation. However, it does
tend to rule out applications where the runtime program needs to make decisions based on

3 For instance, it has proved convenient to assign a “node” to every expression, as well as
every variable. Persons interested in languages for which continuously evaluated
expressions are useful will, no doubt, find many of these problems familiar, and may be
interested in the solutions we have adopted.

AMxment 59

what is affixed to what. 3% If it should become desirable to keep track of affixments, per se,
this could be done by means of “extra” data structures, which, presumably, could include
pointers linking them with their corresponding expression graph elements. An additional
benefit of such a structure would be increased support for debugging systems, since it would
then be possible to keep track of what affixment statement was responsible for a particular
side effect. :

Two important limitations of frame affixment deserve mention. One is the fact that ob jects
can be linked in many ways that-aren't fully or easily describable by affix statements. For
instance, joints may slide or rotate within certain limits, Often, the validity of an affixment
assertion may depend on certain constraints that are not explicitly stated. Thus, it was
reasonable to affix pin to kole so long as the box in which the hole is drilled isn’t turned
upside down. Similarly, if we place an object on a tray and move the tray, the ob ject will
move with it, so long as we keep the tray upright and don’t move it too fast. Although
come efforts have been made to deal with these difficulties®® no one has yet found a really
adequate solution. Fortunately, a large class of useful programs can be written without
needing a “full” solution to this very sticky problem.

The other difficulty with affixment is that, while it is an excellent means of propagating the
effects of a motion or calculation, it is somewhat limited as a means of inferring correct
object positions from multiple data points. The difficulty is illustrated by the following
code.

frame box,pinl,pin2,kolel,hole2;

affix holel to box rigidly at holel_xf;
affix hole2 to box rigidly at hole2_xf;

{ Code to insert pinl in holel. }
holel « pinl; { This updates box. }

{ Code to insert pin2 in hole2.}
hole2 « pin2; { This updates box, too.}

Suppose that the box's actual position is rotated slightly from the value given by the
variable box, so that each hole is displaced slightly from its correct position. The assignment
holel « pinl will cause the value for box to be translated so that holel has a correct value.
In the absence of any other information, this seems like a reasonable thing to do, although,
unfortunately, it can displace kole2 even further from its “true” position. Now the program
goes on and makes the second pin insertion operation. The assignment hole2 « pin2 causes
box to be translated so that Aole2 is now correct. Unfortunately, this undoes the value we
computed for /olel. The problem is that affixment lacks memory — it only can take the most
recent change into account. This is clearly insufficient for computing rotations. To get the
right effect, we can always do a calculation, such as:

35 E.g., deciding what arm to use to move an ob ject.

36 Eg., Wesley & Lieberman at IBM [63] and the constraint work described in Chapter 7

60 AL, The Anatomy of a Manipulator Language

holel « pinl; { Get holel translation correct. }
h2v « inv(holel)tloc(hole2); { Center of hole2 with respect to holel. }
p2v « inv(holeleloc(pin2); { Center of pin2 with respect to holel. }
holel « holel « vvrot(h2v,p20); { rotate everything into place. }

{ vvrot(vl,p2)ww! always points in the same direction as v2 }

but this sort of thing can get old very fast, especially in cases where the geometry is more
- complicated. A related difficulty is that each measurement may be susceptable to error, so it
may not be entirely clear what to believe. What we need is some way to represent how the
different mearurements are related to the variables in the runtime model, and then to
compute a “most consistent” interpretation to account for the data observed. The methods
developed in Chapter 7 provide a basis for doing just that.

61

Chapter 4.

Planning Models

4.1 Introductory Remarks

This chapter explores the relation of planning information to programming, in general, and
to manipulator programming, in particular.

Programming is a form of planning; the-essential quality of a computer program is that it is
a prior specification of how the general capabilities of the machine are to be applied to a
specific problem. Since the “universal” program has yet to be written, any program
necessarily embodies some assumptions about the special circumstances in which it will be
executed. Thus, an inherent part of the programming process is the maintenance of
information about the predicted execution-time environment, and the use of such
information as a basis for programming decisions. Indeed, the intellectual burden of
maintaining such a planning model is one of the major factors in determining the
effectiveness of a particular programming formalism, when applied to a task domain. This
burden cannot be escaped; if we wish to help the programmer by taking over some of the
coding effort, then the computer must keep track of the information relevant to the coding
decisions it is asked to make.

4.2 Planning Information in Algorithmic Languages

As we indicated above, the use of planning information is not unique to manipulator
programming. It is useful to consider, briefly, the information required to write programs in
a more “traditional” domain.

4.2.1 An ALGOLish Fragment

Consider the ALGOL fragment below, which is intended to select the largest element from
an unsorted array, a.

integer array a[/:/00};
integer {,n,maxel;

maxel « -23%; | largest negative number in machine }
{ Assume we want the maximum of the first n elements of a. }
for i « | step I until n do

if maxel<a[i} then maxel+a[i};

When we write the statement in the loop body, we know that variable { will contain a value

62 Planning Models

betweén 1 and n, that maxelsa[f] for Isj<, that maxel=afj] for at least one] in that range,
and that, by the time the loop has exited, we will have examined all values for { from. ! to

n. Further we assume ns100.! A process of great interest to researchers intent on proving
the correctness of programs has been the formalization of these assertions and the use of

well-formulated language semantics to prove the assumptions correct.? Similarly, one of the
strongest claims of “structured programming” advocates is that one should proceed from
such assertions to a “correct” program. Thus, one might work something like this:

I need a way to hold the maximum element; I'll invent a variable to do this
— call it maxel. Now, I need a way to get the maximum of a sequence
a[l}...a[n). Some sort of iteration looks promising. If I had a way to
guarantee that maxel was the largest element in the first i-I elements, then if
maxel is not less than a[i), then it will also be the largest element in a[/:i);
otherwise a[i] will be, so I'd better assign it to maxel. How about boundary
conditions? After i=n, maxel is the maximum in a[l:n}), which is correct.
What about a[/}? Oops! maxel better be initialized to something. If I pick
the most negative integer, then either all values of ¢ will be that small, in
which case I've got the right answer, or else the test will succeed, and maxe!
will be set to a number in the sequence.” Ok, that looks like a winner. I

- need an iteration from 1 to n; a for loop does that.>

My own impression is that one does not, usually, write programs in such a step by step
fashion. Rather than working out from first principles how to synthesize a loop to compute
a maximum element, most programmers would reach into a grab-bag of tricks, and pull out
a skeleton program structure, and then fill in the appropriate slots.? To some extent,
programs are thus composed of “higher-level” chunks, with the programmer acting in a dual
role as a problem solver and coder (translating between the conceptual units in which the
program was composed and those made available by the programming system).

Planning information Is used at both levels. For instance, the fact that maxe! is set to the
maximum element of a[l:n] would be a typical “"high level” fact useful primarily in

performing the problem-solving function.®> Coding information includes such matters as the

I Several people have commented that the loop should be written, maxel«a[!}; for i « 2 step
I until n do ... It is interesting to note that this form is equivalent only if n2l. In other
words, we can make a marginal improvement in program performance if we have an
additional piece of planning information. ;

2 See, for instance, [104, 4)

3 There is also considerable interest in automating the process. See, for instance, [109, 68,
13).

4 Program bugs happen when some precondition for using the trick is forgotten. (Eg., ¢
might be in use for some other purpose). It is not necessary to accept the psychological
validity of this paragraph in order to appreciate the main point: that much coding can be
done by adaptation of standard "skeletons” to fit particular situations.

® Similarly, the fact that @ is unsorted is important in deciding to use this particular trick,
rather than, say, just setting maxel+a[l]. ' :

Planning Information in Algorithmic Languages 63

fact that i is available for use as an index variable, @ is the name of the array to be
searched, etc.

4.2.2 Getting the Computer Involved

. A dominant theme in the history of programming system development is the progressive
- transfer to the computer of coding responsibilities. As we suggested in the previous section,
the nature of coding is largely clerical. One keeps track of particular facts and applies them
in a stylized manner. As elements of programming practice become better understood or, at
least, better formalized, this process has been extended into areas of increasing abstraction.

Thus, symbolic assemblers feature the ability to keep track of addresses, maintain a literal
table, etc, thus providing a substantial improvement over “octal” or “push the switches”
programming. Similarly, algebraic compilers perform many functions of an assembly
language coder. They keep track of information like assignment of variables to registers,
where temporary results are stored, etc, and follow highly stylized (though sometimes
extensive) rules to generate programs that are “equivalent” to their input specifications.

For instance, a i'easonably good: compiler might translate our search loop into (PDP-10)
machine code something like:

hrlzi 1400000 s maxele -273
movei 2,/ jiel
i camle 2n 3 if id>n then
Jrst 2 1 go to 128
cail 2,1 jificlor
caile 2,100 3 if 2100 then
err ["Bounds error for array a”)
camge 1,a(2) s if afilzmaxel
move 1a(2) ; then maxel«ali]
aoja 21 j ivi+] and go to /]
12: movem lmaxel i save maxel in memory cell

Here, the machine “knows” that the function of the instruction at !] is to test the termination
condition of the loop, that i is being kept in register 2, maxel in register 1, and other similar
information. A somewhat cleverer compiler might realize that n doesn't change in the loop,
that i runs from 1 to n, and that i is only used as an index to a. This information can then
be used to produce more efficient code:

® *Jack be nimble, Jack be quick; Jack jrst over the candle stick!” [R.E. Sweet)

64 Planning Models
hrizi 1,400000 s maxel « .277
skipg 2n i if nsO then
jrst 12 j don't bother with the loop
" caile 2=100 i test array bound

err ["Value of n will cause index overflow of ¢"]
hrloi 2,-1(2) 3 Well known PDP-10 trick
eqvi 21 »

i camge [a(2) ; if maxel<a[i] then
move 1,a(2) s maxel « afi]
aobjn 21 ; ieisliterate

12: movem Imaxel

This little exercise illustrates several points: The compiler uses its “understanding” of the
formal semantics of the source language and of its own decisions (eg., to keep maxel in
register 1) to keep track of those facts that are appropriate to its task as an assembly
language coder. The more sophisticated the book-keeping, the better the job it can do.
However, there are limits imposed by what can be stated explicitly in the source language.

~ In general, it is much more difficult to “infer” the intent of a particular piece of code than to

write code to achieve a particular purpose. The computer has no “understanding” that our
loop is intended to compute the maximum element of a. It could not, for instance, decide
that (because of some earlier code) ¢ is sorted and compile

move la ; maxelea[l]
movem I maxel

On the other hand, if the user's program were expressed in terms of concepts like “sort
array a”, and “select the maximum element”, then the computer might, in fact be able to

write the appropriate code.”

An interesting point, here, is that the user may wish to share the coding responsibility with
the computer. For instance, he may wish to "hand-code” the inner loops of an ALGOL
program, in the belief (however deluded) that he can do a better job. This creates certain
difficulties for the computer, which generally only really “understands” code that it has
written itself, and there has been a tendency among language designers (especially those

wishing to enforce particular programming methodologies®) to outlaw such tampering.
Another possibility, however, is to provide constructs that allow the user to tell the system
about relevant assumptions or effects for a particular piece of code. For instance,

7 Recently, there has been a great deal of interest in “very high level” languages, in which
programs are expressed in terms of operations on abstract information structures. See, for
instance, the work of Low [66), Barstow[7], Schwartz [98], Early, and many others
(5). Sometimes, this work is carred out within the context of a larger automatic coding
effort. For example, the “acquisition” and “synthesis” components of the PSI project at
Stanford [45] correspond to the “problem solving” and “coding” functions discussed above.

® One is tempted to say, “ideologies”.

Planning Information in Algorithmic Languages 65

register integer ij; { Tell compiler that i and § are to be kept in accumulators }
real x.;

start_code { tell compiler you are going to take over }

register n;

movei i,3(j) ;i€ 34

skiple ra(i) ; reali)

skipa £

hait

assert in_register(r.x); { Tell compiler that x is in r }
end

yex%3;

Here, we have told the compiler that we want two variables to be kept in registers at all
. times. Also, the assertion tells the system something that it might not otherwise figure out:
If the start_code block ever exits, then x will be in register 7. This information can be used

to good effect in compiling the assignment, yo-xtj.g

This sharing of coding responsibility is especially important early in the evolution of an
automatic coding system, when many things cannot yet be handled by the computer. We
will see instances of this in Chapter 5, where the system loses track of important facts, and
must be helped out by assertions. In Chapter 8, we will describe procedures for making
the coding decisions of Section 3.4 automatically. Incorporation of this facility into a
manipulator programming system requires either that enough primitives be available so
that a/l manipulator-level coding decisions can be made by the system, or that coding be
shared, perhaps by having the computer generate program text for subsequent modification
by the user. Again, some assertional mechanism is almost certainly necessary to help the
system "understand” code written for it by the user.

4.3 Planning Information in Manipulator Programming

Many of the book-keeping requirements of manipulator programming are essentially the
same as those for “algebraic” programming. One must keep track of what variables mean,
what things are initialized, what control structures do, etc.

In addition to these general requirements, the domain requires the maintenance of
information particular to the problems of manipulation. This information may be divided,
roughly, into the following categories:

1. Descriptive information about the ob jects being manipulated.

2. Situational information about the execution-time environment.

® Another possibility, investigated by Samet [96) for LISP progams, is to write both “high
level” and hand-coded versions of the same program. The system can then verify that both
programs are, indeed, equivalent, even though it isn’t necessarily clever enough to figure out
the hand-coded version on its own. '

2]
<

Planning Models

3. Action information defining the task and semantics of the manipulator
language.

Subsequent sections will distuss these issues in greater detail.

4.4 Object Models

Programs which specify explicitly what actions are to be performed by the manipulator
generally need contain little explicit description of the ob jects being manipulated. In the
AL program developed in Section 3.4, for instance, there is no information about the shape
of the pin, hole, or anything else. The principal language construct for describing ob jects is
the affix statement, which is used to specify how the location of an ob ject is related to the

location of its subparts or features.'® For instance,
affix hole to box at trans(rot(xhat,90+deg).vector(2.4,1.3,3.2));

On the other hand, a great many assumptions about the ob jects have been built into the
program. For instance, the check used to verify that the pin has been grasped successfulily
relies on knowledge of the pin diameter; the extraction, grasping, and insertion positions
implicitly assert that the hand or pin will not crash into anything; the insertion strategy
assumes that the pin will accommodate to the hole somewhat, that misses will cause the pin
to hit a surface coplanar with the hole or else miss the ob ject altogether; and so on.

These assumptions do not get built into programs by accident. Information about ob jects is
used extensively in both the “problem solving” and coding functions involved in
manipulator programming. In mechanical assembly programs, the task is largely defined by
the design of the ob ject being put together. In addition to specifying what is to be done,
the design also dictates many aspects of how to do it, such as in what order the various
parts must be assembled, how the parts can be grasped by the hand (or put in a fixture),
what motions are required while mating parts, and so forth.

For manipulator programming, the most important aspects of object descriptions derive
from the shape of the objects being manipulated. Unfortunately, good shape
representations for computer use have yet to be developed. Many decisions that are
intuitively obvious to a human programmer require a laborious computation by the
computer. On the other hand, it is possible to identify many “local” properties that play an
important role in coding decisions. For instance, in coding the pin-in-hole example of
Section 3.4, we used ob ject information in a number of ways:

1. Filling in parameters. The most obvious example is the location of the hole
with respect to its parent ob ject:

' The language design of AL also included provisions for associating mass and radii of
gyration with an ob ject's frame, for use by the servoing routines. Although this feature was
present in WAVE, it has yet to be implemented in AL, however.

Ob ject Models 67

affix hole to box at trans(nilrotn.v_ector(3.85tcm.3.20-rcm.4.90¢cm));

Other uses include setting the minimum grasp threshold, the expected
penetration of the pin into the hole, and selection of a grasg point that kept

the fingers out of the way.

2. Estimating the accuracy required to guarantee that the pin will seat
properly in the hole. The allowable error is determined by such factors as
the point on the pin, chamfering around the hole, clearance between the pin
shaft and hole bore, etc. It is important in deciding whether the insertion
method used here will work and in setting the “step size” for the search

loop.
The object representations used in this work are described in Chapter 6; and further
discussion will be postponed until there. It is important to note, here, that these uses
predominantly involve local properties of features (e.g., the chamfering around a hole, or the

placement of holes in a surface) that are, in principle, computable from a uniform shape
representation, but which may also be represented directly, or in several different forms to

serve different purposes.

4.% Situational Information

anipulation programs transform their environment by moving objects around. This
means that the principal fluent properties|l that must be considered are:

Where ob jects are in the work station.
What ob jects are attached to each other.
How accurately relevant locations are known by the manipulation system.

of this information was illustrated in our discussion of the pin-in-hole example.

We made a number of unstated, though “obvious”, assumptions about the
location of the various entities. For example, the hole was assumed to be

unobstructed (i.e., the box better be right side up).

In grasping the pin, we had to consider whether the hand could reach the
required locations. If it is possible for the box to be in more than one
position or orientation, then this must be taken into account.

We made use of the fact that the pin could be attached temporarily to the
hand by grasping. Simllarly, it is important to realize that a subsequent
motion of the box will cause the pin to move, too.

B —— e . o S e i T B e e, T

EBy “fuent properties”, we mean any factors relevant to the task which may not remain
Btant during its execution.

68 Planning Madei

4. The code contains many assumptions about the accuracy of our variables
pin and hole. In deciding whether “tapping” or a search were necessary, for
instance, it is necessary to consider whether the “along-axis” determination is
good enough and whether in-plane errors are within the “capture” radius
required by the pin to hole geometry.

Any reasonably sophisticated maniputator language allows much of this information to 1.
represented explicitly in the program. In AL, for instance, ob ject locations are represent:
by frame variables and attachments, by affixments. In writing programs, it is thu-
necessary to keep track of programming information, such as what variables have beon
declared and what calculations have been performed, and to relate this information to thr
physical reality being modelled. For instance, it does little good to know that, once we h.i.«
closed the fingers on the pin, it will move when the hand does, unless that information -
reflected in the program by a corresponding affix statement.

4.6 Action Information

Clearly, it is necessary to understand the semantics of the manipulator language in order tu

write programs in it.'2 This is essential both for translating desired manipulator actions o
the corresponding code and for keeping track of situational information.

Earlier, we described the coding component of programming as adapting previously define«
“tricks”, or code skeletons, to fit particular facts. This occurs in manipulator programminy:
to a surprising extent. For instance, the "grasping” sequence of our pin-in-hole example 1.
readily adapted to pick up more or less arbitrary ob jects.

open blue to initial_opening;
move blue to object_grasp
via object_graspstrans(nilrotn,vector(0,0,-4sinches);
center blue
on opening < minimum_opening do
begin
stop;
abort("It just isn’t there!™);
end;
move object to object_pickup_point;

The slots to fill in are initial_opening, minimum_opening, object_grasp, and
object_pickup_point. As we will see in Chapter 8, these may be computed from the
situational and ob ject modelling information.

'2 Of course, this knowledge does not have to be perfect. There are those whose approach
to programming is empirical, to say the least. Even where a certain amount of
experimentation is attempted, however, one generally requires at least an approximate
model of what a particular statement is supposed to mean.

69

Chapter 5.

The AL Planning Model

In Section 4.2 we saw that any compller is, to some extent, an automatic coding system. AL
15 no exception; it keeps track of variable bindings, control points, etc., and uses this
_ information to generate ob ject code for the runtime system to interpret. However, it also
performs several coding functions which are not usually found in an algebraic compiler and
which require AL to keep a somewhat more complete model of situational information than
. would otherwise be the case. Since a major theme of this document is the use of planning
information to make coding decisions, this chapter will examine these functions and how
AL keeps track of the necessary information.

5.1 Planning Model Requirements for Manipulator AL

_ To the extent that AL is “just another compiler”, it is not very interesting. The internal
-structures used to keep track of ALGOL-like entities are very standard and will not be
discussed further.! Where AL differs from other language systems is the extent to which it
must maintain a model of situational information describing the expected value of variables
and affixment structures through the program. Before we get into the mechanisms used to
maintain this information, it is worthwhile to review, briefly, the coding functions that
require them. ' -

Planning Trajectories

An important design decision in AL was the use of pre-computed “joint tra jectories” for
motion control. Although the trajectories are modified at execution time, the
precomputation requires that we know approximate values for starting, intermediate, and
finishing points of each motion statement. Consequently, the compiler must maintain
“planning values” for any variables that can enter into motion statement specifications.

Eventually, we hope that trajectory calculation can be moved into the runtime system.
However, we also hope to add a collision avoidance facility. Since early implementations
are apt to be too expensive to be used without preplanning, the need for planning values is

likely to be with us for some time.?
Rewriting Motion Statements

The affix construct in AL allows one to specify linkages between frames and to describe
motions in terms of ob ject frames, rather than merely in terms of hand positions. Although
the AL runtime data structures do reflect affixments, the interpreter requires hand positions
to be specified explicitly in motion statements. Consequently, the compiler must rewrite all

! They are described briefly in {18].

2 Of course, planning values are not all we will require. Some sort of shape description is
also necessary.

79 The AL Planning Model

the destination expressions so they are in the correct form before calculating tra jectories.
This process, which is discussed further in Section 54.2, requires that the compiler
know the affixment chain between the frame whose motion is specified in the user’s
statement back to the arm which is to be moved.

Resolving Conditional Compilation

The AL language design includes facilities for conditional compilation of source programs.
These facilities, which we will discuss briefly in Section 5.4.3, are intended to allow the
user to construct a library of general purpose macro-operauons. Such a macro library
would constitute a sort of poor man's automatic coding system, with macro calls being used
to reduce the programming effort required for a particular program. '

There is nothing particularly new in this idea. Subroutine horares are very nearly as old
as computer programming. Similarly, many symbolic assemblers and compilersa offer
extensive macro and conditional compilation facilities. An imporitant ditference between AL
and these other systems is that the coding decisions maae by the iatter generally rely on
static properties of the program (for instance, switch settings or the data type of variables),
whereas the decisions for manipulation programs often depend on expected runtime states
(such as which grasping point will be reachable by the hand)

5.2 Structure of the Model

The principal elements of situational information that AL must maintain are planning
values and affixments. It would probably have been possible to design efficient special
purpose structures for this information. However, we believed a more general
representation, which would allow a wide variety of facts to be represented and manipulated
uniformly, to be desirable. This generality is very important to users wishing to construct
general-purpose macros and allows us to employ the same mechanism to model situational
information for our own automatic coding primitives.

Consequently, we have chosen to represent all situation depenaepr tacts by assertional
“patterns” having the general form

(element_1, element_2, ..., element_n)
The two most important patterns are those used to specify planning values and affixments:

(value, variable_name, value)
(affixed, frame_var_l, frame_var_2, by. trans_var. [non]rigidiy)”

which correspond to the results of statements like:

3 For instance, SAIL [36,107,65) and PL/L

 For simplicity of explanation, these patterns have been modified slightly from those used
by the actual implementation. However, they are close enough to reality for the use we will
make of them.

Structure of the Model 71

variable_name+~value

and
affix frame_var_| to frame_var_2 by by_trans_var [non]rigidly

With each statement in the program, we associate a pair of data bases containing all the
facts known to be true before and after the execution of the statement. Simple simulation
techniques, which are described in Section 5.4, are used to build these data bases. As we
will see, there are limits to how well we can hope to do; occasionally, we may require help

from the user in the form of assertions describing the effects of confusing code sequences.

5.3 Data Base Primitives

As we have stated, information about program states is represented by assertional patterns
stored in a data base. When a particular fact, such as the expected value of a variable, is
required, it is found by matching a template pattern against the stored assertions. As there
Is an extensive literature describing such data bases,® there is no need to dwell on the
particular implementation used here. However, a few general points will be helpful for
understanding the subsequent discussion.

The basic elements in the data base are called “facts”. Associated with each fact is the
following information:

1. An assertional pattern.

2. A unique identifier” which is useful in talking about collections of facts or
associations between facts.

3 A set of "worlds” in which the fact is asserted to be true. Each such world
may be viewed as a sub-database containing the fact.

4. A list of actions to be taken whenever the fact is asserted or denied. This
feature is mostly used to implement dependencies between facts.

The data base management routines fall generally into three categories:
1. Functions for manipulation of fact patterns.

2. Functions for manipulating worlds as if they were sets of facts.
3. Functions operating on facts by name.

® This is an instance of a more general phenomenon: it is almost always easier to say what a
glven piece of code does when you have written it than it is to read and understand an
undocumented program. Thus, we can losk at these assertions as machine-readable
comments.

® See, for instance, (20], (70], [102]

7 Internally, a LEAP item.

72 The AL Planning Model

The principal routines in the first class are illustrated below:

assert(w.pattern(fee,fie,fofum)) — Adds the pattern “(fee, fie, fo, fum)" to the
sub-data base for world w.

deny(w,pattern(fee,fie,fofum)) — Removes the pattern “(fee, fie, fo, fum)” from
the sub-data base for world w.

match(w.pattern(fee x, ? 3 fum)) — generates successively all four element
patterns in w with fee as the first element and fum as the fourth. ? x and ?
y are bound to the two middle elements. Similarly, match(? w,pattern(...))
generates all worlds w matching the specified pattern.

The second class includes:

copy(wl.w2) — copies world w! into world w2. It will be useful to adopt the
notation <w> to refer to the set of facts true in <w>. Thus, this has the effect
of setting <w2>+<wbh.

w+new_world — invents a new “world” item and returns it in w

clrwld(w) — removes all facts from w. (Le, <w> « null)

andwid(wlw2,w3), orwldw!w2w3), and difwld(wlw2,w3) — perform the
“"obvious” set operations on worlds wl & w2 and put the result in w3.

The third class is somewhat more varied. Typical routines are:

fassert(w,f), fdeny(w,f), and true_in(? w, ? f) — assert, deny, and generate facts
by name, rather than by contents.

say_relies(w,f1,f2) — asserts that fI “relies on” f2 in world w. If f2 is
subsequently denied in w, then fI will be also. This assertion is itself a fact
in the data base. Consequently, the “reliance” will be inherited by any
worlds copied from w.

5.4 Simulation of Language Constructs

5.4.1 The Basic Step

With every statement in the program graph, we associate an “input world” and an “output
world”, which contain assertions about the expected state before and after the statement ll ¢
executed, respectively. For instance, for the sequence

Simulation of Language Constructs - 73

sl: move blue to pin_grasp;

52: close blue;

s3: affix pin_grasp to blue;

54: move pin to in_hole_position;

would produce world assignments:

statement input world output world

sl w0 wl
52 wl w2
53 w2 w3
4 w3 wd

The planning model simulation works under the assumption that only those attributes of a
world state that are known to be changed by a particular statement will in fact be changed.
The essential step in simulating each statement is to copy the input world into the output
world and then modify the output world in accordance with the understood semantics of the
statement. Simulation of the code sequence above would produce a data base containing
elements somewhat like those shown below:

fact assertion worlds

f1 (affixed,pin_grasp,pin,pgxfrigidly) w0,..., wé

f2 (affixed,pin,pin_graspinv(pgxf)rigidly) w0,...,.wd

f? (affixed,pin_graspblue,g00l.nonrigidly) w3,we

f4 (valueblueframe0) w0

/> (valueblue,frame2) wlw2ws3

f6 (valueblueframe4) wd

f7 (valueg00i,niltrans) w3,wd

f8 (value,pgxftrans0) wO0.,...,w4

J7 (value,pin,framel) wowlw2,w3

f8 (valuepin,frame3) wowlw2w3
(value,pin_grasp,frame2) wowlw2w3

f10 (value,pin_grasp framed) w4

S (valuein_hole_position frame3) w0,..., w4

Initially, blue is at frame0, as asserted by fact f4, which is true in the initial world w0, To
simulate the semantics of s/, we copy w0 into w!, and then modify w! by deleting f4 and
asserting f3, which puts blue at the initial position of pin_grasp. In this case only one fact
Is changed. s4 is somewhat more interesting. Here, the simulation must use its knowledge
of the affixment structure to update pin_grasp and blue as well as pin.

5.4.2 Rewriting Motion Statements

An additional requirement for processing s4 is to rewrite the statement in a way that the
code emission and trajectory calculator parts of the compiler can understand. To do this, it
Is first necessary to determine the affixment chain leading back from pin to a “controliable”
manipulator. The procedure for doing this is very straightforward:

T Lt P P U —

74 The AL Planning Model

expression procedure chain(world wivariable ajreference set already_seen);
.begin
ifga = "blue” or a = "yellow" then
return("a");
if a € already_seen then return(null_expression);
put a in already_seen;
for each bbyexp such that match(w,pattern(affixed,abbyexp.any)) do
begin '
¢ + chain(w,b,already_seen);
if ¢ = null_expression then
return("cebyexp”)
end;
return(null_expression);
end;

The code above has been written in a “cleaned up” language based on SAIL [107,65]) and
is presented as an illustration of the sort of manipulations that go on using the planning
model. The procedure is essentially a depth first search of a directed graph and works
roughly as follows. When chain is entered, ¢ is the name of a frame variable whose
affixment to a manipulator must be determined. The value returned is to be an expression
computing ¢ in terms of one of the manipulator frames. First, a check is made to see if a is
itself one of the manipulators, if so, the procedure just returns “a”. If not, the procedure
finds all variables, b, which are asserted to be affixed to @ in planning world w. For each
such b, it calls itself recursively to find a chain from b to a manipulator. The set,
already_seen, is used to bregk cycles. '

For example, suppose we have the data base shown in the previous section. Then the call

alréady_uem-em ptys
¢ « chain("w3","pin"already_seen)

would return “bluesg00lsinv(pgxf)” as its value. Using this result, the compiler can rewrite
s4 as

move blue to in_Aole_ positionsinv(g00 Ivinv(pgxf))

le,
move blue to in_Role_positionspgxfrinv(g001)

5.4.3 Conditional Compilation

One of the design criteria for AL was that it should be possible to write programs in some
generality, save them in a library, and then use them with little or no modification in future
tasks. The language therefore contains an extensive conditional compilation facility
designed to allow programs to “tailor” themselves to a particular task environment without
having to do extensive runtime checks or incur needless overhead from code that is never
executed. Although we won't dwell on this aspect of AL, it is important to note that the
language constructs involved rely quite strongly on the planning model.

thy

Il

Simulation of Language Constructs 75

The most direct example is the use of assertions or compile-time variables as “switches”,
either to select options or to stitch together different pieces of code. These uses are
illustrated below. Suppose that we have written a “more general” version of the pin-in-hole
primitive described in Chapter 8. This version allows the user to insert screws as well as
aligning pins, and to specify whether or not the error recovery loop is to be included. A
typical code sequence might look like this:

assert (kind,screwl.screw);
assert (kind,screw2,screw),

careful_flag ++ true;®

call pin_in_hole(screwl,holel);
call pin_in_hole(screw2,hole2);

Here, pin_in_hole(pin,hole) would be defined as a macro, whose expansion would include
the appropriate compile-time checks, as shown below:

plan if asserted (kind,pin,screw) then
begin
plan if not asserted (blue,Aolds.driver) then
begin
open bfingers to Ftinches;
move blue to driver_grasp;
affix driver to blue;
assert (blue,holds,driver);
end;
{ Code to use driver to pick up pin.}
affix pin to driver;
end
else
begin
plan if asserted (blue,kolds.driver) then
begin
{ Code to put driver down. }
deny (blue,kolds,driver);
end:
{ Code to pick up pin with blue hand }
affix pin to blue;
end
move pin to hole;
plan if a(careful_flag) then
begin
{ Error checking & recovery code }
end;

76 The AL Planning Model

Here, the first call to pin_in_hole will find the assertion (blue,holdsdriver) false, and the code
to grasp it will be included in the output program. On the next call, the assertion will be
true, so the driver grasping code will be left out.

Planning values from motion statements are also an important decision criterion. For
instance, we might have something like:

plan if zhat-orient(s(object_location))szhat > 0 then
move yellow to grasping_position_|

else
move blue to grasping_position_2;

The details of these examples are not particularly important for our present purposes.
What is important is the fact that the semantics of the program depend on the contents of
the planning model. This means that planning and simulation cannot be separated.

5.4.4 Conditional Statements

AL treats conditionals in a very simple-minded way: the output world of an if statement is
simply the intersection of the output worlds of the then and else parts. For instance,
consider the code sequence,

blue «« place0 { Tells the compiler where blue is. } [eg 1]
pin « blue; { Emits code as well as updates planning model. }
sl: if touch_sensor then
s2: move blue to placel
else .
s3: move blue to place2
s4: move blue to place3;

The world assignments for this fragment are:

statement input world output world

sl w0 w!
52 . w0 w2
$3 w0 w3
4 wi

Actually, these assignments are slightly oversimplified: two additional worlds are generally
invented for use as the input worlds to the two branches, with assertions reflecting the
semantics of the test. The resulting data base is as follows:

fact assertion worlds
ST (valueblue,place0) w0
f2 (valueblue,placel) w2

f3 (valueblue,place2) _ w3

J4 (value,pin,place0) wowlw2,w3

Simulation of Language Constructs 77

Here, the different effects of s2 and s3 on the planning value of blue are reflected by the
differences in their output worids. w2 contains {f2,/4} and w3 contains {f3,f4). Thus the
combined output world wl contains {f2,f4} 0 {f3,f4] = {f4].

This approach is “safe”, in the sense that it doesn’t make unwarranted assumptions about
which branch of a conditional statement will be executed, but it is rather limited, in the
sense that much useful information can be lost. Thus, the effect of the if statement, above,
is to cause the compiler to forget where the blue hand is. When it gets to 54, it will then
complain that it lacks sufficient information to plan a trajectory. This hasn't caused too
much difficulty in the AL programs that have been written so far, largely because of the use
to which conditional statements have been put: typically, an if statement has been used to
verify that some error condition has not occurred, and to take appropriate remedial action if
it has. The effect is to make the output of both branches of the conditional alike in most
significant respects. '

For those cases where a difference does cause important information to be dropped, AL
requires the user to help out. There are several ways such help can be given. One way is
to rewrite the program to leave both branches in a consistent state. For instance,

if touch_sensor then
begin
move blue to placel;
move blue to place;
end

else
begin
move blue to place2;
move blue to place3;
end;

Another way is to use assertions to tell AL what to assume. Recall that the principal reason
the present implementation needs planning values is to plan trajectories. Since these
tra jectories are modified at runtime, they do not require exact planning values.® Thus, the
user may be able to get away with selecting some arbitrary position, place4, in between
place2 and place3, and telling AL to use that.

if touch_sensor then
move blue to place2
else
move blue to place3;
blue ++ places; { Again, this is purely an assertion to the compiler. }

In some cases, it may be reasonable to ignore one branch or the other of a conditional, on
the grounds that it can "never” happen, or that its effects will have no influence on the rest
of the program, even though AL is too stupid to figure that out. For this purpose, AL

® Indeed recent improvements in the runtime system have made even grossly modified
tra jectories behave fairly well.

78 The AL Planning Model

allows a user to specify that a particular planning world is to be used.'® For example,

move pin to placel;
sl: if not touch_sensor then
begin
move blue to blue+vector(0,0,/}
print ("Pin was dropped. Put it.back in hand and continue”);
wait go_signal;
end;
plan from sl
{ Says to copy the input world of s/ into the current input world }
$2: move pin to place2;

could be used to tell AL to ignore the conditional statement for purposes of planning.'' It
would probably be useful to add additional declarative assertions to the AL language, so
that a user can say explicitly whether he expects a particular code branch to be executed.
For instance,

move pin to placel;
if not touch_sensor then
begin unexpected;
move blue to blue+vector(0,0,1)
print ("Pin was dropped. Put it back in hand and continue");
wait go_signal;
end;
move pin to place2;

In addition to simplifying coding, this approach tends to produce clearer programs, since
the user says explicitly what he intends. Here, we have an illustration of one of the main
points of “structured programming” advocates: those things that are hard for a computer to

follow are frequently difficult for a programmer as well.'?

An interesting possibility, which hasn’t been included in the present implementation, would
be to infer unexpected declarations by evaluation of branch tests in the planning worlds.
In general, this would probably require good object models and a much better
understanding of the runtime semantics of manipulation than is now possible. However, it
might be possible to win in certain cases.’ For instance,

19 A ‘useful default, not currently implemented, would be for the compiler to ignore the
planning-model effects of any code sequences ending in an abort statement.

"' The syntax for plan from used here is an invention. The construct was introduced into
the language design after the design report (AIM-243) was published, and at a time when
the “interim” (LISP like) syntax had already bieen adopted.[18]

12 1 may be more accurate to turn this around: if a construct is easily analyzed by a
computer, then it won't be hard for a human, either.

: .F-:

Simulation of Language Constructs 79

move object to place;
if magnitude(loc(object) -loc(place))>0.5 then
begin { AL assumes unexpected }

end;

Another alternative would be for AL to be more careful about its book-keeping. Instead of
Jorgetting any facts not true in both parts of a conditional, it could remember what facts
might be true. There are any number of schemes that could be adopted. One way for
doing this would be to introduce a new “truth” value, “maybe”, which could be assigned to
any facts not known to be true in both branches.

A somewhat smaller modification would be to modify the data base entries to account for
sets of planning values. This would mean that example [Eg 1] would produce a data base
something like: :

fact assertion worlds

f1 (valueblue,place0) w0

f2 (valueblue,placel) w2

f3 (valueblue,place2) w3

f4 (valuebluef placel, place2 }) wl

S5 (valuepin,place0) wowlw2,w3

PPresumably, in compiling s4, AL could prepare two separate tra jectories to get the hand to

place3 from placel and place2 and include a runtime check to decide which tra jectory to
use.

I ven if this can be done, there are several difficulties with this approach. Aside from the
nicreased “hair” required in the compiler, the principal difficulty is the combinatorial
rxplosion that results when value sets are combined. For instance, suppose that we have
assertions

(value,pin,{ placel, place2 })
(valuehole place3, placed })

and then encounter code like

hole_to_pin « inv(kole)spin;
move pin2 to hole2«hole_to_pin;

We will wind up with four possible final values for pin2. Things get even more unpleasant
when one recalis that pin2 may have several possible input values, so that the number of

paths which must be considered is much increased.'® Eventually, it may be possible to

' It 15 interesting to compare this approaci. ~ith the interval analysis done by Harrison
[%0), who analyzes PL/1 programs to discover bounds on possible values for scalar
variables (most importantly, indices) at control points. In addition to numerical limits, he is
able to produce parameterized ranges of the form <relational operator><definition point>
+-constant>. This analysis is shown to be useful for code optimization and diagnostic

80 The AL Planning Model

characterize the “toughness” of a trajectory ahead of time, so that the compiler can, perhaps,
pick a suitable point and plan only one trajectory. This ability to “collapse” planning value
sets would be essential if AL were to start keeping multiple planning values.

So far, this discussion has focused primarily on uncertainties in planning values resulting
from the compiler's inability to predict which branch of a conditional statement will be
executed. The general difficulty is that AL allows the user to describe programs whose
runtime semantics cannot be modelled fully by the compiler. It is possible to concoct far
more pernicious examples of the limitation than mere loss of a few planning values. For
instance, consider this program:

affix pin to blue;
if phase_of_the_moon > 0.5 then
begin
{ Code to grasp pin with yellow }
unfix pin from blue;
affix pin to yellow;
end;
move pin to dart_board;

Here, the compiler would not even be able to figure out which hand to move in order to
move pin. Although this example may seem a bit farfetched, a somewhat similar problem
could easily arise in programs where the exact task won't be determined until run time.
Suppose we are writing a program to assemble a class of objects. The only difference

between the various models is in which parts require heat treatment. The program would
look like this:

if part_1_is_to_be_treated then
begin
{ Code to move part_I to pallet_place_I }
affix part_1 to pallet;
end;

if part_k_is_to_be_treated then
begin
{ Code to move part_k to pallet_place_k }
affix part_k to pallet;
end;
{ Code to grasp pallet }
affix pallet to blue;
move pallet to oven;
unfix pallet from blue;

{ Code to perform miscellaneous operations }

move blue to part_I; { But where is it? }

purposes. For AL, the difficulty is in finding a useful way to represent “ranges” of frames
or to predict how such ranges interact in arithmetic expressions. The techniques discussed
in Chapter 7 would be applicable here.

it

AR e e N A e T e e
o

5T b
G B

B et AR A A AR s T

Simulation of Language Constructs 81

Here, the compiler cannot tell which parts will be affixed to the pallet. If the pallet is
moved any large distance, the trajectories planned for motions that are to pick up the
various parts can be very bad, indeed. In principle, we could use one of the “maybe”
schemes discussed before to handle such cases, but the analysis required becomes very
complicated. Another choice would be to rewrite the program. In the absence of loops, it is
fairly straightforward to produce a system that rewrites programs of the form:

if test then
statement_|
else
Statement_2;
statement_3;
into

if test then
begin
statement_I;
statement_3;
end

else
begin
statement_2;
statement_3;
end;

but this gets extremely expensive. (Our heat treatment example, above, requires 2k different
paths.) Of course, it is possible to rewrite the affected statements far more locally. Indeed,
this is just the sort of thing that keeping planning value sets would allow. However, as we
have said, the analysis gets quite hard, and may (in some cases) be impossible. The current
solution is simply to warn the user whenever an affixment fact is dropped, and then let him
worry about it.

The problem would be much reduced by incorporation of trajectory planning capabilities
into the runtime system. This would not entirely eliminate the need for a planning model;
one would still like to preplan whenever the necessary information is available, thus
avoiding runtime execution costs. Also, other usés of planning information may not be
disposed of so easily. For instance, eventually, we hope to have collision avoidance
performed by the system. The computation costs involved here are sufficiently large that
planning is apt to be economically attractive for some time after the need for joint
tra jectories has been overcome.

5.4.5 Loops

Loops present many of the same difficulties that we encountered with conditionals. It is not
always possible to predict how many times a loop body will be executed or just what the
program state will be after the loop is finished. The problem is exacerbated by the fact that
planning for the loop body may use facts that are invalidated later in the body. For
instance, consider the program:

82 _ The AL Planning Model

move blue to place0;
s1: while not test do
begin
52: move blue to placel;
{ More code }
. $3: end;
The world assignment for this code is:

statement input world output world

sl w0 wd
52 wl w2
53 w3

The simulation proceeds by copying the input world for s/ into wl, the input world for the
loop body, and (possibly) adding assertions reflecting the result of test. At this point, the
planning value of blue is place0; the trajectory for s2 will be planned for a motion from
place0 to placel. Assume for the moment that the rest of the loop body doesn’t affect blue.
Then, after simulating down to 53, the data base would look something like this:

fact assertion worlds
ST (valueblue,place0) wo,wl
f2 “(valueblue,placel) w2,w3
f3 (value,test false) wlw2

Unfortunately, there is no assurance that test will now be true. le, we may go around the
loop again at execution time. On the second iteration, s/ will ask for a motion from placel
to placel; the trajectory is no longer correct.

Normal practice when modelling loop semantics would be to merge w3 back into wl, and
then continue the simulation of the loop; the process being terminated when some “fixed
point” is reached. However, there are several difficulties in doing this for AL. Since the
semantics of the loop may be sensitive to changes in the planning model, the process may be
unstable. Here, the major problem is with afixments and symbolic assertions, which affect
motion statements and conditional compilation. Incompatible planning values are, of course,
lost on merging, as was discussed in the previous section. This means that waiting for a
fixed point before planning cause the compiler to complain about lack of a start point for
the motion statement at s2. If some scheme (such as value sets) were used to keep alternate
planning values when worlds are merged, then the compiler could “do the right thing” in
planning s2. However, keeping such sets would introduce additional problems, since there
Is 2 possibility that the set would grow each time around the loop. Thus, a method for
coalescing “nearby” values would be necessary. Unfortunately, it might not be possible to
tell whether a sequence of values was in fact stable.

Therefore, AL takes a cuwardly'appruach: it warns the user whenever a fact which may be
invalid is used to make a decision. Briefly, this is done as follows. When the loop body 1s

entered by the simulation,"all facts assumed to be true in the input world are noted.'?

'9 This is done by copying them into a special "watch these guys” world associated with the
loop. '

Simulation of Language Constructs 83

Then, any time one of these facts is used to make a decision in the planning without having

first been asserted explicitly inside the loop body, it is put into a set'S of “guarded” facts.
When the loop body processing is done, a warning is generated for any fact in the guard set
that is not “true” in the output world for the loop body. In our example, fI is used by s2
and is not true in w3, so we get the error.

When a user is warned, he has several choices. Usually, he will look at the code, mutter

something unprintable about the stupidity of the system, and ignore the message.'® This
amounts to an assertion that nothing important really changed in the loop after all, so that
the decisions made in planning its first pass are all ok. Where planning values are involved
— by far, the most common case — this assumption is probably valid. Where affixments or
other assertions differ, the user may be wrong, since AL may have become very confused.

If the user doesn't like seeing error messages, or if he wants to clarify the assumptions of his
program, then he must add assertions. For instance, he might write:

while not test do
begin
blue «« place0;
{ Says that the motion statement is to be planned from place0 }
move blue to placel;

{ More code }
end;
or else

while not test do
begin
$2: move to placel;

{ More code }
plan from s52;
end;

if he wants to ignore all inconsistencies. Once again, it would probably be desirable to
introduce a construct like the unexpected declaration discussed earlier. This would enhance
clarity and simplify programming, though it would not add significantly to what can be said

in the language.'’

In many cases, of course, mere assertions are not enough, and more substantial rewriting
may be required to get a program to behave as intended. The obvious thing to try is to
“unroll” the loop. For instance:

'S Internally, another planning world

6 In some cases, he will not even bother to look at the code, but, then, some of us like
jumping out of airplanes, too.

'7 Here, we would probably want two flavors: one which said “ignore all inconsistencies”,
and one which said “ignore only planning value inconsistencies”.

84 The AL Planning Model

move blue to place0;
if not test then
begin
move blue to placel;
{ More code }
while not test do
begin
move blue to placel;
{ More code }
end;
end;

In principle, the process could be continued several times.

This kind of thing is helpful in cases where the major changes (e.g., the starting position of
blue) occur in the first iteration. Whether this is true depends, in part, on coding style. For
instance, is a pin-in-hole primitive written as:

while <pin isn't in hole> do
<put pin into hole>

or is the first try included separately, as was done in Section 3.4? '2 The latter style seemed
likely enough so that we experimented with having the system perform one level of
unrolling automatically, whenever facts were found to be in conflict. However, experience
with this was not encouraging, since programs got much longer without any real gain, so the
feature was dropped. The scheme might have worked better if there were a means of
assessing the significance of particular differences in facts, and only trying to unroll when a
significant difference — such as an affixment or a very large difference in planning points
used for trajectories — was found. However, real success — especially with long loops —
probably requires that code for differently planned iterations be "folded” together to take
advantage of those parts that can be common.

5.4.6 Parqllelism

Like conditionals and loops, parallelism is only handled approximately. The principal
control structure for parallel execution in AL programs is the cobegin ... coend nest. Since
AL runs on a single runtime processor, use of the construct for parallel computations is not
particularly useful. The primary intent is to allow for concurrent execution of subtasks by
several manipulators, with a secondary use being to allow a computation to be run “in the

background” while a motion is taking place.!® So long as the concurrent segments are

18 Of course, in that case, it is possible to argue that the loop was already unrolled once.

19 My personal view is that this second use is a bad idea, since it just complicates programs
without any substantial speedup. In the current implementation, there isn’t very much of
the machine left over while servoing is going on. A more fundamental ob jection is that this
sort of optimization should be the job of the compiler and runtime system, rather than of

Simulation of Language Constructs 85

independent of each other, there is no particular problem. The output world of the nest is
formed by combining the changes introduced in each branch. Thus, a fact is considered to
be true in the output world of the nest if and only if it is true in the output of at least one
branch of the nest and is not denied by any of the other branches. For instance, suppose
we have the following code:

blue «+ placel; yellow «« place2; objecte+place3;
50: cobegin { Park both arms.}
sI: move blue to bpark;
52: move yellow to ypark;
coend;

The world assignment is

statement input world output world

50 w0 w3
sl w0 wl
$2 w0 w2

and the data base looks something like this:

fact assertion worlds

f1 (valueblue,placel) wo,w?2

f2 (valuebluebpark) wlw3

f3 (valueyellow,place2) wo,wl

f4 (valueobject,place3) wowlw2,w3

There are many problems with this approach. The data base does not really support the
notion of "false”. Assertions are either “true” — ie., asserted — in a world or they are not
present. On merging, denials have to be checked by looking for transitions between “true”
in one world and “not true” in a successor world. An additional problem has to do with
incompatible assertions. For instance,

cobegin

object « placel;
object « place2;
coend;

The method described above would leave both (valueobject,placel) and (value,object,place2)
in the data base. Since we don't know anything about the order in which the statements
will be executed, there is no way of telling which planning value to believe. Since such
contradictions can be very confusing, the planning model code makes a pass over the output

—— e S S o e) S S S i o S . P s e e

the programmer. For instance, the runtime interpreter .could adopt the strategy of
interlocking those parts of the data structure affected by the current motion statement, and
then continuing on with the next statement, stopping when it comes to the next motion or a
computation that depends on an unfinished motion. An obvious candidate for this activity
would be a runtime tra jectory calculator.

86 The AL Planning Model

world after merging, to remove incompatible assertions. Of course, any attempt to identify
all sets of incompatible assertions will be-doomed. Instead, AL restricts itself to looking for
only a few easily detected cases, such as incompatible values for single-valued fiuent
properties (e.g., planning values).

The principal mechanism in AL for synchronizing parallel control paths is the event. It is
sometimes possible (for a human) to predict the order in which statements will be executed
by inspection of the signals and waits in a nest. For instance, consider this program:

event inspection_request,inspection_done;
cobegin
begin “inspection process”
wait inspection_request;
{ Perform inspection }
signal inspection_done;
end;
begin "manipulation process”
{ Manipulation A }
signal inspection_request;

wait inspection_done;
{ Manipulation B }
end;

coend;

Here, the inspection process will be performed between manipulations A and B. Eventually,
we hope that AL will be able to follow simple event chains. However, the general problem
is very difficult, and such analysis is beyond the capabilities of the current routines.

5.4.7 Complications with Motion Statements

The planning model simulation assumes that motion statements terminate “normally”. The
planning value of the frame being moved is set to the planning value of the destination
expression. For many motion statements, this is adequate. However, as we saw in Section
34, it is not uncommon to write motion statements which are expected to stop short of their
destinations. For instance, if we have picked up a box and want to set it on a table, the
code might look something like this:

move box to table-vector(0.0,4)
on force(zhat)>8»0z do
stop;

The planning model will be updated to assert that box is at table-vector(0,0,4), even though
it is expected to stop short of that position. For purposes of planning trajectories, the
inaccuracies introduced in this way are generally unimportant. This is fortunate, since
doing a better job automatically would require considerably better geometric models than
are available with most manipulator-level AL programs.

Simulation of Language Constructs 87

If a user wants to keep his planning model more honest, he must use an assertion, such as
box «+ table-vector(0,0,4). An alternative would be to introduce a new construct into AL for
specifying this kind of motion. For instance:

move box through table to table-vector(0,0,4)
on force(zhat)>8+o0z do
stop;

In addition to keeping the model more accurate, such a construct would make programs
clearer to read and might make slightly more efficient motions possible.

|
R

88

“Oh, de hip-bone connected to de thigh bone.”

Traditional

Chapter 6.
Ob ject models

6.1 Introduction

The AL compiler can get by without making use of shape information. The only “ob ject
models” it really understands are affixment declarations between ob ject frames; and, here, it
doesn't really care what the frames correspond to. On the other hand, to generate a
manipulator program, we must make explicit use of much more information about the
ob jects being manipulated. In writing the pin-in-hole example of Section 3.4, for instance,
we used shape information in answering the following questions:

'I. Where can the pin be grasped?
2. How far must the hand be opened before moving to the grasping position?

3. When we close the hand, what is the minimum acceptable hand opening
before we assume that we have missed the pin?

4. For a given misalignment between the pin and hole axes, how far will the
pin make it into the hole before sticking on something?

5. How far is the pin supposed to go into the hole?
6. If "tapping” is necessary, is there a good spot on the ob ject to use?

If manipulator coding is to be automated, then ways must be found for the computer to
answer these questions, based on its own model of the ob jects involved. Furthermore, if our
automatic coding system is ever to be useful, construction of the necessary ob ject models
must be made easier (for the user) than writing the manipulation program. Ideally, we
could use the output of a Computer-Aided-Design (CAD) program. In this case, the user
would merely have to specify a task-level description specifying the assembly sequence, and

the computer would do the rest.! Unfortunately, good mechanisms either for description of

! Indeed, the object design could be used to provide important contextual information
clarifying the task specification. For instance, “Put the cover on the box” could be used,
rather than “Put the cover on the box so that the bottom surface of the cover is against the
top surface of the box, and the axes of cover holes | and 2 line up with the axes of box
holes | and 2."

Introduction 89

ob ject shapes or for doing many of the computations we need haven't been developed yet.?

In this work, we wish to concentrate on the use of object information, rather than on
provision of elegant descriptive formalisms. Consequently we have adopted a somewhat ad
Anc representation, based on “attribute graphs”, which will allow us to represent directly any
properties that are awkward to compute from existing “pure” shape representations.

6.2 Basic Constructs

A< was stated in the previous section, we represent ob jects by means of a graph structure,
which is represented internally by a combination of LEAP (35,36,107] associations and
record structures. The nodes in this graph correspond to parts and features of ob jects, and
the links describe relations between the nodes. Additional nodes and links are used to
'rpresent important attributes of the ob jects, features, and links.

Within this general framework, there is a great deal of flexibility in how particular kinds of
information are to be represented. We have adopted the following conventions:

Shape Information is represented by the use of different node types and by the
value of parameters in each node's associated record.

Structural Information is represented by link types like subpart, feature,
inside, etc. '

Location Information is represented as a property of the corresponding
structural links.

I instance, the representation of the box whose assembly was described in Section 2.2.]
would include the following elements:

subpart®box_assemblynbox_body®
subpart®box_assemblyncover_plate

subpart®box_bodymbore_I
subpart®box_bodywbore_2

" Iaid [26] has written an excellent survey of the current “state of the art” for shape
'rpriesentations. This paper describes six recent systems for computer representation of
\hapeinformation.. Other relevant work, not mentioned in the paper, includes the
“kroeralized cone” representation developed by Binford, and subsequently elaborated by
Apmll], Nevatia [73] and Miyamoto [18}; the "procedural” representations explored by
Grovsman[46) and the parts graphs developed by Lieberman and Wesley [63]). Each of
thrye systems has some advantages and dizadvantages; none are yet sufficiently well
Adevrloped to serve as our hypothetical CAD system.

In English, this says “A subpart of box_assembly is box_body.” Note that these
"aviniations” may themselves be treated as elements in other associations. This facility
sllows us to represent properties of relations as well as properties of ob jects.

90 Ob ject models

featureabox_bodymhole_I
feature®box_bodyshole_2
feature®box_bodystop_surface
feature®box_bodymside_|

lies_in®top_surfacemhole_1
lies_in@top_surfacemhole_2
inside®hole_lubore_1

nomx fe[subpart@box_assemblysbox_body)sniltrans
nomxfe[subpart®box_assemblyncover_platelutrans(n ilrotn,vector(0,0,4.9))
current_xfe[subpart@bax,assemb!ylcover_plau]«fluent 232605>

This structure is illustrated in Figure 6.1. Appendix D contains a printout of the
complete model for the box assembly. Subsequent sections will describe the more common
nede and link types in more detail.

6.3 Object Nodes _

The most important nodes in this graph structure are those used to represent ob jects or
parts of ob jects. Contained within each ob ject node is the following information:

" kind — Currently, there are three "kinds” of ob ject:

as.senibly — a collection of separable subparts. E.g., the box
assembly consists of a bottom, a cover, and several screws.

part — a single lump of metal. E.g, the box bottom. A part
may be primitive, in which case its description will give its
shape, or it may itself be composed of subparts.

bore — a negative part. For instance, the hollow space inside
the box.

description — a pointer to an appropriate shape description for the part.
Typical shape descriptions are rpp, sphere, cylinder, and profile. rpp(x.y.z)
is just a rectangular parallelopiped with sides (xy.2). sphere(r) is likewise
self-explanatory. cylinders and profiles are explained below.

Cylinders

A cylinder is the solid you get by sweeping a cross section along an axis.? By convention,
we use the z-axis as the *long axis” of the cylinder. Relevant parameters are:

cross_section — The plane figure that is to be swept along the ax-is. Typically,
either a circle or a polygon.

1Cf., the "generalized cones” of Agin and Binford.

Ob ject Nodes

BOX -~ASSEMBLY

91

(BORE 2| [HOLE 1] [HOLE 2] ITOP-SiJRFACEI
A

| 4

T INSIDE

LIES IN

INSIDE

AX

Cl c2

LIES IN

Figure 6.1. Box Assembly Relations

C3

—e A

AT

0.635cm} ‘ .91 cm

> \ 0.635 cm|

Figure 6.2. Representation of a Screw

92 Ob ject models

length — The significance of this parameter will be left as an exercise for the
reader. ’ :

top_diameter, bottom_diameter — Tell the size of the cross section at each
end.>

finish — Many objects have surface properties — such as threads — that are
awkward to represent directly as part of the shape representation. Instead,
this information is represented symbolically.

Profiles
Many objects, such as screws, are most conveniently modelled as a stack of cylinders.
Rather than use separate subpart nodes for each cylinder, we combine them into a single
array. Important parameters are:
length — overall length of the stack.

n_sects — the number of sections In the stack.

sei:tlon[!:n_sects] — array of cylinders. section[i] is the i'th cylinder in the
stack.

sect_dir[I:n_sects) — If the z-axis of section[i] is parallel to the z-axis of the
stack then sect_dir[i] = 1. Otherwise, sect_dir[i] = -1.

The representation of a screw by a profile is illustrated in Figure 6.2. The screw is
composed of three cylinders; all oriented parallel to the screw axis. Hence, sect_dir{i] = I for
all Isis3. The data for each section cylinder is shown below:

section cross- top bottom length finish
' section diam. diam.
1 ciecle 826cm .826cm 635 ¢em smooth
2 circle 635cm .635cm 191 cm tap 28
3 circle 635 cm 000 cm 635 cm smooth

6.4 Object Links and Link Attributes
The principal link between ob jects is the subpart link: -

subparte@box_assemblyacover_plate

which asserts that cover_plate is a subpart of box_assembly. This link type suffices to
describe the topological structure of ob jects. However, in addition to knowing structure, we

® Actually, these numbers are scale factors. However, the only circular cross section used
has a diameter of 1 cm, so the “usual” interpretation is also correct.

Ob ject Links and Link Attributes 93

must also know the relative location of subparts. To maintain this information, we make
use of LEAP's “bracketed triple” facility, which allows us to associate additional data with
any link in the graph structure.

nomxfs[subpartebax,_as:embly-cover_plate]-trans(nilrotn,vector(0.0.4.9))
This states that, when the cover is in its “nominal” position on the box,
<location of cover_plate>=<location of box_assembly>:trans(nilrotn,vector(0,0,4.9))

Of course, the cover might not always be in its nominal position. Its actual relation to the
box bottom is a fluent property, dependent on situational information. This is refiected by
link properties like:

current_xf@[subpart®box_assemblyncover_plateln<fluent 232605>

Here, <fluent 232605> is a reference into the data base used to hold situational
information. Essentially, it consists of a pattern template like:

(value_of _fluent_232605, ? val)

which can be used to retrieve values from the desired “worlds”. Typically, the value stored
will either be a trans or else a parameterized estimate of the kind discussed in Chapter 7.

In manipulating objects, we must often consider manufacturing tolerances and similar
causes of variation in part-subpart relations. These are reflected by the use of link
attributes:

deterin_template@[subpart®box_bodysbore_IJa<paramterized estimate>
deterin_estimate®[subpart®box_bodysbore_I]u<fluent 123456>

T he determ_template attribute of a link gives a priori limits on the accuracy of the location
sttiributes associated with the link. Typically, this means the accuracy of the manufacturing
processes involved. The properties of the <parameterized estimate>s used to represent this
information will be discussed extensively in Chapter 7. Here, we might add that, if the
errors are known to be negligible, we use a special value, fully_determined, for this
sttribute. Since it is possible to make measurements at execution time, the actual “degree of
determination” of the link will vary; determ_estimate gives the corresponding situational
Auent.

In addition to subpart links, we must frequently describe other relations between ob jects.
For instance, although the cover plate is a subpart of the box assembly, it may initially be
placed in a parts dispenser. The representation of such situations is greatly simplified by

the use of another link type, related.®

% in the actual implementation, we use relatec links as the basis for all location attributes.
“ T'hus, in addition to subpart@box_assemblyncover, we will have a link related®
box assemblymcover, and link attributes like current_xf@[related®box_assemblymcover]n<fluent
27605>. This hack simplifies programming but complicates explanation. Hence, the small
eception practiced earlier.

94 Ob ject models

related®cover_dispenseracover
current_xf@®[related®cover_dispenseracoverln<fluent 76672
determ_estimate®[related®cover_dispenseracover}ucfluent 76 464>

Other link attributes are used to associate programming information with the ob ject models.
The most important of these attributes is xfvar, which connects an AL trans variable with
a subpart or related link. For instance,

xfvar@[subpart®box_bodymbore_I]mbore_1_xf_ var
xfvar®(related®workstationscoverlucover _frame_var
assert that the locations of bore_I and cover are given by

bore_1 = box_bodysbore_1_xf_var
cover = workstationscover_frame_uvar = cover_frame_var

For simplicity of discussion, we will generally ignore this distinction, and use the ob ject

names to refer both to the objects and to the frame variables relating them to the work
station.

6.5 Feature Nodes

One property shared by all the ob ject nodes discussed in Section 6.3 is that they all have

volume.” There are many other attributes, such as holes, surfaces, edges, and the like, which

lack this property. We call these entities “features”, and relate them to their parent ob jects
by feature links.

feature®box_bodymhole_1
feature®box_bodymtop_surface

feature®top_surfaceshole_I®
Locations and other link attributes are the same as for ob ject nodes. For instance:

nomxfe@[feature®@box_bodystop_surfacelstrans(niltrans,vector(0,0.4.9))
determ_template@[feature®top_surfacemhole_Ilu<parameterized estimate>

An important point about features is that they provide a symbolic or quasi-symbolic means
for referring to places on objects. This is very important, since it allows us to describe
relations between ob jects in other than purely numerical terms. For instance, we can say
“the bottom surface of the box is resting on the top surface of the work table” or “Align
vertex_1 of cover with vertex_I of top_surface” Chapter 7 will develop techniques for
translating such descriptive statements into more explicit mathematical forms which can be
used by the system to make coding decisions.

The characteristics of the most important classes of features are discussed below.

7 Although, in some cases, negative volume.

8 Note that features can have sub-features and that the same feature can “belong” to
several parents. The only restriction is that a feature only belong to one ob ject node.

T T
s ik £ hhi
i el bt Uiy s Ui

Feature Nodes 95

Surfaces
Currently, only planar surfaces are represented. There are two flavors:
planar_circle(r) — a circle of radius r in the Xy plane, centered at (0,0).

planar_polygon(n, x[I:n), y[l:in]) — a polygon in the xy plane, with vertices at

(x[édyliD).
T hese structures are also used as cross_section descriptions for cylinders.

Edges and Vertices

Edges and vertices are primarily important in describing ob ject locations from feature-to-
feature contacts. To simplify certain coding problems associated with the methods discussed
in Chapter 7, we represent them as zero diameter cylinders and spheres, respectively. An
additional parameter, @ is used to describe the angle between the planes ad jacent to the
edge, as is shown in Figure 6.3.

Holes

We make a distinction between bores, which are the negative volumes left by metal removal
operations, and holes which are the features formed by intersection of bores with surfaces.
The reason for this semantic quibble is that it allows us to establish some useful
conventions. Holes are represented as zero-length cylinders. The origin of their associated
coordinate system is assumed to be “centered” in the hole, with the z-axis parallel to the
outward facing normal of the surface in which the hole lies, as shown in Figure 6.4.
Holes are related to their corresponding bores by use of the inside relation:

inside®hole_lsbore_I

Generally, we will not try to preserve the distinction between holes and bores in our
discussion, except in those few cases where it is important.

6.6 Other Properties

The principal advantage of the modelling scheme described here is its fiexibility. It is very
easy to add additional data to the model or to change the way a particular fact is
represented. This section presents some additional examples.

Redundant Shape Descriptions

crude_shape®obj_luobj_2 — asserts that obj_2 has approximately the same shape
as obj_I. For instance, crude_shapechox_assemblysrpp(7.9.6.4,5.0) provides
an approximate shape for box_assembly. A typical use for this kind of
information would be in a collision avoider, which doesn’t need (or want)
detailed shape information.

96

Ob ject models

Figure 6.3. Coordinate Systemn of an Edge

A2

x>

Figure 6.4. Coordinate System of a Hole

W Y

N

A SRR A S b

LA O S AR

murvm:

Ty B A A LA S SV G A AT T e e =

Other Properties

geomed®@box_bodys"box.b3d" — specifies the name of a file giving a GEOMED
representation of box_body. GEOMED [9] is a system developed by
Baumgart which uses polyhedral models to generate efficient graphic
representations of predicted scenes. The representation is optimized for
such applications, and is not par{icularly well suited to many of the things
we need to do. The point, here, is that we can incorporate several
redundant representations without much trouble.

Symmetries

symmetry_rot®objsrot(a,Y) — states that if rot(a,”) is applied to obj, the result
will be indistinguishable from obj.

symmetry_axis@objsy — states that rot(v,) is a symmetry rotation of obj for
any value of w. For instance, if we have a circular cylinder, the z-axis will
be a symmetry axis.

Grasping Positions

grasp_method®objemeth — asserts that meth is a prototype “grasping strategy”
for obj. The contents of such grasping strategies are discussed in Chapter
8. There, we will compute the necessary information (finger spread,
grasping orientation, etc) directly from the geometric information describing
the pin. In other cases, where the shape information is more complicated,
or where the user has some reason to demand a particular grasping
position, we might have to resort to prespecified methods.

97

98

Chapter 7.

Representation of Location and Accuracy Information

7.1 Introductory Remarks

Since programs are prior specifications of actions to be taken at a later time, coding
decisions must rely on our expectations about relevant attributes of the execution-time
environment. Some of these attributes, such as object design, remain essentially static
during execution of the program. Others, however, are sub ject to variation. As we saw in
Section 4.5, the principal situation-dependent properties for manipulator programming are:

. Where ob jects are in the work station.
2. How ob jects are attached to each other.

3. How accurately the locations and attachments will be known at execution
time.

Since AL programs use frame variables to represent ob ject locations, the planning values
and affixment assertions maintained by the AL compiler are obvious candidates for use in
our automatic coding procedures. However, there are several problems with doing so
directly.

First, planning values do not tell us anything about the accuracy of our runtime knowledge.
As we have seen, such information is extremely important in making coding decisions, and
cannot be ignored, even where the possible perturbations in object locations are small
enough to ignored in deciding the gross motions required to perform the task.

Second, in writing programs, a single planning value is often insufficient.! In picking a
grasping position for our pin-in-hole task, for instance, we must be sure that the hand will
not be required to move to an impossible position. If the hole's orientation can vary
considerably, then certain grasping orientations may be ruled out. A similar situation is
illustrated in Figure 7.1, where we are considering how to pick up a small carburetor
from a pallet, which, in turn, sits on a table top. Assume, for the moment, that we have
narrowed the choice to two candidates, "from the top” and “from the side”, as shown in the
figure. Since the pallet’s rotation about the table z axis is unrestricted, the “from the side”
grasping position could require impossible arm positions and probably should be excluded.

' As we saw in Chapter 5, single values cause problems for AL, too. The assumption made
by the trajectory calculator is that destination points will not diverge too grossly from the
planned values. It is up to the user to make sure that this assumption is not violated. In
cases where variations will be greater, then he must insert explicit checks to select
alternative tra jectories. Similarly, if the compiler gets confused, then it asks the user for
clarifying assertions. The point, here, is that if the computer is take over more of the
coding, then it must be able to do more of the modelling work for itself.

Figure 7.1. Picking Up a Carburetor

100 Representation of Location and Accuracy Information

Finally, numerical planning values are often very difficult for users to specify, since humans
dont come equipped with accurate surveying instruments and usually don’t have
particularly good intuition in mapping ob ject locations into frame values. It is often much
more natural, in task-level specifications, to describe ob ject locations by assertions about the
relationship between features. For instance,

The bottom of the pallet is flush against the top of the work table.

Pin | is-inserted 0.45 inches into hole 1.2
The valve body is sitting on its left side in the box.

Even in cases where nominal values are obtained by direct measurement, assertions are
particularly important in distinguishing what aspects of the object locations are mere
accidents of the particular test example, and what always will be true at execution time.

This chapter develops mathematical techniques for representing object positions and
position errors, for deriving such representations from assertions relating ob ject features,
and for performing computations that can be used as a basis for coding decisions.

The approach taken is to translate symbolic assertions about. inter-ob ject relationships into
constraint equations involving the location variables of the ob jects and free scalar variables
representing degrees of freedom in the relationship. These equations are then further
" reduced to eliminate redundant degrees of freedom, so that we are left with a parameterized
trans expression,

TO)

in which the remaining free variables, (AjruA), are (1) readily related to translations and

rotations in some understood frame of reference, and (2) linked by constraints whose form is
sufficiently simple to be of some use by the system. Depending on the exact interpretation

placed on the A, and the constraint equations used, TAB(X) may be used to make

predictions about the relative position of two ob jects, A and B, or the accuracy with which
the relation can be determined at execution time.

The principal numerical technique used is linear programming, which is employed to
compute ranges on parameters, maximum displacement along given directions, and other
similar data. As we shall see, this works best in those cases where rotations are small
enough so that a single linear approximation may be used. Consequently, the methods
work better for estimating errors than for predicting large ranges of positions. Fortunately,
there is a large class of assembly tasks in which the approximate position of ob jects is

constant, or, at least, limited to one rotational degree of freedom.3

Z Note the similarity to the task-level command, “Insert pin 1 0.45 inches into hole 1.”

3 For instance, a part which sits on a table in a known stable orientation is free to rotate
only about an axis perpendicular to the tabletop.

101

7.2 Contact constraints

One common way to restrict an ob ject's freedom of motion is to place some part of it in
contact with another object. For instance, suppose we know that a round peg P fits snugly
into a hole H. This gives us the relation:

P - HiFRAME(ROT(z),VECTOR(0,0{))
where

¢ = a free scalar variable representing the distance that P penetrates into H.
n = a free scalar variable representing the rotation of the peg about its axis.

Similarly, suppose we know that plane surface S| of object A rests against plane surface Sg

of object B. These planes are defined with respect to their corresponding body coordinate
systems by the relations: .

Sy= all x such thata;'x = dj

So = all x such that ag’x = dg :
where a; and a are the outward facing normals of S, and Sg, respectively. Then A and B
will be related by the constraints:

A = Butrans{VECTOR(x,y,2)ROT(ag,wkR 19

where
transi(VECTOR(x,y,2)) = TRANS(VECTOR(x,y,2))NILROTN)
R 9o = a constant rotation such that Rjora| = -ag
ag - (x,y.2) = d+dg
Oswsam
In general, there may be a number of such relational assertions with the form “Feature X of
object A is in contact with feature Y of object B". The three most common forms of
contact relation are “fits in”, which usually applies to shafts fitting into holes, “fits over”,
which is just the other way around, and “up against”, which applies to features like points,
lines, plane surfaces, (circular) cylindrical surfaces, and spherical surfaces. Thus, some
typical contact relations that the system may have to "understand” include:
I. the side of a cylinder resting against a plane surface.
2. a cylinder inserted snugly into a hole.

3. a spherical knob resting against a surface.

4. a point on one ob ject touching a plane surface.

102 Representation of Location and Accuracy Information

We wish to model how such contact relations affect the linkage between the location
variables of the objects. In general, this relation is given by an expression of the form

B = A"‘TAB(Al' ,)\m)

where T 5 p is a trans linking A and B, and (Al,...,Am) are free scalar variables reflecting the
degrees of freedom between A and B.

The method we use to derive TR from feature contact assertions makes use of the fact
that if a feature has location fg (in the coordinate system of ob ject B), then the feature’s
location in the coordinate system of A will be given by T 5 g«fg. It is convenient to break
T A B down into its rotational and translational components,

Tap =transps g)Rpp

Now, given some feature of object A in contact with a feature of ob ject B, we represent the
set of points for the feature of B in terms of a parameterized “generator” expression

Fgpe={v|vs= FR(b) }

where the p; are free scalars (see the table, below). Suppose, now, that we have a constraint
that every point on the feature of A (expressed in the coordinate system of A) must obey.

Ga(v)=0 for all v on Fp

Then, if every point of Fp is to lie on Fp we get
GA (TA Bb:‘fB(u |,...,un))-0

for all Hi. We can then substitute values of W; in order to obtain constraints on TA B

The expressions for points, lines, and planes are:

Feature type Generator expression Constraint Expression
point fo v-fg=0
line A;pfo (V-fo)';z =0

(V-fo)'; q = 0

plane uEgef +f (v-f)fg = 0

Contact constraints i 103

Here, f, fo, and fq are orthonormal vectors. Together with a displacement, fo. they define
a coordinate system for the features. Conventions used in defining these vectors are shown

in Figure 7.2 (assuming the mapplng;(- ;I';' -foitn ;3).

For instance, if we know that plane [u;2oJ\E|+f0] of object B lies against a plane of ob ject A

constrained by E-(v-go)-o. we get

B{PoR(Fg M +Fo)-go) = 0

where .
p = displacement between A & B
R = Rotation between A & B

which reduces to
g R(ufdf +f) = ggo - gP
&'Rﬁ«(ufrzolglofo) =d- E'p

where
d - ggo

This gives
ERfg - d-gp
gRf| = 0
gRfy = 0

The two "=0" constraints tell us that R“'E is perpendicular to ;l & ;2. (Le R"-g = '*;3-
where ;3';1";2)- :I'hus; R = R-YnROT(;'g,qS), where Ry is a constant rotation such that

R'y’ifgs - % & The ambiguity here comes from the fact that there are two possible relative

orientations for A and B that will cause one plane to coincide exactly with the other. This
ambiguity may be resolved by insisting that no part of A be inside of B. If we assume that

fy and g are the outward facing normals to their respective planes, this gives us a

" constraint of the form

E'R;s <0

$0 Ry;s--g. Also, fq can expressed uniquely as a linear combination of El- ;2, and ;3:

104 Representation of Location and Accuracy Information

COORDINATES OF A SURFACE REGION

Z = OUTWARD FACING
NORMAL
XY = ARBITRARY
COORDINATES OF A CYLINDER SECTOR
3609-26 = AXIS
= CENTER OF SECTOR
Y=2xX

COORDINATES OF SPHERE SEGMENT

Z = CENTER POINT OF
SECTOR

Figure 7.2. Feature Coordinate System Conventions

Contact constraints 105

fog - V;3¢Hf2¢>\f|
for some v, y, A. Substituting this decomposition for f(gives us
gREy = gRWFgeuf2eMf1)
- Vg'RFg + igRfg + Ag R
- g RyROT(f,¢)fg + 0+ 0
- V;'R-y;s = .) E& .y
Rearranging our earlier equation for E"Rfo and then substituting this new value, we get.

gRfg =d-gp

gP = d-gRfy
= d + v
Thus
TAp = transi(pRytROT(f 3,9) (Eq 1]
where

R+ = constant rotation such that R'Y;S --g
gp=dev
which is equivalent to what we got in Section 7.2.

‘ For another example, suppose that we have a circular cylinder B of diameter r and axis

Aflofo resting against a planar surface g v=d of A. Then.
g-Rfo = dor - g'p
gRf (=0

T his reduces to
R = ROT(g.¢)¢Ra¢ROT(f ,.w) [Eq 2]

where
R, = a constant rotation such that R, f is perpendicular to g.

Now, suppose that we also know that some point fy' on B is resting against the same
surface. This gives

106 Representation of Location and Accuracy Information

gRfy =d-gp

Combining this with the earlier equations gives
gRAf =

where Af = fo-fy'. Substituting the value for R given by [Eq 2], we get
gROT(g$)R ROT(F | w}AF = r
(ROT(g, #}gyROT(R of | IR Z AF) = r
gROT(R 4 | IR LAF) = 1

which may be solved to give us zero, one, or two values for w. Once again, the ambiguity
may be resolved (sometimes) by checking to see which value for w requires some part of
object A to penetrate object B. Once a value for @ has been found, we can use it to
produce a “one degree of freedom” value for R.

R = ROT(g$)Ry

where
R v = Ra'?'R OT(f l.w)

This value can then be used to produce a fixed value for é‘fo and, hence, for.&-p, giving us
the same form of constraints as we obtained for plane to plane mating. (This is not
surprising, since a line and a point not on the line determine a plane)*

7.3 Inequality Constraints

Not all constraints on objects are characterized by a snug fit or by hard contact between
features. One simple constraint of this type, which was used in the previous section, is that
solid ob jects may not interpenetrate. Other typical “loose” relations include:

l. A peg of diameter d fitting into a hole of diameter ds¢.

2. An object sitting in a box.

3. A feature on object A in contact with a region of a feature of ob ject B.

9 Ambler and Popplestone [2) have constructed a system using many of the same
Principles described here: They translate contact relations between object features into
constraint equations on the objects' location variables. These equations are then reduced
symbolically, with remaining freedoms being expressed by trigonometric expressions. They
do not, however, handle non-contact relations or compute limits on free variables.

Inequality Constraints _ 107

Such relations are reflected by inequality constraints on the degrees of freedom. For
instance, suppose we insert a peg of diameter o into a hole of diameter ry,, where Th>Tp:

Then,

P = HetransVECTOR(x,y2)WROT(z,0)

where
x2ey2 < (rh-rp)2
0 sz -~ since we know that the peg is in the hole.
0<0<2rn - ie no constraints on 0.

In other words, the peg can rattle around within the constraints imposed by the sides of the
hole. Actually, the above equation for P is not quite right, since it assumes that P is still

held coaxially to H, whereas it actually can wobble around a bit, producing a much messier
expression:

P - Hitransl(VECTOR(x,y2)"ROT(2,6MROT(x,$»ROT(y,0)
with very complicated constraints on the free variables.
The formalism for handling inequality constraints is essentially the same as that developed
In the previous section for handling the contact constraints. (Indeed, the inequalities
frequently arise as a refinement to a contact constraint. For instance, a planar face of one

ob ject may rest against a region of the planar face of another ob ject) Again, suppose we
have a feature F5 of object A given by

Fpo={v|va= FA(”I'----“n) }

sub ject to
cl(ul,....un) 20
Cz(ul,...,un) 20

cmiv l.....,un) 20

We wish to constrain this F 4 to lie in some region of another ob ject B, restricted by
Fp = {u|Gglu) = 0 and G ()20}

Substituting, we get

Ge(TAB*FAW}iin) " 0
Gn(TA B*FA(HI"""JH» 20
C(M].--..un) 20

108 Representation of Location and Accuracy Information

For example suppose that we have a face of some ob ject B given by all points v such that
' g'v=d (saying it is on the plane)
Gv2b (defining the extent of the face)

Then, if we know that some point fq of object A lies on the face, we get
gRfg=d-gp
G:Rfp+Gp 2 b

‘where R and P give the relative rotation and translation, respectively, between the two
ob jects. Similarly, suppose that we have a region on a planar face of A asserted to be up

against the face of B. Then, we get

é‘R(UEz#A;lofo) =d- EP
G*R(u;zd\;pfo) +Gpz2b
Clud) 2 d

where the last constraint limits the region of the face of A that must match with the face of
B. Note that the possible values for p and are determined only by the constraint C(uA) 2
d. If the set of feasible solutions, (A) to this constraint is convex, then we can use the
extreme points (u;,;) to produce a new set of constraints on R and p.

gP =d +|fol

R = ROT(g.$hRy
GsR(yfooh) 2t
GoR(uy FoedyF)) 2 by

where
b'=b- G¢Rfo

In Section 7.5, we will see how these equations can be turned into a set of linear
. constraints.

7.4 Objective Functions

+ In the previous sections, we saw how relations between ob ject features can be expressed in
terms of constraint equations involving their relative locations,

TAB = transi(p B*RAR

Ob jective Functions 109

sub ject to
i(PAB-RAR)? 0
m(PABRAB) ? 0

In some cases, these equations can be solved completely to give a firm value for Tag.
Generally, however, this will not be the case, and T 5 g will still be able to vary somewhat.

As we have seen, this can be expressed in terms of scalar variables representing the
remaining degrees of freedom.

TAB = TAB® iy

so that our constraint equations may be rewritten
€)' (B1ybig) 7 0

cm'(ul,....un) 70

Although the assignment of these scalar variables may be largely arbitrary, it turned out
that we could frequently assign them in semantically meaningful ways. Thus, if we have
two plane surfaces in contact, we get

RAB = RyROT(2.w)

PAB = [xy.1]

gRABf=d-gp

Here, parameter represents a rotation about a known axis of A, and x, y, and z are
translations.

In such cases, it may be reasonable to ask about the allowable range of a parameter. For
instance,

minw = @i < g WX « max w
In other cases there may be no obvious parameter giving the relation desired. For instance,
suppose we wish to know the maximum displacement, 8max: ©f a point f on ob ject A along
" an axis E of object B. (f might be the tip of a pin, and E might be the z axis of a hole).
Then, ,
Smax = max gTppf
= max gRApf + gpap
= max gRABMH | bn)f + gpaBH-y)
= max cy'(y Jrebip)

110 Representation of Location and Accuracy lnformation_-'_‘:

In other words, we have expressed the problem of finding the maximum perturbation of:'{
some relation between two ob Jects as a mathematical programming problem:

max co‘(ul,....un)

sub ject to
cl'(ul',....un) ?0

cm’(ul,...,un) ?0

In the next section, we will explore ways to approximate the ;' with forms that are simple
enough for known efficient numerical techniques to be applied.

7.5 Linear Constraints

We are especially interested in obtaining systems of linear constraints on the free variables,
since there are powerful numerical techniques that can be applied to such systems. In
particular, it becomes very simple to find maximum and minimum values for linear (or
many quadratic) functions of the free variables, thus giving a quick check on the likely
range of the ob ject’s location. Similarly, it is possible (though sometimes rather expensive)
to compute a convex polyhedron which encloses all feasible solutions to the location
constraints.

For instance, if we have an ob ject sitting on a table in some known orientation, then we get

OB « transl(x.y,h),akor(i.a»Ror(}ﬂ)*ROT(i.v) '

where
a,f, & ¥ are known angles
h = some known height
Xmin S X S Xpay (defining the size of the table)

Ymin Y £ Ymax

This rather simple linear system can be solved (trivially) to give us the rectangle in which
the ob ject ljes.

orientations it may be in. (We might, for example, be considering how to pick it up.)
Assuming we know in which stable position the ob ject is sitting, the problem reduces to the
two-dimensional problem shown in Figure 7.3. If we approximate the outline of the
ob ject by a list of points p;=(x,.y;) in the ob ject coordinate system, then our problem reduces

Linear Constraints

|
X
g

BT

R

AL B e

T

TN S 7

RS g S
B

3 —
Xbox
y
i
=

Figure 7.3. Object in a Box

-]
SERE

112 Representation of Location and Accuracy Information

left S X + Xj cosw - y; sin < right
bottom sy« Yj cos + x; sinws top

for all the p,. In addition, we may have some a priori knowledge about the ob ject

orientation:
Omin S W S Wp o

Here, we have assumed that the sides of the box are aligned with the x and y-axes. If this
is not the case, then the constraints are modified in the obvious manner.

We really would like to have linear constraints; unfortunately, these are not. However, we
can rewrite the system to contain only one non-linear constraint by introducing two new
variables, s & ¢, corresponding to sin and cosa.

left SX+XiC-y;ssright
bottom SYys+yjc+x;sstop

for all p;, and

*min S € S Cpax
Smin S8 S Spax
524c2 =]

Now we can temporarily ignore the last constraint, and apply our LP methods. Then, the
allowable range for w (and, hence, for s & c) can be approximated by a number of smali
ranges centered about “typical” values W,y and approximate constraints of the form

C COsW) ; inw;
cojossm j

5 Actually, it is sometimes possible to treat such constraints directly, since they have a nice,
convex form. However, the current System prefers to work parametrically, as indicated
above.

e |

113

7.6 Algorithms

This section will present algorithms for applying the general methods discussed so far to
produce a parameterized estimate of the relative location between two ob jects, given a set of
relational constraints between features of the “affixment trees” rooted at each object. In
particular, we will produce an estimate of the general form: :

TAB = transi(pg phRy+ROT(ap g4)

sub ject to linear constraints on p AB: Sin Wa R, and cos W g. These constraints will then

be solved to produce estimates of legal ranges for Wp g, and of the limits on PAB- The
translation proceeds roughly as foliows: .

1. Enumerate all relations between features *affixed to” ob ject A and object B.

2. For each such relation, produce a set of corresponding constraint equations
involving Rpop and PAB- As each such relation is generated, it is merged

with previous relations, and symbolic reductions are performed, if possible,
to fix values for PAB: 2A B and WA B- If any of these values is fixed, it is

used to simplify the equations in the constraint set still further.
Occasionally, these reductions will produce more than one candidate value

for the axis ;AB' This necessitates separate cases being kept for each

possibility. If an inconsistency is discovered between the constraint set for
some subcase and a newly added equation, then that subcase is dropped;
exhaustion of all subcases indicates an “impossible” situation.

3. Once the equations for all relations have been added and simplified, they
are “rewritten” in terms of constraints on scalar variables corresponding to
the remaining degrees of freedom in Raop and pag. These constraints are

linearized, with new variables being invented to correspond to sin WAp

and cos Wa g. This constraint set may then be used to compute maximum

values for linear forms involving the free variables, with iterative
techniques being used to enforce the constraint that

(sin w4)2 + (cos wap)? = |
and to find extreme values involving Wp .
We will deal with each of these phases in somewhat more detail below. If you are reading

this document for the first time, you may want to skip over this material, and pick up
reading again at Section 7.8

114 Representation of Location and Accuracy Information

7.6.1 Finding relevant relations

We are interested in finding all relations between pairs of features, Fy and Fg. that

constrain the position of object A with respect to object B. Also, we need to find the
position of Fp and Fp with respect to A and B. This is essentially a clerical task of using

information stored in the object models and the assertions in the planning world’s data
base:

. Compute Qa « affixment set for A. le, find the set of all ob jects X having

a known fixed relation to A in the current planning world. Details of this
computation are given later. For each such X, compute T 4 x such that.

X'A':'TAX

Here, recall that when we use an object name in an arithmetic context, we
mean the location frame associated with the ob ject.

2. In the same manner, compute Qp « affixment set for B. If there is an
object X in QA Y Q. then the relation of A to B will be given by

TaB=TxA+Txp
and we have no need to proceed further.
3. Now, for each object X in QA and each object Y in Qgp. search the data
base for any assertions relating a feature Fy of X to a feature Fyof Y. As

stated, this process could be extremely tedious, since each possible relation

pattern would have to be checked for all features of X and Y. ® An easy
way around this difficulty is to note what ob jects are related by an assertion
at the time the assertion is made. We have done this by means of a LEAP
bracketed triple:

symbolic@[relatedex-y]«symbolic assertion id>
This means that the relevant assertions may be found fairly quickly by

relations « empty;
for each x5 such that x ¢ Qqand y¢Qpdo

for each rin such that symbolice[relatedexuyurin do
If true_in(current_world,rin) then
put rin in relations;

In other words, enumerate by “name” all symbolic assertions linking any -
element x of Q 4 with some element y of Qg. Put any such relations which

are “true” into the set relations.

6 Alternatively, all instances of each pattern could be generated, and a check made to see if
the features involved belong to ob jects in Qx and Qy.

" Algorithms 115

The relevant assertion patterns are given below.
assertion patterns
The assertion patterns currently “understood” by the system are discussed below.

pattern: (contacts, FA, FB, <kind of contact>)

Asserts that Fp and Fp are in contact. Fa and Fp may be surfaces, regions of surfaces,

sectors of cylinders, or sectors of spheres. 7 Here, we Insist that the Fp be "larger” than F4.
" Thus, if Fp is a surface, then Fp may not be an edge, etc. This rather unfortunate

limitation comes from difficulties in linearizing the resulting mathematical forms. We will
discuss the difficulty more in the next subsection. ‘

<kind of contact> supplies additional information about how the relation is to be interpreted
(i.e, what inequality constraints are to be generated). For feature to surface contact, the
relevant values are:

inside of — If F5 and Fp are surface regions, then F 5 lies entirely inside
of Fg. If Fp is a cylinder, then both ends are assumed to contact Fg. If
Fa Is a sphere, then the point of contact will be inside of Fp.

overlaps — Asserts that some point of Fp contacts some point of Fp. The

“normal” contact conditions remain in force. Thus, if two surfaces are
asserted to overlap, we still assume that the outward facing normals to those
two surfaces must point in opposite directions.

extent_irrelevant — Asserts that only the fact of contact is to be considered.
This is principally useful as a means of eliminating many completely useless
inequalities. For instance, if we assert that an ob ject lies on the top of the
work table, it is probably not too useful to go ahead and add the assertion
that its possible locations are bounded by the sides of the table. We will
most likely have other relations that restrict the position much more than
this.

7 Recall that edges (between two surfaces) and vertices are treated as sectors of zero radius
cylinders and spheres, respectively. (See Figure 6.3),

116 Representation of Location and Accuracy Information

Pattern: (ilyserted:<shaﬂ).<hol¢>.<direction>.<min dist><max dist))

Asserts that <shaft> is inserted into <hole> the distance indicated. <direction> is £1, and
gives the direction of the shaft axis with respect to the outward facing normal of the hole.
Presently, only round shafts in round holes are considered.

Pattern: (above,F 5 <surface region><min dist>cmax dists.<kind of contact>)

This relation is sometimes useful when one wishes to describe a region in which a feature
must be contained. It asserts that feature F A is inside a cylinder over the indicated surface

region, extending up within the indicated distance parameters.

Pattern: (points_at,F 5 Fp <angley)

This relation is most useful as a means of specifying the approximate orientation of an
object. Fo and Fp must have some natural direction associated with them. (For a cylinder,

the axis; for a surface or hole, the outward facing normal; etc.). If <angle> is positive then
the direction vectors are assumed to be parallel to within <angle>; if <angle> is negative,
they are anti-parallel.

7.62 Generating the constraint equations

Here, we assume that we have features Fp and Fp related to objects A and B by

FA=A¢Tuap
FB-BtTBF

together with some “symbolic” relation between them. Typically, this relation involves
contact between the two features, together with additional information specifying a region
on one feature that is constrained to be within a region of the other. The mathematical
constraints we will be generating follow the general forms:

ERABF?d-gpap
g‘RABf rd
0?7d-gpap

where g and f are constant vectors and d is a constant scalar. The " will generally be “=”
for constraints arising out of contacts, and "s” for remaining attributes of the relation,
Since we are dealing with standard relations, it Is not necessary to go through a full
derivation of the constraint forms each time a refation is to be added. Instead, we use

Algorithms 117

special procedures for each relation type. The first step of all these procedures is the same,
however: produce values of f; and g; corresponding to the coordinates of Fp and Fp.

Thus,

fo « PAF (ie., translation part of To)
;I - RAF;‘

fz “ RAF?

fqg « Rpopz

€0 « PBF

g1+ RBpX

%2 « RBFY

g3 « Rpfz

The conventions for feature coordinate systems may be found in Figure 7.2. Once making
these transformations, each procedure then adds the appropriate constraint equations, as
shown below.

Constraints for Contact Relations

Fa Fp Constraint forms to add I

Surface Surface ES'RAB;S"l 8

g3RABfo = (€380 - E9PAB

Cylinder Surface ES-R AB;S =0
g3RABfo = (380»Tcyl - E3PAB
ByRABF| s cos Oy
(ignore if full cylinder)
Sphere Surface gqRppfg = (83'50)"'sph'83'P AB

gs‘RAst S - cos Osph
(ignore if full sphere)

% Note that this is slightly different than our earlier derivation.

——

ns - Representation of Location and Accuracy Information

poin_t line B2RABf0 = 8280 - BoPAB
BIrRABf0 =180 -glpag

point point g|'RABfo = 8180 EIPAB

-~

82RABf0 = 8280 - goPAR

A

83RABfo = €380 - g3PAR

gIRABSo < S -EIPAB
gIRARfo 28y - £ 1'PAR
g2RARFo S By - E'?'PAB
g2RaBfo 28y - gopan

Similarly, if a region of surface F 4, with extreme points (x;y;), is inside F B» constraints are
generated to put each point

fO*"i;l‘Yi;2

inside Fp. Circular patches on F5 may be handied slightly more efficiently by conStraining
the center of F to lie within an appropriately “shrunken” patch on Fp.

The remaining relations are handled similarly. Insertion of a shaft into a hole gives the
relations:

EaRABFsg = ¢l
BIRABfoO=8180- 8 PAR

-~

E2RABf0 = 8280 - goPAR

Algorithms 119

§3'RAB;0 < -<min dist> -;s‘RA B;’AB
ég'RA B;o 2 -<max dist> -ES'RAB;)AB

for a snug fit. The "points at” relation produces a constraint like
§3'RAB;3 2 cos <angle>

and the "above” relation is handled in a manner analogous to the contact constraints, with
inequalities replacing the equalities resulting from contact.

7.6.3 Merging the constraint equations

Once the mathematical constraints are generated, they must be simplified before useful
information can be extracted from them. In part, this is because of limitations in the ability

of our numerical solution technique (linear programming) to handle rotations. ° It is
convenient to think of a body rotation R as consisting of a rotation of the body by some

parameter W about an axis a of the body, followed by a rotation Ry that reorients a.

R = Ry « ROT(a,w)

Ry, in turn may be parameterized in terms of a pair of rotations such as

Ry = ROT(x.a) s ROT(y.6)

However, to produce even approximately linear equations (i.e, with no terms involving.
products of parameters), we must have constant values for R~y and a. To get such values,

we must perform symbolic reductions similar to those discussed earlier in Section 7.2. The
simplifications are performed incrementally, as each constraint is added. The procedure
followed looks something like this:

0. Initially, assume that we have a set U consisting of constraint equations u;
that are to be added, and a set V consisting of constraints vj which have
already been merged. In addition, our knowledge of R g will be one of:

unspecified — Nothing is known about R, ;, or .
axis specified — Ry and a fixed, but w free.

ully specified — R =R r.«ROT(;,w) = a constant.
Y sp AB = Ry 0

of course, an important additional consideration is reducing the amount of computation
required by simplifying the equations and reducing the number of degrees of freedom that
must be considered.

120 Representation of Location and Accuracy Informaition

and p4 g may be either free or fixed.

. If U is empty, then we are done. Otherwise, take the next constraint u;
from U. Perform any simplifications possible on uj, based on what is

already known about Ry g and pa . '°

a. If u; includes &'RABf and Rpp is fully specified, then
perform the indicated multiplications.

b. Similarly, if u; includes E'PA B+ and p is fixed, then perform
the indicated multiplication.

¢. If uj includes é-RABf, and Rpp is axis-specified, then
replace gR p gf with g-RyF if Rig or f is parallel to a.

Once simplification has taken place, we may wind up with a “degenerate”
constraint, such as

0520

or
0=.35

In this case, check to see whether the constraint is feasible. If it is, then just
drop it, and go back to the start of step | to get the next one. If not, then
we have specified an “impossible” situation. '! If an earlier reduction was
“ambiguous” (see below), then this subcase is just dropped. If no subcases
remain, then the user has specified something impossible, so we just give up
and complain.

2. Now compare uj with the elements v. of V, looking for additional

simplifications to make. This is done by making a great number of special
case checks. The most important reductions are described below. Such
simplifications will typically produce one or more new constraint equations,
which are to be added to U, together with (possibly) additional restrictions
on Ry g and PAB- In this latter case, all previous constraint equations will

be considered for simplification in the manner described in step 1. Any
constraints so modified will also be added to U.

1o Actually, these simplifications are best performed when the constraint equations are
added to U, rather than when they are removed, as here.

" in practice, it has proved desirable to allow a small amount of tolerence before assuming
that the situation is impossible, since situations may be overconstrained in some fairly
innocent way. Thus, "0.001=0% would not be considered cause for re jection.

Algorithms 121

Constraints Actions

E'R AB; - 2] ' fix rotation axis

grRABf| = 0 if g} parallel to g,

EI'RABQ =0 or f} parallel to fo
then fix rotation axis

E'Rf | ? <rhs> Form new constraint

gRfy = 0 gR(f-af) ? <rhs>

where a = (fof)/(fofo)

g1Rf ? <rhs> Form new constraint
g2Rp = 0 (g1-ago)Rf ? <rhs>

where a = (g2'g|)l(g2'g2)

é'RABfI -dj- E'p form new constraint
gRagfz?dg-gp BRAR(F-fo) ? do-d
O=d- Erp ifgl. 22. 23 linearly
0=dyg- §2'p independent, then solve for p
0=-dg-ggp

: E'RABf -d; if axis already fixed, and

f or R'lg non parallel to a,
attempt to fix w.

Ambiguities in Fixing the Rotation Axis

As we saw in Section 7.2, ambiguities can sometimes arise when we attempt to fix the axis of
rotation. For instance, if we have constraints

;'RAB; = 0
yRABE = 0

Then we get

122 - Representation of Location and Accuracy Information

RAB = RysROT(zw)

where
Rvyl =32

Le, we will have two distinctly different rotations. In some other cases, we may have four or
more possibilities. Currently, this is handled by splitting the problem into subcases. Each
subcase is then reduced independently. If a contradiction s found, the subcase may be
dropped, as we indicated earlier. If not, then either it will be “solved” completely, or the
numerical estimation techniques of the next two sections are applied to produce a
parameterized range estimate. '

7.64 Converting the Constraint. Equations

Once the constraint equations have been simplified as much as possible, we wish to use
numerical techniques to investigate the properties of the remaining degrees of freedom.
The technique chosen for this purpose was linear programming, which has the advantage
that efficient algorithms are available, but also has a drawback in that it requires that

constraints and the objective function be expressed in terms of linear forms, whereas
rotational degrees of freedom may introduce non-linearities. At first glance, this may seem

a single degree of freedom — as is the case when two ob ject faces are in contact or where a
Pin on one ob ject has been inserted into a hole in the other ob ject — then it is possible to
approximate the constraint equations in terms of linear forms.

In this case, we have

which we rewrite as
RAB = RyR;ROTGzw)R,,

- where

Roa =2
Thus, whenever
gRA Bf
appears in a constraint equation, it will reduce to
ERABF = gRyRROTGWIR ,f
~g'ROT(L @)’
-(g'xf’x+g'yf'kaWo(g’yf'x4g’xf'y)slnwog'lf'z
=B sin @ + By cos + fig

Algorithms ' 123

where

g = RaR-',Jg
f' = R,f

Now, we introduce two new variables
€y = COS W

Sy = sin W

and rewrite the equations in the obvious manner. For instance, if R5p is axis-specified,
and p = [x,y,2), then

gRaopf=d-gp

would be rewritten
PxX+Pyy+Py2+8 1¢(y+Bosyy = d - By

This leaves us with only one non-linear constraint equation.

2 2.1

‘W” *Sw

This constraint may be handled parametrically, as described in the next section.

7.6.5 Computing Rotation Ranges

This section describes an iterative technique for finding feasible ranges for a rotation angle
W, given linear constraint equations in sinw, cos, and other free variables.

The method starts by dividing the unit circle into arcs:
wo-bg s W < Woby

An iterative technique is then used to refine each arc into one or more tighter subranges,
with the process being continued until the endpoints of each subrange have been

determined to within a desired precision. Finally, ad jacent subranges are merged. 'Z

The details of the iterative refinement process are shown below, and are illustrated in
Figure 7.4 and Figure 7.5.

0. Initially, we have a system of constraints

124 Representation of Location and Accuracy Information

CONSTRAINT REGION

Figure 7.4. Computing Rotation Range: Iteration k

Figure 7.5, Computing Rotation Range: Iteration k+|

Algorithms

125
C(l,....)\n,cw,sm) 7o (Eq 3]
where
€ = Cos
S = sin W

&)0-50 sWs (.00080
We wish to refine this interval into finer sub-intervals.

L. At the k'th tteration, we assume that we still have system [Eq 3], but that
the interval has been narrowed down to

cok-sk SWeg wkosk

Let

Pk = cos Wy

qg = sin W
Augment the system [Eq 3] with constraints to restrict Cw and s, to lie in a
rectangle bounded by

cos28k S PkCw * QkSep < |
- -sin by < -qyey) ¢ pysy, S sin 6y

2. Use linear programming methods'® to solve the augmented system to
produce a new rectangle bounded by

min(py ¢4y+q)8¢))< pycy ¢ QiSw € Max(pycy)+qysy,)
Min{-a)cw*Pis)S ke * Prdw S Max(-qcypysy)

Zero, one, or two intervals of the unit circle will be inside this rectangle.
Treat each of these subcases as follows:

—— — —

. of constraints, making this swap speeded up the solution process. There are several minor
. complications arising from this approach. For instance, if the dual has no feasible problem,
& then the primal is either unbounded or infeasible. However, the resolution of such “sticky”
£ points is straightforward, and is not particularly relevant to our present discussion

126 Representation of Location and Accuracy Inforination

a. zero — Terminate. There are no feasible solutions in the
current subinterval.

b. one — Compute values Wy, and 8y, so that the arc cut by
the rectangle is described by

&)k,l-sk‘l SWs wk‘p&k,,
If (8y-8y 1) is less than the desired stopping threshold, then

stop; otherwise, set ke-k+1, and go back to step 1 for another
iteration.

¢. two — In this case, compute the desired boundary angles for
each sub-interval. Save one of the sub-intervals away for
later processing and proceed with the refinement of the
other. -

A Bug

It is possible for the procedure described above to terminate prematurely, with the assertion
that all rotations are feasible within a range when, in fact, there are infeasible sub-intervals.
This is illustrated in Figure 76 In practice, this hasn't turned out to be much of a
problem. If desired, the likelihood of getting “bitten” can be reduced by breaking any
subinterval that satisfies the termination condition of step 2.b but has b, , | larger than some

threshold into two subintervals and then proceeding as in step 2.c.

7.7 Experience '

The algorithms described in Section 7.6 worked fairly well — though slowly — so long as the

rotation axis between the two ob jects could be fixed.'? The principal limitations were (1) the
necessity for fixing the rotation axis before the numerical solution procedures could be
applied, and (2) difficulties in handling chains of non-rigid linkages. For instance, suppose
our box is placed in a vise. Then it will be free to rotate about an axis perpendicular to
the vise jaws. Now, suppose we place the cover plate on the top surface of the box. The
plate can rotate freely about an axis perpendicular to the top surface of the box. If we are
interested in the location of the cover with respect to the work station, we are in trouble,
since there are two rotational degrees of freedom, but our numerical technique relies on
there being only one. Of course, we could always split one of the rotational freedoms into
many subcases, and apply the algorithms already developed to each subcase, although such
an approach might be rather expensive. Alternatively, we could expand our symbolic
solution procedures to handle more complex expressions.

In practice, this sort of problem hasn't been too severe in cases where we are interested in

14 Appendix E.|I gives a typical example problem (a familiar-looking box sitting inside a
box-like fixture).

Experience 127

INFEASIBLE
ANGLE
RANGES

} X
Figure 7.6. Premature Termination Bug

expected locations of objects, since there is frequently only one significant rotational
freedom. Generally, one can ignore small perturbations while planning the overall motions
to be used to accomplish a task. On the other hand, such perturbations cannot be ignored
when one considers the accuracy issues involved. Fortunately, if we are willing to assume
only small perturbations, it is possible to make many simplifying assumptions that allow us
to apply efficient numerical techniques to cases involving many interacting degrees of
freedom. These techniques will be discussed in the next section.

7.8 Differential Approximation

In general, the relation between two objects may be represented by an expression of the
form

T-= transl(p(AI,..,)\m))»uR(u Jrbp)

It is convenient to interpret the A; and Mj as degrees of freedom perturbing p and R from
some nominal values

p(0...0) = pg
R(0,...,0) = Ro

128 Representation of Location and Accuracy Information 'f

- For suitably small A; and y;, we can make linear approximations for p and R:

P = p(0...0) + T A(3p/aNX0...,0)
= Po+ ZAp;

R ¥ R(0,..,0) + = p(aR/3u;X0,..,0)
- Ro ¢ 2 H‘M|

where
pj = (3p/aNXO,..,0)

Example

Consider the situation shown in Figure 7.7, which could arise during execution of an
assembly program for a small engine. Here, the crank assembly would be in approximately
the same position each time the task is executed, although it will be subject to minor &
variations.

Crank= Vise»&TVC
= Vise n transi{py) ¢ Rye

where

PVC = PVC * A1x + Aoy + Age
Ryc = RV # Rot(zw) s Rot(y,$) + Rot(x,0)

where :
' €SWsEy, -€psPsey, -€gshse

Suppose, now, that we are interested in finding out whether placing the hand at a fixed
position with respect to the vise

Hand = Vise»:Tgrab

will guarantee that the shaft end will always be between the finger pads. The algorithms
discussed in the previous section would require that we fix the rotation axis of the crank

before we can get very far, but we cannot do this. Fortunately, since the orientation
variations are small, we can approximate the rotation component by

Ry ¥ Ryl oM, + OMy + M)

129

Figure 7.7. Crankshaft in Vise

where
|000}
Mx-IOO-ll

[010]

[001]
My=|000|

100}

|
M, = |
I

QO -0

1
0
0

o © O

|
|
I
It is then a straightforward matter to compute the maximum displacement of the shaft tip
with respect to the expected hand position.

Chains of Linkages

One difficulty with our earlier techniques was that they did not work well where two ob jects
were related through a chain of semi-fixed links. So long as the perturbations possible on

the links are small, we can use differential approximations to handle such cases.

Suppose that the vise is free to rotate a bit around a fixed axis relative to the table.

130 Representation of Location and Accuracy Information

Vise = Table s Ty
= Tablestransipy»RTYy

= Table » transl(p-l-%) * R-[%Rot(;,v)
Then the location of the crank with respect to the table will be gwen by

Ttc = TrviTve
= transl(py Ry stranspychRyc

- transl(p?-v)eckq-voROT(;y)#transl(pvc)t«va
If we take advantage of the fact that ¥ is small, this decomposes to

PTC = PLv * RTyWpycidirode)
- PQ'c*R‘f'VPQ/c’*’\IRQ'VX**2RQ'VY‘33R9'V'*”R?'VM:P%

PTC * P + Z St

and
RTc = RTyRyc
¥ RIVRV (M M +OM, M)

which is again linear in the degrees of freedom. In general, if we have

Tac = Tap*TBC
= transi pAB(X))RA B(a))transl(ch(;))RBc(a)

we will get expressions of the form
PAC “PAB * Z MpAB + T mRABPEC
Rac ¥ RABRECH'E o (R MABKREG + Z O Mp)

Similarly, for TA'IB we have
Tk - Tpa
PBA ~Rik PAB

Rpa = Rab
¥ RAR) 1 Z-wyR M (R)

Differential Approximation 131

Error Estimates
The ability to handle perturbations in several rotation axes and involving multiple linkages

is especially important when error estimates must be considered. In general, the “actual”
value of a quantity can differ somewhat from that believed by the program.

TAaﬁtual N TACﬁlculated*ATAB

ATpp, in turn, can be parameterized by free variables corresponding to various

measurement or modelling errors. For instance, suppose that an assembly program used
constant affixment values to describe the crank-vise-table linkage discussed above.

AFFIX Crank TO Vise AT T\/ci
AFFIX Vise TO Table AT TR

Then,
ATt = (TRgvbT 0

would be approximated by the linear expressions in A w, ¢, 0, and ¥ which we derived

' earlier.

Muitiple Path Linkages

It is not uncommon for two ob jects to be related via several paths. For instance, suppose
that the manipulator grasps the crankshaft at one end. This will give us an equation
relating the hand to the table.

Hand =CranksTcy
=TablesTy(Wh Ty AoAs 0,804 Tcy

Also, the hand will be related to the table via a series of joint links

Hand =Tables]gn] (ng .0 Jg(ng)

where the 7; correspond to deviations in each of the joint angles.

-(ni < nj s (ni
In principle, either one of these chains could be used to calculate the hand position.'> We
can compute the relative accuracy of either chain straightforwardly. For instance, suppose
we want to estimate the maximum variation in the hand’s orientation about its “approach”
vector.

15 Because of the special nature of the hand frame in the AL system, the joint linkage
chain is always used.

S ——

132 Representation of Location and Accuracy Information

RTH = REyeROT(p0)

The orientation deviation angle will be approximated by
P ¥ yRryx

Thus, each chain can be evaluated by computing the limits on
P = YRTyOIRy b ORcHX

and
Q= y(RJOthJ l(Vlﬁ...ﬁRJS(VG))X

- respectively, subject to whatever additional constraints may be appropriate. We can then

select whichever computation promises to give the best result. However, neither of these
two affixment chains, by itself, will necessarily fully reflect what is known about the hand
position. To do this, we must consider both constraint equations together. We require some
way to express equality of two FRAME expressions in terms of linear constraints. This
may be done by rewriting equations of the form

Tl - T2
into
T|2 L T'll'.\T2 =1
which we can re-express in terms of six scalar equations
XPio - 0 lR|2y =0
YP12=0 XRjoz=0
plo = 0 lezx =0

For instance, suppose we have represented the location of an ob ject B with respect to ob ject
A in terms of two different sets of parameters, with independent constraints on each set.

PAB - paB +Zoyph

Differential Approximation 133

and
PAB =PaAB*ZNpb
RAB ¥ RAR(Z uyMb)

We will get additional constraints:

Z MR A% bl - Z o LR AT T - 0
Z MR A okl - Z oy [R) 1ok, - 0
Z AR) ok, - = oy IR AZp) Tk, = 0
Z mM8)gp - Z 0y (Mh)g g = 0
Z m (M) - oMy g =0
Z m M | - Z oy (Ml = 0

7.9 Algorithms

This section summarizes algorithms for using the methods discussed in the previous section.
We wish to calculate either the location T 5 g or the determination AT, g of an object B

with respect to an object A. The algorithm below uses available constraint information
about individual ob ject-ob ject relations to produce a set of scalar variables 8; corresponding

to all degrees of freedom between A and B. Using the assumption that the §; are suitably
small, it produces a set of linear constraints

Ab?b

linking the variables. Linear programming is then used to compute the limits of relevant
quantities. Briefly, the steps followed are as follows:

1. Find all acyclic chains of relations joining A and B. For each path
(AN},..Ny,B)
we get an equation of the form

TAB - TANlﬂl #TNkB
In general, each TPQ will have an associated set of free variables

134 Representation of Location and Accuracy Information

PPQ * PPQ * £ Apdg
RPQ': Rp(b'(l + 2 uiMﬂQ
with limits on each A; and ;
x|nin s A s Apax, J{‘i"s By s gnax
together with additional constraint relations of the general form
gRpqf ?d-gppg
ngQf ?0
0rd- EPPQ

If we are interested in a location estimate, this suffices. If determination is
desired, then we get

ATAB - TNLB:.'"""TA-}*' i:-TANI#ATNla...#TNkBATNkB
with corresponding additional free variables and constraints for the
ATPQ Relations with negligible error will have ATPQ‘ 1.6

Each equality relation will be simplified algebraically as far as possible.
The rules currently used for this include:

a. Constant elimination.

b. TpiTp= TphTpg -1
C. TPQ‘I -]#TPQ— TPQ_
2. Once all the path equations have been found and simplified, produce the
corresponding set of linear constraints involving the free variables of the

various relations. For limiting values on individual degrees of freedom,

Gimln < si < eimax

this is trivial. Constraint forms expréssed in terms of RPQ_ and PpQ are

'® Here, it is worth pointing out that taking account of all paths between A and B tells you
the potential accuracy with which Tap can be determined. To get this accuracy at

runtime, you have to synthesize a calculation to use the corresponding runtime values.
Considering only one path gives you the accuracy of that particular calculation chain. One.
strategy would be to evaluate each possible chain and then specify which one is to be used
to compute the value you are interested in. Section 7.11.3 will discuss an alternative
approach.

Algorithms 135

translated by multiplying and simplifying. Thus, wherever é'Rth'
appears, we substitute

g Rpr - g(RpQSDE ulM#Q)f

=g Rpr + 2 u.g RPQM#d
- Go + 2 a‘ui

where
ag = gRBQf
ay - ERBQMqf (> 0)

Slmilarly. g PPQ is translated

g PPQ - E (qu* z *.Pﬂd

- g PPQ‘ 2 Aig p#Q

Equality of two frame expressions is handled by forming the appropriate set of
six constraint forms, as discussed in the previous section, and then applying
the substitutions just mentioned to the resulting expressions.

3. Once the -constraint equations have been translated into linear form, then
linear programming techniques are applied to find limits of appropriate
ob jective functions.

Appendix E.2 gives an example of the workings of this method.

7.10 Experience

The methods described in Section 7.9 worked very well, even for problems involving many
free variables. Since all rotation angles are assumed to be small, extreme values of
perturbations can be found without solving many sub-problems, as was required by the
iterative method discussed in Section 7.6.5.

On the other hand, this assumption limits the applicability of the method to those cases —
principally error analysis or small variations in fixturing — for which the rotational
uncertainty is, in fact, small. In order to handle larger perturbations, we would need to
resort to iteration, or else to more powerful numerical methods better adapted to non-linear
problems. Fortunately, we can handle a very large subset of interesting problems with the
machinery developed here. Chapter 8 will illustrate the use of these techniques as a basis
for reasonable coding decisions, and Section 7.11 will describe some additional application
possibilities.

136 Representation of Location and Accuracy Information
7.11 Other Uses of Differential Approximation

7111 Sensitivity Analysis

The differential approximation gives-a measure of how sensitive a relation is to each
individual parameter. Furthermore, a useful by-product of our numerical solution method
is information on which constraints are binding at limit points and on how sensitive the
limit points are to perturbations in the individual constraints. This information can be
useful in a number of ways.

Design and Use of Fixtures

v

One purpose of a fixture is to facilitate task performance by introducing an intermediate
assembly step that requires lower initial precision than does the final operation. The
fixture must be designed to hold the parts with sufficient accuracy for the task to be
completed. On the other hand, if it is made too “tight”, it may be difficult to use or to
fabricate. The methods discussed above provide a useful way to evaluate how much
particular design parameters of the ‘fixture affect the performance of the Ffxture.
Alternatively, they can suggest limits on parameters imposed by design requirements.

For instance, suppose we are using aligning pins to hold a cover plate in place while it is
secured with screws. In order for the screws to be inserted successfully, we require that the
holes in the cover plate and box line up to within some small error. This requires that the
aligning pins be big enough to hold the plate to a desired accuracy. On the other hand, if
the pins are made too big, they will tend to bind on the sides of the holes. We are
interested in picking a pin size that is both easy to insert and that does the job.

" Let

Hg = transl(hc) = location of cover hole wrt cover.
Hp = transi(hg) = location of box hole wrt box.

Tmatch = location of cover hole wrt box hole when parts are in position
= (Box:Hg) lr.«(Cover».\Hc;)

- Hg'#Box' 'tcCovemHC
= ,transl(-hB)-:TBcntransl(hc)

Pmatch = -hp*PBC*RBChC
Rmarch = RBC

If the holes have diameter d;, and the aligning pins have radius dp, then, the xy error of
the match will be less than (d,-dp).

-(dh-dp) < Pmatch'@ s (dh'dp_)

*

L0 S —

Sl ki,

o

5
7]
- |
7
i

Other Uses of Differential Approximation 137

for ali a in the xy plane. Depending on the size of (dh-dp) and the precision desired, a

suitable number of vectors a can be chosen to approximate this constraint. Generally, four
constraints

-(dh-dp) S pma[ch';(< (dh-dp)
(dh-dp) S Pmatchy S (dp-dp)

will be enough. In our example, Tgc is given by

A A ~

RBC =1 (A)Ml

" Our two aligning pins will give us the constraints

{(dp-dp) s A - w(hy)y < (dp-dp)
-(dh-dp) S Y+ a)(hl)x < (dh-dp)
(dp-dp) s A + wlhg)y < (dp-dp)
(dp-dp) s+ w(hg)y < (dp-dp)

Given these constraints, we can evaluate the potential misalignment at the target hole h,.
Oh =-h s ppc * Rach
= Ax+py + WM h,

to determine if the maximum deviations of Ah fall comfortably within acceptable limits.
Alternatively, we can express the requirements on Ah as constraints

-Eh < Ahx < Eh
-Eh < Ah; < Eh

where
€}, = 0.707w<maximum acceptable misalignment> 17

We can then compute the smallest pin diameter dp that meets all the constraints. When

this value is determined, we can look at which constraints were binding at that time. By
mapping the constraints back into their corresponding semantics, we determine which
aspects of the task are responsible for requiring that a particular size pin be used. This
may suggest a suitable modification of the task.

'7 The 0.707 is necessary to correct for our approximating a circle with a square. If more
constraints are employed, then a fudge factor closer to | may be used.

FraRs s P,

138 Represenfation of Location and Accuracy Information

Specification of Ob ject Dimensions and Tolerences

There is nothing about the preceding analysis that restricts it to use with design of fixtures.
When one designs an ob ject, it is not uncommon to worry about clearances, etc., which may
be afiected by small perturbations in design parameters. This is especially true where
manufacturing tolerences are being specified. For instance, in our previous example, errors
in the location or diameter of the holes can make the box impossible to assemble. Similarly,

consider the example illustrated in Figure 7.8.'® Here, the important design consideration
is that the gears mesh properly. Whether this actually will happen is dependent on a
number of individual tolerences that can combine in many ways. A great temptation, when
one is faced with situations of this nature, is to “brute force” the problem. e, to specify all,
or most, of the tolerences involved somewhat more tightly than actually required. Since
overdesign may increase the cost of the product substantially, an interactive system that
identifies critical tolerences and evaluates proposed specifications could be a very useful and
cost-effective tool. '

An important additional point here is that the constraint equations tell us how a set of
individual errors work together to produce a particular effect. In general, these errors will
not all be independent; their relation depends on the particular processes used to
manufacture the object. For example, all four holes in our box example may be gang
drilled in a single operation. Similarly, both bearings for each shaft in Figure 7.8 could
well be drilled in the same operation. In this case, the alignment errors in the shafts would
be considerably less than if the position errors of each bearing hole were independent. This
suggests that the functional design include only those tolerences that are critical to the actual
function of the part, with remaining parameters being fixed when decisions about how the
part is to be manufactured are made.

Planning for Measurements.

We have already discussed the importance of error estimates in deciding whether a
particular technique will work. Once it has been established that more accuracy is required,
the question arises of how to obtain the necessary data. Generally, there will be a number
of object features whose positions can be measured and a number of different techniques
available to measure each location. These measurements vary in difficulty, in accuracy, and
in the contribution made to reducing critical tolerances. The goal is to select a minimum
cost set of measurements that produces the desired accuracy. The techniques developed in
this chapter are useful, because they allow us to assess the effectiveness of a given set of
measurements and provide a measure of the sensitivity of critical quantities to particular
measurements.

7.11.2 Vision

Many of these techniques are directly applicable to "verification vision” systems, such as are
being investigated by Bolles. In verification vision,

the system knows the identity of all ob jects in the scene and approximately
where they are; the goal is to determine the precise location of one or more

'8 A number of similar examples may be found in Fortini's book on dimensioning [40).

Other Uses of Differential Approximation 139

Figure 7.8. Gears Must Mesh

of the ob jects.!®

This is exactly the situation that one encounters in a very large class of assembly and other
manipulation tasks. Typical visual applications in such tasks include:

I. Determine the position of an ob ject with sufficient accuracy so that it may
be grasped and inserted into a jig.

2. Find the end position and direction of a shaft over which a nut is to be
placed.

3. Verify that a screw is indeed held at the end of a screwdriver.

4. Find the displacement between a screw tip and the center of the hole into
which the screw is to be inserted.

An essential requirement for a visual system that seeks to perform this kind of thing is the
ability to set bounds on possible positions of features in the picture? and to relate small
changes in ob ject locations to corresponding changes in picture locations. The formalisms
discussed in this chapter provide this capability.

'® This definition was given by Bolles [22).

20 The ability to predict the appearance of ob jects is also quite useful, but its lack may be
compensated to a great extent by the use of training pictures.

140 Representation of Location and Accuracy Information

Suppose we have a feature point q (for instance, the center of a hole, a corner of the ob ject,
or what-have-you) defined with respect to an aob ject B,

qworld = Biq

Suppose, further, that we have pointed a camera so that q appears on the image at point
(u,v). This constrains the possible values of the relation Tcp relating the camera location

C to B. The location of q with respect to the camera will be given by

q = Tcp4

= PcB * Rcpd

pp + Z Npp + REpa + ZuREpMERa
<q0 + 2 gy’

where the q;’ and the n, are computed from q and T¢cp in the usual way. (If desired,

manufacturing errors in the position q can, of course, be added in) If the focal length of the
camera is given by f, then

u=aq"x
v =aq'y
where
ae= f I(lq‘)
For small values of ny, we can approximate aq’ by
aq’ = (fldXqq + & n(q)(zq)'ld)qq))
where
d = zqq’

The previous sections have shown how we can produce a set of (linear) constraints limiting
the values of the ny. It is now a straightforward process to compute the extreme values of u

. and v, thus giving a rectangle in which the feature q may appear. If desired, extreme
values for linear combinations of u and v

£ =sinT u+cosT v

can be computed for various values of T to produce a more closely cropped "window” for
(uv). 2!

2! Here, we are ignoring the important problem of whether or not the feature can become
obscured as ob ject locations are perturbed. This is stiil largely an unsolved problem for

Other Uses of Differential Approximation : 141

The system works by applying various operators to focate features in the image. The result
of each such operator is to constrain the feature found to lie within a cone or pyramid
whoseé apex is at the lens center and whose width is determined by the accuracy of the
operator. The mathematical constraints associated with this pyramid are easily derived.
For instance, suppose that a hole drilled into a box, B, is found to lie at (ugzAu,voxAv).

" For simplicity, let's assume that the camera’s position C with respect to the table is known
exactly, there is no manufacturing error in the position, h, of the hole, and that the box
location with respect to the table is given by

pworld | TablesB%AB

where
ApB = AX ¢ uy
ARp = Rot(z®) 21+ 0M,

sO
Tcg = ClBh%AB

pce -Clpf+C'RfAPRY

- clpf+ ACIREX + IRy
Rcg - REREARg |

2 RARY(I+ wM))

then the location h' of the hole with respect to the camera will be given by

W - Tcgh - pcs * Regh
 clpR&RGh + G IR Ex + uCIRply + WREREM;h
=hg * Ahy' + uhu' . whw'

- The (linearized) constraints are then

ug-Ou s X{fldXhg' My sph,swhgy) S ug-Au
Vo-AV s y'(f/dXho'oAhA'#Phu'owhw') S Vo-AV

cases where objects are free to move about. One solution might be to use computer
graphics techniques together with systematic or random variations in the parameter values.
Alternatively, it may sometimes be possible to express constraints on ob ject location which
constitute necessary and/or sufficient conditions for visibility of the feature. These
constraints could then be verified directly by the mathematical programming machinery.

142 Representation of Location and Accuracy Information

These constraints can be combined with other sources of information and then used at
planning time, in a manner analogous to that discussed earlier, to evaluate proposed
operations or sequences for their effectiveness in pinning down the object’s location.
Similarly, the system of tonstraints can be carried over to runtime and solved, using the
techniques discussed in Section 7.8, to produce actual location values.

7.11.3 Runtime Updating

One of the major deficiencies of affixment is that, while it provides an excellent means of
reducing the bookkeeping required when an ob ject location is modified, it is not particularly
good as a means for establishing object locations, based on measurements of feature
locations. The problem, which we discussed in Chapter 3, is that affixment only operates on
the basis of the most recent change, while we need to combine information from several
measurements in order to compute an object location. The constraint formulations
discussed in this chapter provide a mechanism for doing just this.

As we have seen, an object A will in general be related to another object B by a series of
equations of the form

TAB = TANIQ...tTNkB [Eq 4]

where the N; are various intermediate ob jects and features. Further, the current value of
any relation variable Top will be inaccurate by some amount AT 5 .

TAa'ﬁtual - TA B“ATA B(Vl,...,vm)

where the V; correspond to various rotational and translational errors, about which

something may be known @ priori., and which are further linked by the [Eq 4] equations.
The act of taking a “measurement” merely adds another equation or set of constraints
linking the object or feature measured to the reference frame of the measuring device,
perhaps with the addition of additional error variables. For instance, in the previous
section, the hole-finder produced a set of constraints relating the hole to the camera’s
coordinate system. Thus, the problem of updating location variables, given the results of a

number of measurements, reduces to one of finding some “best” set of values ¥*for the v;

that satisfy all the constraints. Once such a set is found, it may be used to produce values
for the AT 5 g, which may then be used to update the corresponding variables T p.

If the various errors can be assumed to be suitably small, we can produce a set of linear
constraints

fj(v)' lj'v-djSO

which can be used to compute several sorts of “best” values for v. For instance,

. A Chebychev Point.. le,a V* with the property that it gives

ficmom AR

Other Uses of Differential Approximation 143
(V) =max j(;”') «min max § J(l_’)
J v

which may be found easily byi inventing a new variable ¥ and solving the
linear programming problem 22

") = min ¥

such that
£ =ajp-djsy

2. A least squares point. le., a point V* that minimizes a quadratic form

vQy
Here, any of several quadratic programming algorithms would be
applicable.

The principal problem in using this method is that one needs to keep the differential terms
around. If the approximate values for the location variables are known at planning time,
these may be precomputed. This method is acceptable for minor ad justments, but clearly
breaks down if big rotations can happen. The alternative is to do differentiation of the [Eq
4] equations at runtime, at least in cases where large or additive corrections will happen.

In this case, once an initial solution for " has been calculated and the correction applied, a
new linear approximation for ATAB(;) would be computed. The process could then be
iterated several times until a sufficiently good set of »; are found.

Another problem is that the mathematical programming problems may become needlessly
encumbered with many superfluous constraints, that will never be binding. Possible
solutions to this include (1) using algorithms that are not slowed down by many extra
constraints, or (2) doing analysis ahead of time to determine which constraints to use. This
latter approach, of course, is the same thing that was discussed in Section 7.11.1.on planning
for measurements.

22 See, e.g, [116] for details.

144

“Watch me pull a rabbit out of my hat!”

Bullwinkle Moose

Chapter 8.

Automatic Coding of Program Elements

_In Section 3.4, we described the process of writing AL code for a common subtask in
assembly operations — insertion of a pin into a hole. In the discussion, we saw that writing
the program required a number of decisions, based on our expectation of where the ob jects
will be and how accurately their positions will be determined at runtime. Subsequent
chapters have been concerned largely with techniques for representing the necessary
information in a form "understandable” by a computer. This chapter describes the use of
the computer’s planning model to make these decisions automatically.

The program outline followed is essentially that derived in Section 3.4
. Grasp the pin.

2. Extract it from the pin rack and transport it to the hole via a point just
“above” the hole. ' :

8. Attempt insertion by moving the pin along the axis of the hole untit a
resisting force is encountered. Use the distance travelled to determine
whether or not the pin insertion is successful.

" 4. If the insertion is unsuccessful, then use a local search to attempt to correct
the error.

The decisions that must be made include:

1. Where to grasp the pin.

2. How to approach the hole. Although we have decided on a co-axial
approach, we still must decide the relative rotation of the pin and hole
frames.

3. What threshold values to use on our success test. Also, whether or not it is
necessary to “tap” the ob ject surface to get a better determination of the pin-
hole relation before trying the insertion.

4. What search pattern, if any, to use in error recovery.

. The overall approach is fairly direct: First a number of preliminary calculations are

145

performed, based on the task specification and initial planning model, to obtain initial
position and accuracy estimates and to determine basic tolerances. Then, the system
generates possible ways to grasp the pm sub ject to geometric feasibility constraints. For
each distinct grasping strategy, a “best” approach symmetry for the pm relative to the hole is

then computed, usmg expected motion time as an ob jective function.! The grasp-approach
pairs are sorted by “goodness” and then are reconsidered in “best first” order, to see what
additional refinements are required, based on the estimated pm -to-hole determination. If
the error along the hole axis is too large, then a tappmg place” is found as near the hole as
is safely possible. Similarly, if the errors in the plane of the hole are sufficiently great, then
a decision to search is made. The expected time required for tapping and search are
calculated and added to the cost.” The process is continued until an optimal strategy can be
chosen. Once the decisions have been made, it is a fairly straightforward matter to generate
the corresponding AL code sequences, which are quite stylized.

Subsequent sections will describe each of these phases in somewhat greater detail.

8.1 Data Structures

Internally, strategies are represented by SAIL record structures summarizing the decisions
that have been made. This sectlon describes the more important parameters kept for pin-

in-hole and pickup strategies.?
Pin-in-Hole Strategy

preliminaries — A list of “preliminary” actions that must be performed before
the code for the actual pin-in-hole code is begun. Typically, this involves
cleanup actions left over from the previous task, and is set up by the initial
processing.

pickup — A “pickup strategy” to get the pin affixed to the hand and free of any:
obstructions. For plckmg up an ob ject by grasping it in the fingers, this field
would point to a "grasp strategy”, defined below.

dtry — The distance into the hole that we will try to poke the pin.

standoff — The distance above the hole that we will place an approach point.

¢ —the relative rotation of the pin to the hole upon insertion.

! The combination of grasping method and approach symmetry, together with information
about the expected penetration distance into the hole constitute sufficient information to
write a “first order” program that |gnores errors, such. as was produced in Section 3.4.4.
However, as we saw earlier, the job isn't yet half done. '

2 The structures shown here are slightly different from those actually kept. The changes
have been made for ease of explanation; the information content is the same. Section 8.8
includes a computer generated summary of the actual internal structures. You have been’
warned, so don'’t get confused.

146 Automatic Coding of Program Elements

tapping place — Point on the object to be “tapped” to reduce the error along
the hole axis, if necessary.

Ax, Ay, Az, § — Parameters summarizing the “error” footprint of the pin tip
with respect to the hole. Define a rectangular parallelepiped with sides (Ax,
Ay, Q1), rotated by § about the hole axis. See Figure 8.1

A0 — Maximum expected tilt error for the pin axis with respect to the hole
axis.

ttime — expected time spent in grasping the pin and transporting it to the hole.

finetime — time expected to be spent in “fine ad justment” motions. Currently,
time for tapping motion + search time.

goodness — estimated cost of this strategy. Here, ttime + finetime +
goodness(pickup).

Grasp Strategy
ob ject — The ob ject to be grasped.
preliminaries — As before, a list of preliminary actions that must be performed
before the ob ject (here, a pin) can be grasped. A typical element would be

code to put down a tool.

grasp point — point where object is to be grasped. The structure used to
specify such “destination points” is discussed below.

approach point — via point on the way to the grasp point.

approach opening — required opening for the fingers by the time the hand gets
to the approach point.

grasp opening — Minimum expected opening for the hand to hold the ob ject.

grasp determ — an estimate of the accuracy with which the ob ject will be held
by the hand, once the grasping operation is successfully completed.

departure point — via point through which pickup-and-move operation must
pass.

goodness — Measure of the cost of this pickup strategy. Typically, an estimate
of the amount of time required.

Destination Points
Destination points in AL motion statements really involve two compenents:

l. A frame-valued expression specifying some location in the work station.

(e

[k R (0 o ah

ool dieaia el A L S R e P N A A

T e i T mbin e ML

N T P g P 07 8

bpm—

Data Structures 147

Figure 8.1. Error Footprint

2. A “controllable” frame variable whose value is to be made to coincide with
the target value.

Thus,
move a to b;

is, in some sense, a manipulatory equivalent to the assignment statement
a«b

For our present purposes, it will be sufficient to restrict the “right hand side” component of
all destination points to the form

<object or feature named>s<constant trans expression>
Thus, the data associated with each destination point consists of:
what — The ob ject or feature which is to furnish the controllable frame.
base — Ob ject or feature for target expression.

xf — Constant trans for target expression.

148 _ Automatic Coding of Program Elements

Section 8.7 will describe how sequences of such “destination points” may be turned into
motion statements.

8.2 Initial Computations

The most important initial computations are those responsible for calculating the expected
initial positions and error determinations of the pin and hole. Following the methods of
Chapter 7 we get

H = estimated position of hole (with respect to work station)
= HQ\(,..Ag) = HR)

Pinit = estimated initial position of the pin.
= Pinit®)

AH = estimated accuracy of H at runtime2
- AH()

AP, = estimated runtime accuracy of P.
- Apinit(e_)

sub ject to constraints on M v, b, and €. For planning purposes, we will mainly deal with the
expected locations

HO - H(0)

0
~ Pinit = Pinit(0)

Also, we need several important paramters describing how the pin fits into the hole:

direction — the end of the pin which is to be inserted into the hole.

d¢ — the distance the pin is to go into the hole.

dg (“sticking distance”) — the maximum distance into the hole that the pin can

“jam"” without making it all the way to where it is supposed to go. Thus,
dp-dg represents a minimum threshold for telling whether the pin insertion

is successful.

3 Here, we are being a bit sloppy in our use of “H”. The difficulty is that we must deal with
three separate entities representing the hole: (1) the object model representation (a LEAP
item); (2) our location estimation; and (3) a variable in the output program. Generally, this
discussion will center on (1) and (2); (3) isn’t needed until time comes to generate the actual
program text.

: Initial Computations 149

A0,y — maximum possible axis misalignment for the pin insertion to succeed.

QArgy, — maximum possible radius misalignment between the pin and hole for
the insertion to succeed. Thus, A, and Arg, constitute a measure of the
effectiveness of accommodation during insertion.

The direction must be supplied by the user as part of the task description.4 In principle, d¢
and d; may be computed by looking at the profiles of the pin and hole. At one time this
was done. However, the computation turned out to be extremely tedious, and ignored some
important factors, such as friction.> Therefore, these numbers were determined by
experimenting with the actual objects and included in the ob ject models, as were Arg, and
00,y This approach does not seem unreasonable, since pins and holes may be

standardized. Presumably, a data base could be built containing the relevant parameters
for each tip-hole combination encountered in a class of assemblies.

8.3 Grasping the Pin

Once the initial computations have been done, we proceed to generate alternative strategies
for picking up the pin. For each such strategy, we will create a “grasp strategy” record, as
described in Section 8.1. Although we shall confine ourselves to grasping the pin directly
between the fingers, it is interesting to note that alternative methods, such as loading a screw
onto the end of a screwdriver, could be handled similarly. The rest of the pin-in-hole code
(except for the part about “letting go") makes no assumptions about what the hand actually
holds onto. The important data used by the rest of the planning are:

1. The relative position of the pin to the hand.
2. The accuracy with which the pin is held with respect to the hand.

So long as this information is available, the remaining decisions can proceed more or less in
ignorance of the actual technique used. '

% This may not be strictly necessary. If the pin is to be part of a finished assembly, then the
direction and dy may be obtained from the description of the object being assembled.

Alternatively, it might be possible to tell which end to use by looking at the pin and hole
diameters or to keep a data base telling the "standard” direction for each pin type.

> Whitney [75) has done an exhaustive analysis of some of the factors required to compute
tolerance requirements for insertion of a peg into a hole.

150 Automatic Coding of Program Elements

8.3.1 Assumptions

The grasping method described in this section assumes that the pin initially sits in a hole
and that the hand is empty. The basic strategy is to open the fingers, move the hand to the
grasping position, and center the hand on the pin. Thus, we require that there be at feast
one grasping position reachable by the manipulator and that the pin's position be known
with sufficient accuracy for the centering operation to succeed. Once the pin is grasped, it is
extracted from the hole. Here, we assume that the pin will be free of obstructions once its
tip has cleared the plane of the hole by some fixed amount (currently, | inch).

8.3.2 Grasping Position

The key element in our grasping strategy is, of course, where to grasp the pin. Here, the
structure of the hand must be considered. The present hand consists of a pair of opposed
“fingers”, which open and close through a range of about 4.5 inches. On each finger is a
circular rubber pad, and in the middle of each pad is a microswitch “touch sensor”. The
AL center command assumes that the object being grasped will trigger the touch sensors
whenever it is in contact with one of the fingers. Since we intend to use center, the finger

pads must be centered on the pin shaft.® The important parameters remaining are thus:

Y (“grasp angie”) — the angle between the pin axis and the approach vector (2)
of the hand.

d (“grasp distance”) — the distance along the pin axis.

W — The orientation of the approach vector of the hand about the pin axis.
Following the convention that the “long” axis of pins is the z-axis, this means that the
grasping position will be given by

blue = pinsgrasp_xf = pinstrans(rot(zhat,w)+rot(xhat,v),vector(0,0.d));
Geometric Considerations

In selecting values for these parameters, it is important to guarantee that the hand not get
in the way of accomplishing the task. In general, this might require much better geometric
modelling capabilities than the system described here currently possesses. Therefore, we
must assume a relatively “unciuttered” environment. The following considerations are,
however, enforced by the present implementation:

1. The hand cannot intersect the body in which the hole is drilled. As an
approximation, we enforce this constraint with two sub-constraints for both
the initial and target holes:

e . e e . s S, S, e e e . . . B e e e e

® Sensitive force sensors for the fingers are currently being buiit. When this new hardware
is compieted, center will presumably be modified to respond to forces on the fingers, rather
than triggering of a microswitch. This would allow greater freedom in picking finger
positions and reiax the accuracy requirements required to ensure that the microswitches
contact the ob ject being picked up.

......“-m.-n_...—J

)

o 3 e

Grasping the Pin 151

a. The fingers may not pass below the plane of the hole.

b. The hand's approach direction must be af least 90 degrees
to the outward facing normal to the hole.

2. The "palm” of the hand cannot intersect the shaft of the pin.
Method

Clearly, it is a bad idea to specify a grasping position that cannot be reached by the arm; it
will be necessary to verify that arm solutions exist for the approach, grasp, and liftoff
points. However, the computation required by the arm solution procedure is non-trivial.
Thus, we will proceed by pretending that the hand is moved by levitation. Arm solutions
will only be attempted for those grasping positions that do not try to do something bad with
the hand. If we assume that conditions (a) and (b), above, are sufficient to guarantee that
the hand stays clear of any ob jects, then we can ignore @ in selecting grasping positions to
_consider. Our overall selection method looks something like this:

I. Use the position of the pin in the initial and target holes to determine legal
limits on ¥ and d.

9. Use the limits established in step | to generate “significantly” distinct values
for Y and d. For each such (7,d) pair, determine values of @ for which

there is an arm solution.” Each (7,d,w) will then specify a possible grasping
position for the pin.

3. Once a grasping position has been generated, the remaining parameters to
the grasping strategy may be filled in, and the cost of the strategy assessed.
This process may result in some of the proposed grasping positions being
rejected, due to inability to find a suitable approach or departure position
or because of accuracy considerations.

These steps are discussed in somewhat greater detail below.
Determining values for 7 and d

To simplify the discussion, let us assume that the pin initially has its z-axis parallel with its
starting hole, and that the origin of the pin's coordinate system is at the pin tip inserted into

the hole.®

The first step in determining ¥ and d is to determine the distances, d; and dy, that the pin

7 It additional feasibility tests are to be made, this would be a good place to include them.
For instance, if good enough shape models (eg., those produced by GEOMED [9]) are
available, then a check can be made to see if the hand or arm do, in fact, interfere with
objects in the environment. Two problems with this check are (1) the difficulty of
distinguishing Intersections caused by approximations and those caused by actual collisions
and (2) the difficulty of modelling sets of possible positions.

8 If the initial hole and pin axes are anti-parallel, the modifications required are obvious.

152 Automatic Coding of Program Elements

goes into the initial and final holes. There are two subcases:
1. The same end of the pin is inserted in both holes.

2. Opposite ends of .the pin are inserted in the Initial and final holes. Le., we
must “turn over” the pin while transporting it from hole to hole.

In the first case, the lower bound on d will be given by
d 2 dp,ip = max(d;dg) « ffp * ¥

where
Tfp = radius of finger tips.

k = a small extra clearance factor (currently 0.1 inch)
To compute the upper bound, d,, ., we must consider the pin geometry; if the pin has a

pointed tip, then we must grasp further down the shaft:
d s dmax = Ipin - (kaper*x)
where
'taper = length of point on pin tip.
'pin = length of pin.
If the interval dp,,-din is relatively short (currently, less than 2.5 inches), then we just
pick the midpoint

d « (dpin*dmax)/2
Otherwise, a succession of values must be considered. Currently, three values are
considered: one near the top of the pin, one near the bottom, and one in the middle.

dy = dpax - 06 inches
d2 = din * 06 inches
dg = (dmin*dmax)/2

For each value of d, the system must generate values for ¥. Currently, three approach
directions are considered:

¥ = 180 degrees (i.e. anti-paraliel to the pin axis)
Y = 135 degrees
Y = 100 degrees (i.e, approximately perpendicular to the axis)®

With Y = 180 degrees, it is necessary to check that the pin doesn’t poke up through the

9 90 degrees could be used here; however, the extra 10 degrees lessens the chance that the
hand or wrist will interfere with something.

et e 1 S

§
:
i
H
: 3

Grasping the Pin 153

palm of the hand. This is easily handled by checking to be sure that 'pin‘d is less than the
length of the fingers.

In the second case, whers both ends of the pin will go into holes, we have
'pin'(df‘rfp"‘) 2d2d;+ p * X

Again, if the interval is short, its midpoint will be picked. If the interval is longer, then
three values will be used. Since the pin must be turned around, the only value for 7 is 90
degrees. '

Picking Values for

Once we have picked values for ¥ and d, we still must determine the rotation value w.
Here it is necessary to consider actual arm solutions. Unfortunately, the only way presently
available for doing this is to invent values and try them out.'® Values of w are considered
in increments of 45 degrees. For each value, the grasping position is calculated, and the
arm solution procedure is called to see if the position is feasible. In some cases, we may
produce a great number of candidate grasping positions. Therefore, the solutions for all
feasible positions are graded for “toughness” and non-degeneracy, and only the best few
values are retained for further investi'gation. The current rule for evaluating arm solutions
is very crude: the angle of the “elbow” (joint 5 of the Scheinman arm) is examined; Angles

near 45 degrees are considered best.!! Our selection procedure looks something like this:

for « O step 45«deg until 3/5+«deg do
begin trans hand_place.grasp_xf,
grasp_xf « trans(rot(zhat,whrot(xhat,7),vector(0,0,d))
hand_place « initial_pin_locationsgrasp_xfy
if selve_arm(hand_place) then
begin .
cost « abs(45«deg-joint_angle[5));
<< insert @ into list of candidates, ranked by cost >

end;
end;

For the example situation described in Section 8.8, and grasping parameters:

19 Shimano is currently investigating the possibility of a “closed form" solution that will
give the range of possible approach orientations for a given hand position. Such a solution
would be extremely useful, both as a guide for selecting grasping positions and as a means
for evaluating the robustness of a particular position under variations in ob ject position.

""" Alternatives include examining the error hypercube at the fingers or just using the
expected time to reach the grasping position. The latter ob jective function will eventually
be applied to any points that get through this filter (see Section 8.4).

154 Automatic Coding of Program Elements

Y = 135 degrees

. d=354cm
we get:

w cost

0o° 42.1°

45° 9.98°

90° 31.4°

135° 56.0°

180° 56.0°

225° 56.0°

270° 45.5°

315° 56.0°

At present, only the best three values are retained, so we will select @ = 45° 90° and 0°.
This pruning introduces some risk that the program will fail to find an acceptable strategy
in some cases where it might otherwise have won. If this should become a significant
problem, it would be fairly easy to provide a “try harder” mode where all possibilities are
retained.

8.3.3 Approach and Departure Positions

The purpose of an approach point for the grasping operation is to prevent the arm from
trying to run its fingers through the pin. Currently, the only approach direction considered
is one along the approach vector of the hand (see Figure 8.2) One plausible alternative
would be to move to a point above the pin and then move down along the pin axis to the
grasping position. If it should prove desirable to consider such alternatives, we could do so
by planning each route and then selecting the via point which gives the shortest time.

Similarly, a departure point is needed to get the pin clear of its initial hole before trying to
move it away. We presently only use a standard takeoff point two inches above the hole.

move pin to pinttrans(niIrotn,vector(0.0.2tinches‘di);
where d; is the distance the pin is inserted into its starting hole. If this fixed choice should

ever become troublesome, it would be a fairly easy matter to generate a set of alternative
departure points, and then pick the one giving the shortest motion time.

8.3.4 Hand Openings

The present decision for hand opening is similarly arbitrary. On approach the hand is
opened by | inch plus the diameter of the pin at the grasp point. The closure threshold is

set to the pin diameter minus 0.1 inch.'?

12 This latter figure comes from the observed behavior of the center primitive; relevant
factors include fiexion of the fingers and compression of the finger pads.

155

Figure 8.2. Approaching the Pin

8.4 Moving to the Hole

Once the pin has been grasped and lifted clear of its initial hole, the next step is to try
inserting it into the target hole. For the sake of simplicity, we will assume throughout this
discussion that the origin of the pin coordinate system is at the tip being inserted into the
hole. The modifications if it is at the other end are obvious, but would only confuse the
discussion. Thus, our motion statement will look something like:

move pin to holettrans(rot(zhat.¢).vector(0,0.-dtry))
via holestrans(rot(zhat,@).vector(0,0.standoff))

on force(pinszhat)8+o0z do ...
where

¢ = rotation angle of pin with respect to hole.
dtry = distance try to push pin into hole.
standoff = distance of approach point from the plane of the hole.

Of these parameters, the most important is ¢. The considerations in choosing a good value
are essentially the same as for selection of the grasping orientation, . The method
followed Is also the same, except that a single value of ¢ is picked to minimize the expected

156 Automatic Coding of Program Elements
motion time and the destination location is used instead of the initial pin location. Thus,
the expected final position of the hand will be given by:

hand_destination = pin_destinationsgrasp_xf
= holettrans(rot(zhat.¢.vector(0.0.-df))vgrasp_xﬁ

For our example situation (Section 8.8) and grasping parameters:

Y = 135 degrees
W = 90 degrees

d =354 cm
we get
- time
0% 960 sec
' 45° 491 sec
90° 468 sec
135° 582 sec
225° 1.21 sec
270° 1.54 sec
315° 1.67 sec

¢ « 90 degrees will therefore be chosen.

The exact values of dtry and standoff are less important. The principal constraint is that
they be large enough to guarantee that location errors in the hole (or pin) will not cause the
motion to stop prematurely or to knock the pin into the object while approaching the
approach point. Currently, arbitrary values,

dtry = dg + | inch
standoff = 1 inch

are used. Thus, for this case, our destination approach and target locations will be:

pin = holestrans(rot(zhat,90+deg),vector(0,0,2.59));
and

pin = holestrans(rot(zhat,90+deg),vector(0,0,-4.25));
respectively.
When values for ¢, dtry, and standoff have been picked, they are combined with the

grasping strategy to form an embryo “pin-in-hole” strategy. The expected time to execute it
is just the time expected for the pickup operation plus the time for moving to the hole.

157

8.5 Accuracy Refinements

In the absence of errors, the strategies derived in the previous section would suffice to
accomplish the task. Unfortunately. the world is not so kind, and we must consider the
effects of errors. For each strategy, we apply the machinery of Chapter 7 to estimate the
error between the pin and hole at the approach point as a function of free variables:

Dphp = = 8pkp | (Eq 1]
Ath =]+ 2 Gthp

sub ject to constraints
cj'(S.e) ? bj

on the free variables. We are principally interested in three things:

I Axis misalignment (A0) between the pin and hole.
2. Displacement error (Az) along the axis of the hole.

3. Displacement errors (Ax,Ay) in the plane of the hole.

Each of these entities is discussed below.

8.5.1 Axis Misalignment
For suitably small values, A0 may be approximated by
Af = yARpz s x-Athz
Thus, we can use the system [Eq 1] to compute the maximum expected misalignment.
A0k = Mmax 1A6,)

where
A6, = max | vector(cosfsin{},0) 'Athz |

At present, we consider six values of {}, ranging from 0 to 315 degrees.

For example, suppose that we are considering the in-hole position

pin = holestrans(nilrotn,vector(0,0,-1.71);
hand = pinttrans(rot(zhat.315¢deg)¢rot(xhat.180¢deg).vector(0.0.3.54));

corresponding to grasping parameters = 315 degrees, ¥ = 180 degrees, and d = 3.45 cm;

ey

158 Automatic Coding of Program Elements

and pin-hole rotation angle ¢ = 90 degrees.'®> We assume that the hand holds the pin with
essentially no error, but the hand may be sub ject to orientation errors of up to +0.25 degrees
about the hand x, y, and z axes, and the hole orientation may be subject to rotation errors
of +5 degrees about the z axis. These values give us an estimate of the pin-hole rotation
-error:

Ath - (N ROT(;.225°Mv)xMx + nyMy + nerl.)uROT(;,.zzy) + VM,

where My, My, and M, are the matrices defined in Section 7.8. The constraints on the free
variables are:

- 5deg sV s 5deg
-0.25 deg < n, s 0.25 deg

-0.25 deg < ty S 0.25 deg
-0.25 deg < n, < 0.25 deg

where n,, "y' and n, represent the hand rotation errors, and v represents the rotation error
of the hole. Solving, we get '

0° .354°

- 30° .306°
60° .306°
90° .35¢°
120° .306°
150° .306°

Consequently, A0, =.354°.

Once this value is computed, we compare it to the allowable limit, Af;. If the value is

out of bounds, then the pin-to-hole alignment may not be good enough to guarantee success.
Presently, this is grounds for rejection of the strategy. Other options would be to add
another parameter to the search loop, so that different pin orientations, as well as different
“xy” positions are tried; to include “smarter” accommodation techniques; or to attempt in
some way to ascertain the pin-hole orientation to greater accuracy.

'3 These parameters correspond to the best overall strategy found in Section 8.8.

Accuracy Refinements 159

8.5.2 Error Along the Hole Axis

Az is easily computed from
Ar = ;"Aphp

] . Recall that our “in hole” test examines how far the pin gets along the hole axis before being
stopped. If it doesn’t get far enough, then we assume that we hit the ob ject, and must try
again. For this test to work, we must be sure that Az cannot be big enough to cause

confusion. le,
1Az| s 7“<df‘ds)

where T is a suitable “fudge factor” (currently 0.75) designed to keep us well within the
“safe” region. If the maximum value of Az falls within this limit, then no further
refinement is needed. If not, then “tapping” is considered as a means of getting the
necessary accuracy. To use this strategy, the system must select a place to tap. The
principal considerations in making this choice are:

t . The point should be as close to the hole as practical, to minimize the effects
§ of rotation errors in the hole surface'® and to minimize the time wasted in
moving to a tapping place.

2. The point should be far enough from any confusing features (like holes) so
that we are sure to hit the surface we expect to hit.

The method used is roughly as follows:

s + surface into which the hole is drilled;
(xp94) « location of hole in coordinate system of surface;

114 * radius of hole + radius of pin tip;
Aryg + max(0.3 inches, Ax,,p. DBypp)

maxr + maximum distance of any point on s from the hole;
dbest + 0;

19" Actually, this consideration is too strong. The “right” thing to do is to compute the
expected misorientation and then use that re::it to compute the allowable distance from the

hole.

160 Automatic Coding of Program Elements

for r « 1,4 + Oryq step Oryq until rmax do
begin real &
for & « 0 step Ar, /r until 27 do
begin real x,5.d;
x & xp + recoski y & 9, « rasink;

d « distance of nearest hole or edge in 5 from (x,5)
comment d<0 if (x,) is outside of s ;
if d>dbest then
begin dbest-dixbestexiybesteyiend;
end;
if dbemAxM, then done;

end;
The tapping place is then computed from xbest and ybest as

pin= holntrans(nilrotn.Rshtvector(xbest.ybest.O)—p shh
where

Tgh =trans(Rgp.pep)
=position of hole with respect to s
The results of a typical application of this method is shown below. Here, we are looking fo:
a tapping place near one of the corner holes of our box, located at (3.85,3.20) with respect to

the top surface of the box. In this case, we assume that the box location is known precisely,
so that the only xy error comes from the hand. Thus,

Ar,g = max (0.3 inches, Ox, DY)

= max (762 cm, .243 cm, .226 ¢m)
».762 cm

On the first iteration through our outer (r) loop,
r=.450 cm + .762 cm = 1.21 cm

Going through our inner loop produces:

x y d
5.06 320 -6I2!°
4.83 3.9] ..397
422 435 .583
3.47 435 .55
2.87 891 -1ll
264 3.20 577
287 248 -115
3.48 2.05 229

'S Negative values mean outside surface or on top of a hole.

. Accuracy Refinements 161

Thus, xbest « 2.64, ybest « 3.20, and dbest + .577 on this iteration. Since this value of dbest
is considerably larger than our possible confusion radius (243 cm), we have found an
acceptable tapping place, and, so, can stop looking. The corresponding tapping point is:

trans(nilrotn,vector(-1.21,.002,0));

Once such a point has been found, then At is re-evaluated, taking account of the
additional measurement. If the potential error has now been sufficiently limited, then the
tapping place is entered into the strategy record, and the estimated cost is updated to
include the time of the extra motion. In this case, the reduced error is Az = .180 cm, which
is much smaller than the required accuracy of 1.71 cm, and the estimated extra time is 1.2
seconds.

If no tapping place can be found, then the system currently must give up on the strategy,
and hope that one of the other grasping positions will produce more accuracy along the
hole axis. Unfortunately, this hope is frequently a forlorn one. Eventually, we would like
to consider otAer measurement tricks to try if tapping doesn’t work. These alternative tricks
presumably could be weighted according to their expected cost, and a "best” combination
picked.

8.5.3 Errors in the Plane of the Hole

These errors cause the pin to miss the hole, and are overcome by searching. To estimate in-
plane errors, we compute

€ = max | (costy sindy, Oy Appp |

for
£y = 30k degrees
0sksbh

Then, we take

Ax = max

Ay = §443) mod 6
£ty

This produces an "error footprint™ rectangle with sides 2Ax and 24y, rotated by & with
respect to the hole, as shown in Figure 8.1 We set

Ar = max(Ax,Ay)

A typical instance of this calculation is illustrated below. Here, the nominal pin and hole
positions errors are the same as those given in Section 8.5.1. In addition, the rotation errors
are as previously stated and the object in which the hole is drilled is subject to small
displacement errors in x and y. This gives us the following expression for pin- hole
displacement errors.

162 Automatic Coding of Program Elements

Qpy p - Vevector(-3.20,-3.85,0)
+ nysvector(2.5,-2.5,0) + qytvector(-2.5.2.5.0) + n#vector(0,0,0)
+ b, +vector(.707,-.707,0) + Bywector(-.707.-.707.0) - b,4zhat
- €,4xhat - Eytyhat

where n,, ny» and n, represent rotation errors in the hand; By, 6y, and 6, represent

displacement errors in the hand; ¥ represents rotation error in the ob ject containing the hole
(our familiar box); and €x and €, represent ob ject displacement errors.

The corresponding constraint equations are:

{160 , .ee¢ , .e@0 , .00 , .008 , .000) . VLS .127

(l.e6 , .00 , .06 , .g00 , .000 , .e82) . Vi 2-.127

[.e00 ., 1.68 , .eee , .e00 , .860 , .000) . VI < .127

t.eee , 1.00 , .00 , .e08 , .86 , .060) . VI > 127

{.e06 , .e00 , 1.08 , .006 , .008 , 008) . VI < .127

{.e06 , .00 , 1.6 , .900 , .880 , .008) . V1 >-.127

{.eee ., .08 , .80 , 1.68 , .808 , .008) . Vi < .4368-2

{.e00 , .e00 , .e8@ , 1.00 , .688 , .808) . VI >-.436e-2

t.e00 , .00 , .80 , .000 , 1.00 , .088] . VI < .436e-2

(.06, .00 , .008 , .p00 , 1.0 , .008] . V] >-.43pe-2

L.e06 , .e06 , .60 , .600 , .800 , 1.8 1 . VI < .436e-2

t.e60 , .ee0 , .06 , .800 , .808 , 1.88 1 . VI >-.436e-2

(1.86 , .008 , .008) .V2s .762

(1.00 , .ee0 , .e0@) . V2 2-.762

{.e00 , 1.08 , .ee8), V2 < .508

{.000 , 1.88 , .88 1 ., V2 >-.508

(.00 , .88 , 1.88), V2sS .87%-I

(.008 , .088 , 1,80), V2 2-.873e-l

where
Vi« 08, 8y, 8, m, m, 0 E
V2= 1€, €, N
Computing &, for six values of $k gives us:
i & ’f_
0° 1.05cm e

30° 1.43cm E
60° 150ecm
90° 1.2¢ cm E
120° 1.16 cm B LT
150° 1.15cm B

Consequently, Ax = 1.50 cm, Ay = 1.15 ¢cm, and { = 60 degrees.

If Ar is less than Arok. then we won't have to worry about searching, since the pin will

Accuracy Refinements 163

always be within the allowable error radius of the hole. If not, then a search will have to
be planned. The search loop used is shown in Section 8.8.

If a search is required, the cost of the strategy must be ad justed to account for the time
spent doing it. This is difficult, since we don’t know anything about the distributions of the
errors. A worst-case estimate can, of course, be obtained by multiplying the time to make
one try by the total number of points in the search pattern. However, this seems too
pessimistic. Therefore, we only count those points within Ax/2 and Ay/2 of the hole.

8.6 Selecting a Strategy

We wish to select the strategy with the smallest execution time. The most direct way to do
this is to plan ali strategies out fully, evaluate them, and then take the cheapest. This
approach has the drawback that we may spend considerable time refining strategies whose
basic motions are so inefficient as to rule them out. Therefore, we first decide on the basic
motions for each distinct grasp point. All candidate strategies are sorted according to gross
motion time, and then considered in “best first” order. If we reach a point where the next
best unrefined strategy is more expensive than a fully planned strategy, then we can stop
searching. '

strategies « null;
for each g such that g is a grasping strategy do
begin .
Decide best way to get pin to hole, using g.
if there is a way then
! Create a pin in hole strategy & insert it in strategies,
ranked by expected time.
end;

shortest_time « 1079 seconds; { a long time }
best_strategy « incantation;
minimum_refinement_cost « lower bound on “fine motion” time;

for each s such that s € strategies do

begin

if cost(s)sminimum_refinement_costzshortest_time then
| done; { best_strategy is the best strategy we've found}
:' Refine s to account for accuracy considerations.
' Revise the cost estimate for s.
if cost(s)<shortest_time then

begin

shortest_time + cost(sh

best_strategy « s

end;
end;

. Here, we have used minimum_refinement_cost to tighten our cutoff somewhat. It may be

[re——

164 Automatic Coding of Program Elements

computed by assuming that there is no error in the arm or grasp, so that all error between
pin and hole comes from errors in the hole location, and then considering what refinements
would be necessary.

8.7 Code Generation

Once we have selected a strategy, the actual synthesis of program text is accomplished by
calling procedures that extract the appropriate values from the strategy record, substitute
them into the appropriate slots in code skeletons, and print the results.

Pickup Strategies
The procedure for writing pickup strategies looks something like this:

procedure write_pickup(pointer(pickup_strategy) pkpk
begin
print("{ PICKUP ",pkp,""remarks(pkp)"}".crif 16y,
print("OPEN BHAND TO "approach_opening[pkpl"s");
write_motion_sequence({{approach_point[pkplgrasp_point[pkpl}}.null);
print("CENTER BMANIP"crif);
print(" ON OPENING < "grasp_opening{pkp)" DO "crif);
print(" ABORT(GRASP FAILED')," erif);
print("AFFIX "location_variable(object[pkp)).” TO BMANIP;" crif);
write_motion_sequence({{departure_point[pk p]}},null)

end;'’
Pin-in-Hole Strategies

The write_pin_in_hole procedure is slightly more elaborate than write_pickup, which it uses
as a subroutine. In addition to generating more output, write_pin_in_hole must make
several decisions about what code to emit:

l. Is "tapping” to be performed?

2. Is a search to be made?
Actually, these decisions’ have already been made and are reflected in the data structures.
Thus, our code writer boks at the tapping place field of the strategy record to decide

question 1. If the record is null, it does nothing; if a point is specified, it emits the
appropriate code. (An example may be found at the end of Section 88). Similarly, in

Y6 *Carriage Return, Line Feed”

17 “bmanip” is an alternative name (used in the current AL implementation) for the blue
arm, and “bhand” is the name for the blue hand. The reasons for this particular renaming
have been lost in antiquity, and are of only historical interest, in any event. The only
reason for mentioning the matter is to prevent careful readers from being confused by the
computer generated program given in Section 8.8. '

e

LTy

TN A ST e

LT e L R T e S e b

e A A A e

Code Generation 165

deciding whether to emit code for a search, it looks to see if Ax is greater than Arok.“ If
50, the search is produced; otherwise, a perfunctory check:

IF RBS (DISTANCE_OFF) > ‘r-(dfd_,) THEN
ABORT ("pin NISSED hole™ UNEXPECTEOLY)

is written instead. The program text produced for a typical strategy, together with further
discussion of the particular constructs used to implement search loops, may be found in

" Section 8.8.

Motion Sequences

Both write_pickup and write_pin_in_hole use a procedure, write_motion_sequence, to
generate motion statements. This procedure works roughly as follows:

procedure write_motion_sequence(list destinations;string qualifiers)
begin integer ij.k}
J<0; .
while j< length(destinations) do
begin
ic-jo-j.[;
controllable +~ what[destinations{i]}; - _
while j < length(destinations) and what[destinations(j+I]}=controllable do
f+ 13
comment Now, {{destinations[t}....destinations[j}}} is a
subsequence with the same controllable frame;
print("MOVE "Jlocation_variable(controllable)” TO 7,
location_variable(base[destinations[i])),"s" xf{destinations[i]}crif);
for k « (4] step 1 until f do
print(if kei+] then "VIA "else ", ",
location_variable(base[destinations[k]]),
"s" xf[destinations[k]).crif);
print(qualifiers,crif);
end;
end;

Here, we first break the destination sequence up into subsequences with common
“controllable” frames, and then generate a motion statement for each subsequence. This
approach has several possible pitfalls, since the semantics of two successive motion
statements are not identical to a single statement, especially where the qualifiers include stop-
on-force tests. At present, this difficulty is solved by being careful that the procedure will
not be called with arguments that “split” the motion at a bad point. This solution was
satisfactory for our present (small) set of code emitters, but something better will have to be
done in the long run. An alternative approach would be to compute the relation between
each controllable frame and the manipulator, and then to write the motion purely in terms
of the manipulator frame. This solves th: abovementioned difficulty, but introduces
additional “hair” and makes the output programs harder to read. A better fix would

' probably be to extend the syntax of AL to allow hybrid destination lists, and then allow the

— e e e e e

18 Recall that in Section 8.5.3, we selected { so that Ax2Ay.

166 . Automatic Coding of Program Elements

AL compiler to worry about the relation to manipulator frames.'®

8.8 Example

The task, strangely enough, is insertion of an aligning pin into a hole drilled in the top
surface of a small metal box. Initially, the box body sits on the work table at T}, and is

sub ject to displacement errors of up to 0.3 inches along the x-axis of the table and up to
0.2 inches along the y-axis and to rotation errors of up to 5 degrees about the table z-axis.
The hole (bA)) is located at T, with respect to the box, the pin (pinl) is held in a tool rack

at Twp. and the manipulator (bmanip) is parked at bpark, where

Twp = trans(nilrotn, vector(45.2, 102., 0))

Tph = trans(nilrotn, vector(3.85, 3.20, 4.90))

Typ = trans(rot(zhat,90+deg), vector(24.1, 117., .537)}
bpark = trans(rot(yhat,/80+deg), vector(43.5,56.9,10.7))

From the initial computation, we determine that

direction = axes parallel
dg = 171 cm

dg = 0
Argy = 0.762 cm
Qg = 10 degrees

In other words, the pin is expected to go 1.71 cm into the hole. When we make the attempt,
if the pin tip is within 0.762 cm of hole center and the axes are within 10 degrees of
parallel, then the insertion operatnon will succeed. If we miss, then we won't go any distance
into the hole at all. (L.e, we won't get stuck halfway in). :

The pickup strategy generator now goes to work and decides on a single grasping distance,

dgrasp = 354 cm

and a range of grasp angles
100 degrees s v < 180 degrees

It then produces nine feasible pickup strategies, ranging in cost from 4.08 seconds to 8.58
seconds. These are then elaborated into unrefined motion strategies, with time estimates of
5.47 seconds to 12. 7 seconds. A computer generated summary of the best of these strategies

1% Such an approach is a natural extension to the present translation performed by the AL
compiler, which was discussed in Section 5.4.2.

Example 167

is shown below:2°

PHL SPEC 132757
PRELINS: NULL_RECORD
PICKUP: PICKUP SPEC 162775
PRELININARIES: NULL_RECORD
RPPROACH OPENING: 2.98
APPROACH: BHANIP«PIN1#TRANS (ROTN (VECTOR(.679,.679,.281),149sDEG) ,VECTOR(-3.59,8,7.13))
GRASP OPENING: .185
GRASP: BNANIP=PIN12TRANS (ROTN(VECTOR(.679,.679,.281),148¢DEG), VECTOR (8,8,3.54))
GRASP DETERM: NILTRANS
DEPARTURE POINT: PIN1=PIN1sTRANS (NILROTN,VECTOR(D,8,6.79))
GOODNESS: 4.13
REMARKS: W = 98.8 deg Grasp Angle = 135, deg Grasp Distance = 3.54
APPROACH: PIN1=BH1sTRANS (ROTN (ZHAT,98. =DEG), VECTOR (8, 8,2.54))
DESTINATION: PINi=BH12TRANS (ROTN (ZHAT,90.+DEG),VECTOR(8,8,-1.71))
TARGET: PIN1=BH12TRANS (ROTN(ZHAT,90.sDEG),VECTOR(8,8,-4.25))
XPORT TIME: 1.34
GOODNESS: 5.47

TAP: NULL_RECORD (T he fields below aren't filled in yet)
FINE TINE: .@00

PH DZ: .880

PH FP DX: .00@

PH FP DY: .00@

PH FP ROT: .880

In terms of the parameters described in earlier sections, this strategy corresponds to:

W = 90 degrees

Y = 135 degrees

grasp distance = 3.54 cm
dtry = 4.25 cm

standoff = 2.5¢ cm

® = 90 degrees

Once all our candidate motion strategies have been generated, we set about refining them, in
best-first order. To do this, we generate the error terms and compare them against the
requirements established at the very beginning. For the strategy just shown, we get

Az = .180 ¢cm
Ax = 1.50 cm
Ay = 1.i5¢cm
§ = 60 degrees

The value of Az is thus small enough so that we are sure not to be confused about whether
the pin will make it into the hole. Thus, we don't have to "tap”. On the other hand, the
“error footprint” is bigger than Arg), so we will have to search. The estimated extra time

for this is 1.8 seconds, giving us a total estimated cost of 7.27 seconds.

The refinement of strategies continues until we reach:

20 The output has been edited slightly to improve readability

168 Automatic Coding of Program Elements

PHL SPEC 134823
PRELINS: NULL_RECORD
PICKUP: PICKUP SPEC 163875

PRELIMINRRIES: NULL_RECORD

APPRORCH OPENING: 2.98

APPROACH: BHMANIP=P IN14TRANS (ROTN(VECTOR(.608,.688,.518),126.¢DEG) , VECTOR(-5.,0,4.42))

GRASP OPENING: .185

GRASP:_ BNANIP=PIN12TRANS (ROTN(VECTOR(.608,.608,.518),126,¢DEG) , VECTOR (8,8,3.54))

GRASP DETERM: NILTRANS

DEPARTURE POINT: PIN1=PIN1#TRANS (NILROTN,VECTOR(8,8,6.79))

GOODNESS: 4.68)

RENARKS: W = 88.8 deg Grasp RAngle = 188. deg Grasp Distance = 3.54
APPROACH: PIN1=BH1&TRANS (ROTN (ZHAT, 98. sDEG) ,VECTOR (8,9,2.54))
DESTINATION: PINL=BHL&TRANS (ROTN(ZHAT,90.8+DEC) ,VECTOR(8,8,-1.71))
TARGET: PIN1BH1#TRANS (ROTN (ZHAT,98.840EG) , VECTOR (9,0,-4.25))

XPORT TIME: 2.56 '
GOODNESS: 6.64

TAP: NULL_RECORD

FINE TIME: .088

PH D2: .000

PH FP DX: .008

PH FP DY: ,000

PH FP ROT: .000

This strategy will take af least 6.64 seconds to execute, and all the rest will take even longer.
However, at this point, the best completely refined strategy is:

PHL SPEC 130523
PRELINS: NULL_RECORD
PICKUP: PICKUP SPEC 72027
PRELIHINARIES: NULL_RECORD
APPROACH OPENING: 2.98
APPROACH: BHANIP=PIN1sTRANS (ROTN(VECTOR(.924,.383,.001),188, «DEG) , VECTOR (8, 8,8.62))
GRASP OPENING: .185
GRASP: BHANIP«PIN1+TRANS (ROTN (VECTOR (. 924, .383,.081),.180. +DEG) ,VECTOR (8,8, 3.54))
GRASP DETERM: NILTRANS
DEPRRTURE POINT: PIN1=PIN1eTRANS (NILROTN,VECTOR(8,0,6.79))
GOODNESS: 4.16
REMARKS: M = 315, deg Grasp Angle = 188, deg Grasp Distance = 3.54
RPPROACH:1 PIN1=BH1¢TRANS (ROTN (ZHAT,90.82DEG) ,VECTOR (8,8,2.54))
DESTINATION: PIN1=BHisx TRANS(ROTN(ZHAT, 90.800:DEG), VECTOR(.80, .809,-1.71))
TARGET: PIN1=BH1oTRANS (ROTN(ZHAT,90.8+0EG) ,VECTOR (3,0,-4.25))
XPORY TIME: 1.38
GOODNESS: 6.14
TAP: NULL_RECORD
FINE TIMNE: .608
PH D2: .127
PH FP DX: 1.50
PH FP DY: 1.18
PH FP ROT: 1.905

Since we already have a refined strategy better than any of the remaining unrefined
strategies, we can stop looking, and write the AL code for our current best strategy. In this

case, the computer generated the following program text:?'

2l The program has been edited very slightly to improve readability by removing excess
blanks and by rounding all numbers to three significant digits. (For instance, the computer
output had “0.00106", instead of “0.001".)

Example 169

I PIN-IN-HOLE STRATEGY 136523:
DROK = .762 FPX = 1.5@ FPY = 1,15 FPd « 1,85
02 = .127 ESTIMATED TINE « 6.14 |}

| PICKUP 72827
W= 315. deg Grasp Angle = 188. deg Grasp Distance « 3.54 |

OPEN BHRND TO 2.98;
NOVE BHANIP TO PIN1+TRANS (ROTN(VECTOR (. 924, .383,.881),188.20EG) , VECTOR (8,8,3.54))

ViR PlNltTRRNS(ROTN(VECTDR(.QZ‘,.383,.891),180.tDEG),VECTOR(B,O,S.GZ));
CENTER BMANIP :

ON OPENING < .185 DO
BEGIN ABORT("GRASP FAILED™); END;
AFFIX PIN1 TO BMANIP;
MOVE PIN1 TO PINL&TRANS (NILROTN, VECTOR(8,0,6.79)); -

[AT Raeiee =y e

| FIRST ATTENPT |

MOVE PIN1 TO BH1sTRANS (ROTN (ZHAT, 98, 4DEG) , VECTOR (8,0, -4, 25))
VIR BH1xTRANS (ROTN (ZHAT,90. 8DEG) , VECTOR (0,8,2.54))
ON FORCE (ORIENT(PIN1) #2HAT) > 8402 DO STOP
ON RRRIVAL DO ABORT("EXPECTED A FORCE HERE™);
DISTANCE_OFF «2HAT . INV(BH1sTRANS (ROTN (ZHAT, 98, 0+DEG) , VECTOR(@,8,-1.71))) oDISPL (PIN1) ;
IF ABS(DISTANCE_OFF) > .169 THEN
BEGIN (PIN1 MISSED BHI |
BOOLEAN FLAG;
I SERRCH LOOP: }
REAL R,DM,M,X,Y;FLAGSFALSE;
R « .572; | 8.7540R0K |
WHILE NOT FLRAG AND R < 1.72 DO
BEGIN
M« 8 DH « { .572/R)¢RAD;
WHILE NOT FLAG AND H<25920EG DO
BEGIN _
IF ABS (X+R#COS())< 1.5@ AND RBS(Y-R#SINGH))< 1.15 THEN
BEGIN FRAME SETPNT;

gl sty

=S
=
%
i
31‘5
i
E
b3
=
5

i
'y SET?NT&BHI#TRRNS(NILROTN,ROT(ZHRT,l.OS)aVECTOR(X,Y,G))|
3 MOVE PIN1 TO SETPNT# TRANS (ROTN (ZHRT, 98, 02DEG) , VECTOR (8,0, -4.25))
ek VIR SETPNT«TRANS (ROTN (ZHAT, 90. 82DEG) , VECTOR (8,8,2.54))
é ON FORCE (ORIENT(PIN1)#ZHRT) > 8%0Z DO STOP
£ ON RRRIVAL DO RBORT("EXPECTED R FORCE HERE"®);
Z ¢ DISTANCE_OFF«+2ZHAT . lNV(SETPNTtTRﬂNS(RDTN(ZHRT,SO.BCDEG),VECTOR(O,B,-1.71)))
:Z *DISPL(PIND);
a IF ABS(DISTANCE_OFF) < .169 THEN ’
5 FLAG+TRUE;
23 END;
i Hel+DH;
E, END;
4 RR + .572;
A END;
3 IF NOT FLRG THEN ABORT("PINL MISSED BH1");
END;
{ LET GO }

OPEN BHAND TO 2.98;
UNFIX PIN1 FROM BHANIP;

{ NOM GET HAND CLERR }
HOVE BHRNIP TO BMANIP+TRANS (NILROTN,VECTOR(8,0,-5.88));

The search loop used here works by generating (x,5) offsets in ever-widening circles about
the origin. Each point generated is tested to see if it is within the footprint limits:

170 Automatic Coding of Program Elements

Ax s x s Ax
-Ay sy s Ay

If so, then a displlacement vector (in the coordinate system of the hole) is computed by:
rot(zhat,f)evector(x,5,0)

and used to produce an offest candidate location (setpnt) for the hole location. If the
insertion attempt for this point succeeds, then flag is set to indicate success and the loop is
terminated. If the attempt fails, or if (x,y) was outside the error footprint, then the next
point is tried. The loop continues to be executed until either the entire expected error

range has been exhausted or the insertion succeeds. 22
Variation

The example above required a search, but no "tapping”, since the error along the z-axis of
the hole was much smaller than the expected penetratiion of the pin into the hole. If we
increase the uncertainty along this axis, then a tap (or some other measurement) must be
used before the insertion can be tried. This is illustrated by the code below, which was
written for the same assumptions as those used earlier, except that the box position is
assumed to be subject to no rotation or "in plane” displacement errors, but may have an
error of up to 0.75 inches up or down.

{ PIN-IN-HOLE STRATEGY 134356:
DROK = .762 FPX = .243 FPY = .226 FPU = .524
DZ = .186 ESTINATED TINE = 6.67)

t PICKUP 147157:
W = 98.0 deg Grasp Angle = 135. deg Grasp Distance = 3.54)

OPEN BHAND TO 2.98;
HOVE BNMANIP TO PINI«TRANS (ROTN(VECTOR(.679,.679,.281),1434DEG) , VECTOR(0,8,3.54))
VIR PIN1«TRANS (ROTN(VECTOR(.679,.679,.281) ,149+DEG) ,VECTOR(-3.59,8,7.13));
CENTER BMANIP
ON OPENING < .185 DO
BEGIN RBORT("GRASP FAILED"); END;

RFFIX PIN1 TO BMANIP;
HOVE PIN1 TO PINleTRANS (NILROTN,VECTOR(8,8,6.79));

§ WUST TAP 1

MOVE PIN1 TO BH1sTRANS (NILROTN,VECTOR(-1.21,-.802,-5.88))
VIA BH1sTRANS (NILROTN, VECTOR(-1,21,-.802,5.88))
ON FORCE (ORIENT (PIN1) «ZHAT) > 8402 00 STOP
ON ARRIVAL DO ABORT("EXPECTED R FORCE HERE");
CORR » ZHAY . INV(BH1e TRANS(NILROTN, VECTOR(-1.21,-.062, .868)))eDISPL (PINL),

— ——— —_

22 Some people have commented on the computational inefficiency of generating (possibly)
many values of (x,y) which will be thrown away. For any reasonable error limits, however,
this cost can be ignored, since the time required for moving the manipulator far exceeds
that required to compute a target point. '

Example 171

{ FIRST ATTENPT |

MOVE PIN1 7O BH1sTRANS (ROTN(ZHRT,98.8sDEG) ,VECTOR(8,8,-4.25))
VIR BH1xTRANS (ROTN (ZHAT, 99, 0+DEG) , VECTOR (0, 8,2.54))
ON FORCE (ORIENT (PIN1) «2HAT) > 8202 D0 STOP
ON ARRIVAL DO ABORT("EXPECTED R FORCE HERE");
DISTANCE _OFF «ZHAT. INV(BH1+TRANS (ROTN (ZHAT, 98. 8+DEG) , VECTOR (9, 8,~1.71))) +DISPL (PIN1)-CORR)

IF RBS(DISTANCE_OFF) > ,239 THEN
ABORT("PIN1 MISSED BHi UNEXPECTEDLY.");

{ LET 60 |}
OPEN BHAND TO 2.98;
UNFIX PIN1 FROM BHANIP;

{ NOW GET MAND CLERR |

MOVE BMANIP TO BMANIP+TRANS (NILROTN,VECTOR(8,8,-5.88)),
In this case, the error footprint in the plane of the hole is small enough so that no search is
needed. On the other hand, the uncertainty along the hole axis is quite large.
Consequently, the system has chosen a tapping place at

trans(nilrotn,vector(-1.21,-.002,0))

with respect to the hole, which is then used to locate the top surface of the box more
precisely. This is accomplished by moving the pin along a path starting two inches above
the nominal height of the surface and ending two inches below it. When the pin hits the
surface, the motion is stopped and used to compute a correction (corr) for use in the success
test. '

172

“If we could first know where we are and whither we are
tending, we could then better judge what to do, and Aow to
do it."

Abraham Lincoin
Speech before the Illinois Republican Convention
June 16, 1858

Chapter 9.

Conclusions and Future Work

The goal of this research was the establishment of a basis for computer generation of
manipulator control programs from task-level specifications. As we have seen, this is an
extremely broad topic. Many narrowing assumptions have been necessary in order for us to
demonstrate basic feasibility while keeping the scope of effort within reasonable bounds for
a single dissertation.

The task of inserting a pin into a hole was used to focus the technical issues of automating
manipulator coding decisions. The analysis of Section 3.4 discussed this task from the point
of view of a human programmer. Skeleton techniques for accomplishing the task and for
overcoming likely errors were developed, and the planning information needed to adapt
these skeletons to actual situations was identified. Subsequent chapters were largely
concerned with developing techniques for representing this information is a form usable by
the computer. Finally, Chapter 8 showed that we could, in fact, automate these coding
decisions, given the modelling mechanisms developed in Chapters 4-7.

_ Section 1.2 listed seven requirements for development of a “full” automatic coding system
for mechanical assembly applications. In conclusion, I'd like to go back through this list
and make some final comments summarizing what has been done with respect to each point,
what remains to be done, and where future efforts should be concentrated.

Development of an Adequate Manipulator-Level Target Language.

Although a complete design review of the target language, AL, used in this work would be
inappropriate here, several points are worth noting.

First, the language seems to be adequate for at least some assemblies. The salient features —
frame motion and affixment — significantly reduce the difficulty of programming and
enhance the robustness of the resulting code. The force control and sensory primitives are
still rather crude but do allow the simple threshold tests needed for the class of tasks
addressed here. Likewise, the control structures allow for considerable runtime flexibility
and error recovery.

An important area for future development is the incorporation of more sophisticated forms

173

of force accommodation and the provision of better links with other forms of sensory data,

such as vision.! Such development will require improvements both in the runtime system
and in ways to describe how the runtime capabilities are to be applied.

A second point is that AL performs a number of coding functions that require the
maintenance of a much better planning model than is usual for "algebraic” compilers. The
uses to which this model are put and the problems encountered in maintaining it were
discussed in Chapter 5. Problems encountered and some possible solutions were also
discussed. The basic point is that “understanding” a computer program can be a very hard
problem, which isnt apt to be solved fully for some time yet. It would probably be
desirable to defer some of the coding decisions now made by AL — especially trajectory
planning — until execution time. Such a deferral would substantially simplify translation of
present AL programs, since planning values for trajectory start and destination points
would no longer be needed. However, we hope to add otAer facilities — such as collision
avoidance — which will, in fact, require more planning information.

In this regard, the automatic coding primitives discussed in Chapter 8 are somewhat better
off: since they “know"” the purpose behind the program structures they write, they will have
less difficulty in updating the planning model appropriately. Indeed, it may be possible to
use a task-level specification as a guide to keeping planning information even in cases where
the computer isn’t smart enough to write the code on its own.

Finally, there is the question of whether the use of AL as a target language isn’t perhaps
overkill. If an automatic system takes over the production of manipulator-level code, are
fancy features like affixment or implicit specification of manipulators still useful? Would it
not be better to eliminate them and save the extra overhead? My belief is that any
advantages gained from going to a “simpler” target language would be far outweighed by
the disadvantages. The facility (affixment) most often proposed for excision does more than
merely make programs easier to write. Programs using affixment can be made smaller and
more efficient than those which rely on explicit updating or recalculation, and the
" mechanism provides a convenient *hook” for runtime functions such as continuous tracking
of conveyors.

Even if such language features were purely programming conveniences, there would still be
good reasons to retain them. First off, the automatic coding procedures can also benefit
from the facilities. For instance, the pin-in-hole writer of Section 8.7 described the insertion
task and search loop in terms of the pin's frame. Very little would be gained by
transferring the effort of relating these motions to the manipulator frame from the AL
compiler to write_pin_in_hole, which aiready has enough to worry about. Second,
compatibility with a user-oriented programming formalism is especially important for a

developing system.2 Many assembly operations will be too hard for the system, and will
require “*hand coding” by the user. Similarly, it may be necessary to edit programs

! The existing knothole allows the vision system to read and write variables and to cause
and wait for events. This is adequate for some purposes, but limits the possibilities for
close interaction. '

2 An interesting parallel would be a primitive compiler which could translate assignment
statements but not loop control or subroutine linkages. For such a system, compatibility
with a good symbolic assembler would be indispensable.

174 Conclusions and Future Work

produced automatically to improve their efficiency or to make other minor refinements.
Even if the computer could easily produce very low level output programs, the user would
probably find higher level constructs to be preferable.

Development of a Formalism for Task-Level Specification.

The research reported in this document concentrated on a single task-oriented operation.
Consequently, the problem of providing a good formal language for describing assembly
tasks was not really addressed. The automatic coding examples discussed in Chapter 8 were
generated by the use of SAIL procedure calls in lieu of an input language:

COMNENT Describe the initial situation;
STD_AFX(M1,B0X,BXBTM) ¢

BXPLACE«~NEM_TRANS (NILROTN,NEW_V3ECT (185 INCHES, 40xINCHES, 8));
EST_SET(H1,LOCUS_ESTINATE,HORKSTATION, BOX,BXPLACE);
EST_SET(M1,DETERM_ESTIMATE ,HORKSTATION,BOX,

SIX_PE (8.3+INCHES, 8.2+ 1NCHES, 8,8,8,5+DEGREES))
EST_SET(M1,LOCUS_ESTINRTE,WORKSTATION, PRACK,

NEW_TRANS (RXW_ROTN (ZHAT, 90+DEGREES) , NEU_V3ECT (8+INCHES, 474 INCHES, 8)))
EST_SET(M1,DETERM_ESTINATE ,WORKSTATION, PRACK,NILTRANS) ;
EST_SET(N1,LOCUS_ESTINATE ,HORKSTATION,BHANIP, FRAME: VAL [BPARK]) ;
EST_SET(N1,DETERH_ESTINATE,WORKSTATION,BMANIP,NILTRANS) |

1
COMHENT Put pins into initial rack holes;

PINHPUT (H1,H2,PIN1,PRKH], 1,1088. , TRUE);
PINHPUT (H2,W3,PIN2,PRKH2,1,1080,, TRUE)
!
COHMENT Put pin Into box hole;
PINHPUT (43,K4,PIN1,BHL, 1,180, FRLSE);
1

In principle, we could perhaps provide a user-oriented input language by cleaning up the
calling conventions and supplying a large set of supporting SAIL macros. Although it Is
unclear whether such a “language” would be very satisfactory to users, it was acceptable for &
our purposes. :

Ob ject Models

Any object modelling scheme must fill the requirements of computational utility and user -
convenience. Ob jects were represented in this work by the use of attribute graphs, in which
shape properties are represented in the nodes, structural properties by links, and location
properties by link attributes. On the whole, this scheme proved quite satisfactory from a
computational standpoint. The directness with which manufacturing tolerances and similar
data could be incorporated was quite useful. Another significant advantage was that we
could represent directly many useful properties, such as pin-to-hole tolerance requirements,
which would be awkward to compute from a “purer” shape description formalism. This

fexibility proved a great help to experimentat!on.3

It should be emphasized that much work remains to be done before we have a shape
representation formalism capable of supporting a full scale automatic coding system for

3 For instance, the distance of each hole to the nearest edge or other hole was originally
represented explicitly. Later, code was added to compute this quantity from the shape
information.

-

175

manipulators. A system that requires the user to spend more effort building models than he
would spend writing manipulator code is not particularly useful. On the other hand, if the
parts to be assembled are a/ready represented in a computer-understandable form — perhaps
-as output of a Computer Aided Design system — then the marginal effort needed to use the
automatic coding system may be acceptable. Consequently, provision of an economically
attractive task-level manipulator programming system depends, in part, on further
improvements in CAD systems and on development of ways to compute from the design
descriptions most of the information required for manipulator coding.

Representation of Situational Information

In manipulator programming, we must deal with (1) object locations, (2) attachments
between ob jects, and (3) errors in location values. The principal mechanisms we used to
represent this information were symbolic assertions and parameterized mathematical
expressions. Chapter 7 develeped techniques for relating the two representations. In
particular, “semantic” assertions relating object features were translated into mathematical
constraints on scalar variables representing degrees of freedom. Linear programming
methods were then applied to predict limits. This ability to “understand” symbolic
descriptions of inter-object relations is quite useful for a task-level programming system.
Similarly, the ability to deal with ranges of values is necessary for many tasks.

Although the basic approach taken by Chapter 7 seems to be sound, there were several
difficulties with the specific techniques used. Linear programming is not particularly well
suited to dealing with rotationa! degrees of freedom. Numerical techniques capable of
handling rotation censtraints directly might be better. A more serious problem, however, is
the difficulty of characterizing the range of pasitions for which a particular strategy is valid.
For instance, in deciding how to pick up an ob jeci, we must know whether the hand will
always be able to reach a particular grasping position and how the motion time will vary
with different ob ject positions. Usuatly, the only way to get this information is to generate a
number of triai points within the range of possible object positions. Analytic
characterizations that could be combined with the object constraints would be very

desirable.? For instance, if we have a function

T(A,B) = expected time to meve from A to B.S
and can describe the positions A and B in terms of some free variables

A = AQA)
B-= B(u!y-“n>

sub ject to constraints

4 Shimano's present research on manipulator kinematics may lead to such characterizations.
This work will be reported in his thesis [99]. :

5 In Chapter 8, motion times were estimated by computing arm solutions for successive
positions and then examining how much each joint had to move on each segment of
motion. The difficulty with this procedure is that it doesn’t give us a convenient analytic
expression for time as a function of locations.

176 Conclusions and Future Work

C{A)s0
We could then compute the maximum time required to make the motion by

Tmalx = max T(AQA[,..). BB],..p)
i

and use the result in evaluating alternative strategies.

The differential approximation techniques used for small perturbations worked much better,
since the resulting problems were better matched to the numerical methods available. Since
small differences are not generally important in determining the feasibility or cost of large
motions, the principal use of these techniques was for estimation of errors, for which they
were quite appropriate. The estimates produced were for worst case errors. It would
probably be useful to consider the distributions of errors, as well. Thus, instead of
computing

& = max §©5...5,)
= max Z ¢;§;

sub ject to constraints on the 5;, we might wish to investigate the distribution of (), given
some assumptions about the distributions of the §;, in order to estimate average search
times, success rates, or similar statistics.

Knowledge Base

Although the pin-in-hole task was used as an example throughout this work, a conscious «
effort was made to avoid undue specialization. The modelling requirements for this task ~
expected locations, accuracies, etc. — are applicable to other assembly operations, and the
computational techniques described in Chapters 4-7 were developed without any particular |
task in mind. When time came to write the automatic coding procedures described In
Chapter 8, no substantial changes to the modelling mechanisms were required, although a =
certain amount of bug killing was necessary. =

However, it is worthwhile to consider how hard it would be to add automatic coding
procedures for other tasks.

As one might expect, the easiest additions would be for variations of pin-in-hole, such as
screw-in-hole, for which most of the analysis has already been done® The principal

® Appendix E.2 iilustrates a typical error calculation for a screw on the end of a driver.

177

additional difficulty that a screw-in-hole writer must handle would be figuring out how to
pick up a screwdriver and how to load a screw onto it. Since these are fairly specialized
operations, it seems reasonable to construct a small library containing the appropriate code
for different drivers and screw dispensers. We would also want to consider alternative

methods, such as using the hand to start the screw into the hole’ and then driving it down.

Almost as easy would be the task of fitting a nut or washer over a stud, although keeping
the fingers out of the way would probably be more of a problem. Only slightly harder
would be mating operations, such as fitting a cover plate or gasket over aligning pins, and

_ operations such as putting a part into a vise or simple fixture.

The important characteristics of these tasks are that they can be performed with relatively
simple motion sequences and straightforward verification tests, that the accuracy
requirements are fairly easy to state, and that the coding decisions all rely on fairly local
properties. Where these characteristics are not present, automatic coding will be much
harder. Assembly tasks requiring clever uses of force, working in cluttered environments,
and handling limp ob jects are typical difficult tasks. It should be pointed out that humans
dont know much about programming such operations, either. Since it is very difficult to
automate coding decisions which cannot be clearly identified, these tasks must be much
better understood before much success can be expected. ’

Planning Coherent Strategies

As 1 mentioned in the introduction, my early research on automatic manipulator
programming was primarily concerned with the problem of how to write coherent programs
which took account of interactions between individual coding decisions. This work was
done at a somewhat “symbolic” level; typical decisions were selection of the order in which
operations were to be performed, selection of “good” workpiece positions, etc. It proved
fairly easy to get a system to make these decisions in a toy world of symbolic assertions. The
rude awakening came with the transition to real data. The work reported in this
dissertation has been largely concerned with representation of planning knowledge about
real-world situations and then using it to make rather more “local” coding decisions.

Although it is certainly possible to “put up” a system which plans each task-oriented
operation independently of the others, interactions must be considered if really efficient
programs are to be produced.

In Chapter 8, we saw that when selecting a grasping point to pick up the pin, we had to
consider both the initial and final positions of the pin. The estimated motion time included
both the time for the hand to reach the pin and the time for the pin to move to the hole.
Also, we discovered that some grasping strategies gave larger search patterns than others.
All these factors affected our final choice.

This sort of interaction is not confined to choices made within individual assembly
operations. For instance, suppose we must place pins into two holes in our favorite box.
Then, in selecting a grasping method for the first pin, we should remember that our choice
will also affect how much time will be required to pick up the second pin. Other
interactions may be more subtle. Inserting the first pin gives us information about the box

7 This is just pin-in-hole with a twist at the end.

178 : Conclusions and Future Work

location. Since this information can be used to reduce the search required for the second
insertion, we perhaps ought to consider the accuracy associated with different grasping
orientations as well.

One of the key ideas of the earlier work was planning by progressive refinement. Within
this paradigm, a program outline is prepared, then elaborated into a more detailed one, and
the process is iterated until a finished product is produced. The advantages of this
approach are that planning for individual operations can proceed within the context of
other parts of the program and that effort is not wasted on contradictory or irrelevant

strategies.® Before these advantages can be obtained for real manipulator programs, we
need a better understanding of how individual coding decisions affect each other. Although
the modelling techniques developed in this dissertation — particularly, those for representing
ob ject relations and for relating planned actions to accuracy information — can, perhaps,
provide a basis for such understanding, much very hard work needs to be done. The
development of a good constraint formalism for position requirements, discussed earlier,
would be especially helpful.

Accepting Advice from the User

The development of a good paradigm for sharing coding responsibilities is an important
goal. Even when automatic manipulator programming systems become sophisticated enough
to write most programs on their own, some facility for helping out the computer in
exceptional cases will still be desirable. Until that time Is reached, it will be indispensible.

There are (at least) two problems that must be solved before advice-giving can be made
effective. First, the computer must be able to understand the advice it is being given.
Second, it must be able to make its own decisions in a manner consistent with what it has
been told. For instance, if help is given in the form of manipulator code, the system must
understand what the code does, where it is to be included in the manipulator program, and
what initialization actions, if any, must be performed. To obtain this information, it may
have to “read” the user’s code; as we have seen, this can be a very hard problem.
Additional assertions (“comments”) by the user may be required. The difficulties are
somewhat lessened if contextual information from a task-level description is available or if
the computer has asked for help rather than been presented with unsolicited assistance.

How to Get There from Here

As we have seen, many of the relevant factors for manipulator programming — accuracies,
expected motion times, joint limits, etc. — inherently involve numerical estimates which are
difficult for human programmers to obtain or work with. As better computational
representations for such information are developed, it is reasonable to expect that automatic
systems will eventually become better manipulator programmers than their human
counterparts. As we have also seen, however, much research must be done before this can
come about. Thus, we are left with the question of what to do in the meantime.

It seems to me that the most the most fruitful near-term effort would be the development of
a highly interactive system in which programming is a joint endeavor by the computer and
the user. At the center of such a system would be data structures representing the program

8 Sacerdoti [94, 95) successfully applied similar ideas to a different domain.

179

' being developed, together with editing, display, and interpretation routines.® The underlying
philosophy would be progressive refinement. Initially, the user would make a task-level
specification of the program to be written. This specification would then be elaborated into
manipulator-level code by means of: : :

1. Statements supplied by the user.
2. Automatic coding primitives. .

3. "Smart” guiding, in which the task context is used to interpret manipulation
actions performed under manual control by the user.

4. Combinations of the above.

Although there are a number of technical problems.'o there are also several advantages to
this approach. First, it is “evolutionary”. As new facilities are developed, they can be
added without radical changes to the underlying formalism. If a needed task-level primitive
is not available, the user has other ways to get the desired effects. Second, debugging
facilities can be incorporated in a natural way. Third, the construction of special-purpose
subsystems or provision of a tape recorder mode package would be relatively easy within
such a system. And, finally, the system would be fun to build.

® Compare this with the POINTY system, which is described in Appendix F. In
POINTY, the central data structure is an affixment tree of frame variables. The system
contains facilities for editing this tree, for using the manipulator to measure location values,
and for translating the tree into the corresponding AL declarations and affixments.

19 One problem is keeping track of of the relation between a task-level statement and the
manipulator-level constructs used to implement it. Another is ensuring that the user’s code
remains compatible with that generated by the computer.

ol

ey

%)

(8]

(5]

[10)
C;'lJ
[12]

(13]

Chapter 10.

Bibliography

Gerald] Agin, Kepresentation and Description of Curved Objects, Ph.D Dissertation,
stanford A rtificial Intelligence Laboratory Memo AIM-243, October 1972.

A P. Ambler a4 R. J. Popplestone, Inferring the Positions of Bodies from Specified
S patial Relation-%ips, manuscript, Department of Machine Intelligence, University of
Edinburgh, Published in AISB Summer Conference, University of Sussex, july 1974.

Rebert H. Anderson and Nake M. Kamrany, Advanced Computer-Based
Manufacturing Systems for Defense Needs, USC Information Sciences Institure
Report RR-73-10. May 1973.

Proceedings of an ACM CLonference on Proving Assertions About Programs, SIGPLAN
INoiices, January 1972,

Association for Computing Machinery, Proceedings of a Symposium on Very High
Level Languages, ZIGLAN Notices, April 1974.

Robert M. Balzer, Automatic Programming, Information Sciences Institute Technical
Report, September 1972.

David Barstow, The PSI Coding Expert: A Knowledge-Based Approach to Automatic
Coding, Manuscript, Submitted to Second International Conference on Automatic
Coding, October 1976. :

Bruce G. Baumgart, MICRO-PLANNER Alternate Reference Manual, Stanford
Artificial Intelligence Laboratory Operating Note 67, April 1972.

Bruce G. Baumgart, GEOMED — A Geometric Editor, Stanford Artificial Intelligence
Laboratory Memo AIM-232, Stanford Computer Science Report STAN-CS-74-414,
May 1974.

Bruce G. Baumgart, Geometric Modelling for Computer Vision, Ph. D. Dissertation,
Stanford Artificial Intelligence Laboratory Memo AIM-249, Stanford Computer
Science Report STAN-CS-74-463, October 1974.

Jack R. Buchanan, 4 Study in Automatic Programming, Ph.D Dissertation, Stanford
Artificial Intelligence Laboratory Memo AIM-245, Stanford Computer Science Report
STAN-CS-74-458, May 1974.

Jack R. Buchanan and David C. Luckham, On Automating the Construction of
Programs, Stanford Artificial Intelligence Laboratory Memo AIM-236, Stanford
Computer Science Report STAN-CS-74-433, May 1974.

Antal K. Bejczy, “Machine Intelligence for Autonomous Manipulation”, Proceedings
of the First National Conference for Remotely Manned Systems for Exploration and
Operation in S pace, California Institute of Technology, 1973,

=

(14]

{15)

(16]

(17

(18]

- 119)

(20]

[21)

(22)

(23]

(24]
(25)

(26]

[27]

181

Antal K. Bejczy, New Techniques for Terminal Phase Control of Manipulator Motion,
JPL Technical Memorandum 760-98, February 1974.

Antal K. Bejczy, Robot Arm Dynamics and Control, JPL Technical Memorandum 33-
669, February 1974

Antal K. Bejczy, “Environment-Sensitive Manipulator Control”, 1974 IEEE
Conference on Decision and Control, November 1974.

T. O. Binford, R. Paul, J. A. Feldman, R. Finkel, R. C. Bolles, R. H. Taylor, B. E.
Shimano, K. K. Pingle, T. A. Gafiord, Exploratory Study of Computer Integrated
Assembly Systems, Prepared for the National Science Foundation. Stanford Artificial
Intelligence Laboratory Progress Report covering March 1974 to September 1974.

T. O. Binford., D. D. Grossman, E. Miyamoto, R. Finkel, B. E. Shimano, R. H. Taylor,
R. C. Bolles, M. D. Roderick, M. S. Mujtaba, T. A. Gafford, Exploratory Study of
Computer Integrated Assembly Systems, Prepared for the National Science Foundation.

.Stanford Artificial Intelligence Laboratory Progress Report covering September 1974

to November 1975.

T. O. Binford, D. D. Grossman, E. Miyamoto, R. Finkel, B. E. Shimano, R. H. Taylor,
R. C. Bolles, M. D. Roderick, M. S. Mujtaba, T. A. Gafford, Exploratory Study of
Computer Integrated Assembly Systems, Prepared for the National Science Foundation.
Stanford Artificial Intelligence Laboratory Progress Report covering November 1975
to June 1976. |

Daniel Bobrow and Bertram Raphael, “New Programming Languages for Artificial
Intelligence”, Computing Surveys, Vol. 6, No. 8, September 1974.

Robert C. Bolles, Richard Paul, The Use of Scmory' Feedback in a Programmable
Assembly System, Stanford Artificial Intelligence Laboratory Memo AIM-220, Stanford
Computer Science Report STAN-CS-73-396, October 1973.

Robert C. Bolles, Verification Vision Within a Programmable Assembly System. an
Introductory Discussion, Stanford Artificial Intelligence Laboratory Memo AIM-275,
Stanford Computer Science Report STAN-CS-75-537, December 1975.

Robert C. Bolles, Verification Vision Within a Programmable Assembly System, Ph.D.
Dissertation, Summer 1976.

1.C. Braid, Designing With Volumes, Cantab Press, Cambridge, England, 1974.

1.C. Braid, “The Synthesis of Solids Bounded by Many Faces”, Communications of the
ACM, Volume 18, Number 4, April 1975.

1.C: Braid, Six Systems for Shape Design and Representation — a Review, Computer
Aided Design Group Document No. 87, University of Cambridge, May 1975.

Per Brinch-Hansen, Operating System Principles, Prentice-Hall Series in Automatic
Computation, Englewood Cliffs, New Jersey, 1973. '

182

(28]
(29]

(30)
(s1]
- [32)
[33)
[34]
(35)

(36]
(37]
(38)

(39)
[40)

(41]

Bibliography

R. T. Chien, V. C. Jones, “Acquisition of Moving Objects and Hand-Eye
Coordination”, Proceedings of the Fourth International Joint Conference on Artificial
Intelligence (1]CAl), pp. 137-741, September 1975

L. Stephen Coles, Categorical Bibliography of Literature in the Field of Robotics,
Stanford Research Institute Artificlal Intelligence Center Technical Note 88-3, March
1975.

George B. Dantzig, Linéar Programming and Extensions, Princton University Press,
Princton; New Jersey, 1963,

John A. Darringer and Michael Blasgen. MAPLE: 'A'Higln Level Language for
Research in Mechanical Assembly, IBM Research Report RC-5606, September 1975,

H. A. Ernst, MH-I, A Computer-Operated Mechanical Hand, Sc D. Thesis,
Massachusetts Institute of Technology, December 1961.

Scott E. Fahlman, 4 Planning System for Robot Construction Tasks, MIT Artificial
Intelligence Laboratory Report Al TR-283, May 1973. :

Gary Feldman and Donald Peiper, Avoid, Film (16mm, color, silent 1972), Stanford
Artificial Intelligence Laboratory, March 1969.

J- A. Feldman, P. D. Rovner, "An Algol-Based Associative Language,”
Communications of the ACM 12, 8, pp. 439-449, August 1969.

J. Feldman, J. Low, R. Taylor, D. Swinehart, “Recent Developments in SAIL, an
Algol Based Language for Artificial Intelligence,” Proceedings of the F JCC, pp 1193
1202, Stanford Artificial Intelligence Laboratory Memo AIM-176, Stanford Computer
Science Report STAN-CS-72-308, November 1972,

Raphael Finkel, Russell Taylor, Robert Bolles, Richard Paul, Jerome Feldman, AL, A
Programming System for Automation, Stanford Artificial Intelligence Laboratory
Memo AIM-177, Stanford Computer Science Report STAN-CS-74-456, November
1974. ' :

Raphael Finkel, Russell Taylor, Robert Bolles, Richard Paul, Jerome Feldman, “An
Overview of AL, A Programming System for Automation”, Proceedings of the
Fourth International Joint Conference on Artificial Intelligence (1JCAl), pp. 758-765,
September 1975. .

Raphael Finkel, Constructing and Debuggging Manipulator Programs, Ph.D.
Dissertation, Stanford Computer Science Department, 1976. L

Earlwood T. Fortini, Dimensioning for Interchangeable Manufacture, Industrial Press,
Inc, New York, 1967.

Aharon Gill; Visual Feedback and Related Problems in Computer Controlled Hand Eye

Coordination, Ph.D. Dissertation, Stanford Artificial Intelligence Laboratory Memo
AIM-178, Stanford Computer Science Report STAN-CS-72-312, October 1972.

182

(28)
[29]

[30)
[(31]
' [32)
(33]
(34)
(35)

(36)
(37]
[38)

(39]
(40]

(41)

Bibliography

R. T. Chien, V. C. Jones, “Acquisition of Moving Objects and Hand-Eye
Coordination”, Proceedings of the Fourth International Joint Conference on Artificial
Intelligence (1]CAl), pp. 137-141, September 1975.

L. Stephen Coles, Categorical Bibliography of Literature in the Field of Robotics,
Stanford Research Institute Artificlal Intelligence Center Technical Note 88-3, March
1975.

George B. Dantzig, Linear Programming and Extensions, Princton University Press,
Princton, New Jersey, 1963.

John A. Darringer and Michael Blasgen, MAPLE: ‘A High Level Language for
Research in Mechanical Assembly, IBM Research Report RC-5606, September 1975.

H. A. Ernst, MH-1, A Computer-Operated Mechanical Hand, Sc. D. Thesis,
Massachusetts Institute of Technology, December 1961.

Scott E. Fahlman, A Planning System for Robot Construction Tasks, MIT Artificial
Intelligence Laboratory Report Al TR-283, May 1973.

Gary Feldman and Donald Peiper, Avoid, Film (16mm, color, silent 1972), Stanford
Artificial Intelligence Laboratory, March 1969.

J. A. Feldman, P. D. Rovner, "An Algol-Based Associative Language,”
Communications of the ACM 12, 8, pp. 439-449, August 1969.

J. Feldman, J. Low, R. Taylor, D. Swinehart, “Recent Developments in SAIL, an
Algol Based Language for Artificial Intelligence,” Proceedings of the F JCC, pp 1193-
1202, Stanford Artificial Intelligence Laboratory Memo AIM-176, Stanford Computer
Science Report STAN-CS-72-308, November 1972.

Raphael Finkel, Russell Taylor, Robert Bolles, Richard Paul, Jerome Feldman, AL, A
Programming System for Automation, Stanford Artificial Intelligence Laboratory
Memo AIM-177, Stanford Computer Science Report STAN-CS-74-456, November
1974 - .

Raphael Finkel, Russell Taylor, Robert Bolles, Richard Paul, Jerome Feldman, “An
Overview of AL, A Programming System for Automation”, Proceedings of the
Fourth International Joint Conference on Artificial Intelligence (I1JCAl), pp. 758-765,
September 1975.

Raphael Finkel, Constructing and Debuggging Manipulator Programs, Ph.D
Dissertation, Stanford Computer Science Department, 1976.

Earlwood T. Fortini, Dimensioning for Interchangeable Manufacture, Industrial Press,
Inc, New York, 1967.

‘Aharon Gill, Visual Feedback and Related Problems in Computer Controlled Hand Eye

Coordination, Ph.D. Dissertation, Stanford Artificial Intelligence Laboratory Memo
AIM-178, Stanford Computer Science Report STAN-CS-T2-312, October 1972.

(42]

143

(44)

[(45]
[46]

(47]

(48]

(49]

(50]
[51]

(52]

(53]

[54]

(55)

183

Guiseppina Gini, Maria Gini, and Marco Somalvico, “Emergency Recovery in
Intelligent Robots”, Proceedings of the Fifth International Symposium on Industrial
Robots, September 1975. '

C. Cordell Green, et al,, Progress Report on Program-Understanding Systems, Stanford
Artificial Intelligence Laboratory Memo AIM-240, Stanford Computer Science Report
STAN-CS-72-444, August 1974.

C. Green and D. Barstow, “Some Rules for the Automatic Synthesis of Knowledge”,
Advanced Papers of the Fourth International Joint Conference on Artificial
Intelligence, Tblisi, Georgia, USSR, September 1975.

C. Green, The PSI Program Synthesis System: an Overview, manuscript, submitted to
the Second International Conference on Software Engineering, October 1976.

David D. Grossman, Procedural Representation of Three Dimensional Objects, IBM
Research Report RC-5314, March 1975.

D. D. Grossman and M. W. Blasgen, Orienting Mechanical Parts With a Computer
Controlled Manipulator, IEEE Transactions on Systems, Man, and Cybernetics,
September 1975.

David D. Grossman and Russell H. Taylor, Interactive Generation of Object Models
With a Manipulator, Stanford Artificial Intelligence Laboratory Memo AIM-274,
Stanford Computer Science Report STAN-CS-75-536, December 1975.

David D. Grossman, Monte Carlo Simulation of Tolerancing in Discrete Parts
Manufacturing and Assembly, Stanford Artificial Intelligence Laboratory Memo AIM-
280, Stanford Computer Science Report STAN-CS-76-555, June 1976.

William Harrison, Compiler Analysis of the Value Ranges for Variables, IBM Research
Report RC-5544, July 1975.

Brian Harvey, Monitor Command Manual, Stanford Artificial Intelligence Laboratory
Operating Note 54.5, Revised by Martin Frost, January 1976.

Carl Hewitt, PLANNER: A Language for Manipulating Models and Proving
Theorems in a Robot, MIT Project MAC, Artificial Intelligence Memo NO. 168,
August 1970.

Berthold K.P. Horn, Hirochika Inoue, Kinematics of the MIT-AI-VICARM
Manipulator, Massachusetts Institute of Technology AI Lab, Working Paper 69, May
1974.

Industrial Robots — A Survey, International Fluidics Services Ltd., Bedford, England,
1972.

Fifth International Symposium on Industrial Robots, Proceedings, IIT Research
Institute, Chicago, September 1975.

184

(56
(57)
(58]
[59]

(60)

(61l

(62]
(63)

(64]

(65]

(66)

(67)

(68]

(69)

(70]

Bibliography
Hirochika Inoue, Force Feedback in Precise Assembly Tasks, MIT Artificial
Intelligence Laboratory Technical Report 308, August 1974.

Suzanﬁe Kandra, Motion and Vision, Film (16mm, color, sound, 22 minutes), Stanford
Artificial Intelligence Laboratory, November 1972.

‘Mark A. Lavin, MODFEAT: A System for Naming Polyhedral Features of Three

Dimensional Objects, IBM Research Report RC-5764, December 1975.

Mark A. Lavin and Lawrence I. Lieberman, A System for Modelling Three-
Dimensional Objects, IBM Research Report RC-5765, December 1975.

W. H. P. Leslie, ed., Numerical Control Programming Languages, Proceedings of the
First International IFIP/IFAC PROLOMAT Conference, 1969, North Holland
Publishing Company, London, 1970.

Richard A. Lewis, Antal K. Bejczy, “Planning Considerations for a Roving Robot
with Arm”, Proceedings of the Third International [Joint Conference on Artificial
Intelligence (1JCAI), pp. 308-316, August 1973.

R. A. Lewis, Autonomous Manipulation on a Robot: Summary of Manipulator Software
Functions, Jet Propulsion Laboratory Technical Memorandum 33.679, March 1974.

L. I. Lieberman and M. A. Wesley, The Design of a Geometric Data Base for
Mechanical Assembly, IBM Research Report RC-5489, August 1975.

L. 1. Lieberman and M. A. Wesley, AUTOPASS, A Very High Level Programming
Language for Mechanical Assembler Systems, IBM Research Report RC-5599, August
1975.

James R. Low, John F. Reiser, Hanan J. Samet, Robert F. Sproull, Robert Smith,
Daniel C. Swinehart, Russell H. Taylor, Kurt A. VanLehn, SAIL User Manual
U pdate, March 1976.

James R. Low, Automatic Coding: Choice of Data Structures, Ph.D. Dissertation,
Stanford Artificial Intelligence Laboratory Memo AIM-242, Stanford Computer
Science Report STAN-CS-74-452, August 1974.

James Low and Paul Rovner, Techniques for the Automatic Selection of Data
Structures, Computer Science Department Report TR4, University of Rochester, 1976.

Zohar Manna and Richard Waldinger, Knowledge and Reasoning in Program .
Synthesis, Stanford Research Institute Artificial Intelligence Center Technical Note 98,
November 1974.

John McCarthy, Plans for the Stanford Artificial Intelligence Project, Stanford
Artificial Intelligence Laboratory Memo AIM-31, April 1965.

D. V. McDermott and G. J. Sussman, CONNIVER Reference Manual, MIT Acrtificial -
Intelligence Laboratory Al Memo 259, May 1972. '

(713
[(72]

(73]

[74]

(78]

[76)
tm
178]
[78)
[80]
(1)

{82]

[(83)

185

C. Murphy, The Reliability of Systems, unpublished manuscript, date unknown.

Eiji Nakano, Shotaro Ozaki, Tatsuzo Ishida, Ichiro Kato, Cooperational Control of the
Anthropomor phous Manipulator “MELARM", Fourth International Symposium on
Industrial Robots, November 1974.

Ramakant Nevatia, Structured Descriptions of Complex Curved Objects for Recognition
and Visual Memory, Ph.D. Dissertation, Stanford Artificlal Intelligence Laboratory
Memo AIM-250, Stanford Computer Science Report STAN-CS-74-464, October 1974.

J- L. Nevins, D. E. Whitney, S. N. Simunovic, Report on Advanced Automation: System
Architecture for Assembly Machines, The Charles Stark Draper Laboratory, Inc,
Prepared for the National Science Foundation, Memo No. R-764, covering June 1972
to November 1973, November 197

J. L. Nevins, D. E. Whitney, H. H. Doherty, D. Killoran, P. M. Lynch, D. S. Seitzer, S.
N. Simunovic, R. Sturges, P. C. Watson, E. A. Woodin, Exploratory Research in
Industrial Modular Assembly, The Charles Stark Draper Laboratory, Inc, Prepared
for the National Science Foundation, Memo No. R-800, covering June 1973 to
January 1974, March 1974; Memo No. R-850, covering February 1974 to November
1974, December 1974.

Nils). Niisson, Artificial Intelliegnce — Research and Applications, Progress Report
for Defense Advanced Research Progress Agency covering April 1973 through April

1974,

Niis J. Nilsson, Artificial ihrclllcgncc — Research and Applications, Progress Rehort
for Defense Advanced Research Progress Agency covering March 1974 through

-March 1975.

An Introduction to PADL, Production Automation Technical Memorandum 22,
University of Rochester, December 1975.

R. Paul and K. Pingle, Instant /nsanity, Film (16 mm, color, silent, 5 minutes),
Stanford Artificial Intelligence Laboratory, August 1971. .

Richard Paul, Modelling, Trajectory Calculation and Servoing of a Computer
Controlled Arm, Stanford Artificial Intelligence Laboratory Memo AIM-177, Stanford
Computer Science Report STAN-CS-72-311, November 1972.

R. Paui, K. Pingle, and R Bolles, Automated Pump hs:mbly. Film (16 mm, color,
silent, 7 minutes), Stanford Artificial Intelligence Laboratory, April 1973.

R. Paul, WAVE: A Model-Based Language for Manipulator Control, Manuscript,
Submitted to Sixth IITRI Conference, Octobet 1976.

D. L. Peiper, The Kinematics of Manipulators Under Computer Control, Stanford
Artificial Intelligence Laboratory Memo AIM-72, Stanford Computer Science Report
STAN-CS-688-116, October 1968.

186

184]

(85]

(86]

187)

[88]

(89]

. [90)

{91}

[(92)

(93]

(94]

[(95]

(96)

(97]

Bibliography

K. Pingle, R. Paul, R. Bolles, Programmable Assembly, Three Short Examples, Film (16
mm, color, sound, 8 minutes), Stanford Artificial Intelligence Laboratory, October
1974.

Rene Reboh and Earl Sacerdoti, 4 preliminary QLISP Manual, Stanford Research
Institute Artificial Intelligence Center Technical Note 81, August 1973.

John F. Reiser, BAIL — A Debugger for SAIL, Stanford Artificial Intelligence
Laboratory Memo AIM-270, Stanford Computer Science Report STAN-CS-75-523,
October 1975. -

A. A. G. Requicha, N. M. Samuel, H. B. Voelker, Part and Assembly Description
Languages — 1l, Production Automation Project Technical Memo TM-20a,
November 1974.

L. G. Roberts, Homogeneous Matrix Representation and Manipulation of N-
Dimensional Constructs, Document MS1045, Lincoln Laboratory, Massachusetts
Institute of Technology, May 1965.

C. Rosen, D. Nitzan, G. Agin, R. Blean, R. Duda, G. Gleason, J. Kremers, W. Park, R.
Paul, A. Sword, Exploratory Research in Advanced Automation, Prepared for the
National Science Foundation, Stanford Research Institute Project 2591 Fourth Report,
June 1975. '

C. Rosen, D. Nitzan, R. Duda, G. Gleason, J. Kremers, W. Park, R. Paul, Exploratory
Research in Advanced Automation, Prepared for the National Science Foundation,
Stanford Research Institute Project 4391 Fifth Report, January 1976.

Bernard Roth, Jahangir Rastegar, Victor Scheinman, “On the Design of Computer
Controlled Manipulators”, Lecture given at the First CISM - IFToMM Symposium, 5-
8 September 1973, from On Theory and Practice of Robots and Manipulators, Vol. 1,
Springer-Verlag, Vienna-New York, 1974.

Bernard Roth, Performance Evaluation of Manipulators from a Kinematic Viewpoint,
manuscript, Department of Mechanical Engineering, Stanford University, 1975.

J. Rulifson, et al, QA4: A Procedural Calculus for Intuitive Reasoning, Stanford
Research Institute Artificial Intelligence Center, Technical Note 73, November 1973.

Earl D. Sacerdoti, The Nonlinear Nature of Plans, Stanford Research Institute
Artificial Intelligence Center Technical Note 101, January 1975.

Earl D. Sacerdoti, A Structure for Plans and Behavior, Stanford Research Institute
Acrtificial Intelligence Center Technical Note 109, August 1975,

Hanan Samet, Automatically Proving the Correctness of Translations Involving
Optimized Code, Ph.D Dissertation, Stanford Artificial Intelligence Laboratory Memo
A1M-259, Stanford Computer Science Report STAN-CS-75-498, May 1975.

Victor D. Scheinman, .De.u'gn of a Computer Controlled Manipulator, Stanford
Artificial Intelligence Laboratory Memo AIM-92, June 1969.

187

[98] J. T. Schwartz, Automatic Data Structure Choice in a Language of Very High Level,
Courant Institute, NYU, 1974. :

[99) Bruce Shimano, ¥+« Title Unknown »#%, Ph.D. Dissertation, Stanford University, Mid
1977.

[100] Frank Skinner, Design of @ Multiple Prehension Manipulator System, The American
Society of Mechanical Engineers, United Engineering Center, New York, May 1974.

[101] Robert F. Sproull, ¥+ Title Unknown #»+, Ph.D. Dissertation, Stanford Computer
Science Department, Summer 1976.

[102) G.). Sussman, T. Winograd, and E. Charniak, MICROPLANNER Reference
Manual, MIT Artificial Intelligence Laboratory Memo 203, July 1970.

(103) G. J. Sussman, A Computational Model of Skill Acquisition, Ph.D. Dissertation, MIT
Artificial Intelligence Laboratory TR-297, August 1973,

[104) Norihisa Suzuki, Automatic Verification of Programs with Complex Data Structures,
Ph.D. Dissertation, Stanford Artificial Intelligence Laboratory Memo AIM-279,
Stanford Computer Science Report STAN-CS-76-552, February 1976.

' [105) Daniel C. Swinehart, Copilot, a Multiple Process Approach to Interactive Programming
Systems, Stanford Artificial Intelligence Labpratory Memo AIM-230, Stanford
Computer Science Report STAN-CS-74-412, July, 1974.

(106 A. J. Sword and W. T. Park, Location and Acquisition of Objects in Unpredictable
Locations, Stanford Research Institute Artificial Intelligence Center Technical Note
102, June 1975.

[107) Kurt A. VanLehn, ed, Sail User Manual, Stanford Artificial Intelligence Laboratory
Memo AIM-204, Stanford Computer Science Report STAN-CS-73-373, July 1973.

{108) Richard Waldinger, An Interactive System for the Verification of Computer Programs,
Stanford Research Institute Artificial Intelligence Center September 1973,

[109) Richard Waldinger, Achieving Several Goals Simultaneously, Stanford Research
Institute Artificial Intelligence Center Technical Note 107, July 1975.

(110} Mitchel R. Ward, Specifications for a Computer Controlled Manipulator, Computer
Science Department Research Laboratories, General Motors Corp, Warren,
Michigan, Research Publication GMR-2066, February, 1976.

{111] William M. Wichman, Use of Optical Feedback in the Computer Control of an Arm,
Stanford Artificial Intelligence Laboratory Memo AIM-55, August, 1967.

(112]) P. M. Will, Computer Controlled Mechanical Assembly, IBM Research Report RC-5428,
May 1975. ,

188 Bibliography

[118] P. M. Will, D. D. Grossman, "An Experimental System for Computer Controlled
Mechanical Assembly”, IEEE Transactions on Computers, Vol. C-24, No. 9, September
1975.

[114) P. H. Winston, Ed., Progress in Vision and Robotics, MIT Artificial Intelligence
Laboratory TR-281, May 1973.

[115) P. H. Winston, Ed., New Progress in Artificial Intelligence, MIT Artificial Intelligence
Laboratory TR-310, September 1974, revised 1975.

[116] S. 1. Zukovitsky and L. 1. Avdeyev-a, Linear and Convex Programming, Translated by
Scripta Technica, Inc, W. B. Saunders Company, Philadetpni: Pa. 1966.

- — — p— — - - oy ey S, . e [—
-

189

Appendix A.

A Summary Description of AL

The AL language has been described elsewhere, particularly in the AL report [37). A short

description will be repeated here in order to make the text self-contained.! This description
will be divided into several parts, discussing in turn data structures, control structures, and
motion specifications.

A.l Data structures

The concept of varisble has become standard in programming languages. In AL, variables
are Intended to represent such diverse constructs as locations, orientations, repeat counts,
and forces. Variables are declared as in ALGOL, except there is no restriction that all
declarations in a block precede all executable statements; variables must only be declared
before they are used. Declarations assign to variables two independent qualities: type and
dimension. These are described separately.

Data Types
Type scalar

Scalars are floating-point numbers that can be added, subtracted, multiplied, and divided.
Scalar constants are written with or without a decimal point; they are represented exactly at
least to 1000. (The first unrepresentable scalar is dependent on the implementation.)

Type vector

Vectors are ordered triples of scalars. Vectors are understood to apply to a fixed coordinate
system called the station. They can be generated from three scalars by the construct
vector(s/, s2, s3), and they may be added, subtracted, and multiplied by scalars. There-are
three predeclared vector constants: xhat, yhat, and zhat, corresponding to vector(1,0,0),
vector(%.l.ﬂ) and vector(0,0,/) respectively. The dot product is also available; by dotting a
vector with xhat, yhat, and that one can extract its three components. '

Type rotation

Rotations represent either orientations or rotation operators. The orientation is derived as
the result of applying the rotation to the station coordinate system. Rotations can be
* generated from an axis vector and a magnitude scalar by the construct rot(, s), where s is
understood to be in degrees (see the discussion of dimension). Rotations can be multiplied
together. There is one predeclared rotation constant, nilrotn, which represents the identity
rotation.

o

1 am indebted to Ray Finkel, my co-worker on AL, for providing the bulk of this short
description of the language. '

190 Appendix A

Type frame

A frame represents a coordinate system, that is, the location and orientation of its origin
with respect to the station. Frames can be generated from a rotation and a vector by the
construct frame(r, v). Frames can be rotated by application of rotations and displaced by
addition to vectors. There are several predeclared frame constants: station, bpark, which is
the rest position of the blue arm, and ypark, the rest position of the yellow arm. To say
that an arm is at a frame means that the local coordinate system of its hand coincides in
location and orientation with the frame.

Type transform

A transform represents an operator that can move vectors, rotations, and frames from one
coordinate system to another. Transforms can be generated from a rotation and a vector by
the construct trans(r, v). The application of a transform to another object is indicated by
multiplication with the transform, as described in Appendix B. Frames and transforms
have the same runtime representation, and one is readily coerced into the other. The
inverse of a transform is computed by the function inv(t), as described in Appendix B.

Dimensions

Dimensions are used to tell what units entities possess and to ensure that they are not
misused. Dimensions have not been implemented in the current version of AL, but they
serve to clarify the use of scalars especially, and allow the programmer to use units of his
own choosing. The available base dimensions are time, distance, angle, and mass. It is
also possible to leave an entity undimensioned, in which case it can be coerced to any
necessary dimension. When two scalars are added or subtracted, they must have the same
dimension, which will become the dimension of the result. When scalars are multiplied or
divided, the dimension of the result is derived from the dimensions of the arguments; in
this way, new dimensions can be achieved. Vectors must also agree in dimension to be
added or subtracted. Frames may only be formed from distance vectors. Rotations must
have angle scalars to indicate the magnitude. A transform carries the dimension of its
translational part, which must agree with any argument to which it is applied. The basic
units are centimeters? seconds, grams, and degrees. If one wants to work in other units, this
can be done by multiplication by suitable constants; for example, one czn say that the
~ constant inches is defined to have the value 2.54. Then 4xinches really four inches.

Affixment

Assembly involves affixing one object to another. The affixment mechanism of AL
provides a mechanism for automatically keeping track of the values of variables that have
been affixed to others. Since this construct is discussed extensively in Section 3.6 and
Appendix C, we won't say anything more about it here.

2 For reasons that are not entirely clear, the Initial AL runtime system was implemented
with inches as the basic unit. The planning system, however, was based on centimeters, as
was the original language design. For consistency, we will assume the default is centimeters
throughout this document.

191

A.2 Control structures

AL has many of the traditional ALGOL structures, including statement as the primary
locus of control, block structure, declared variables, for and whiie loops, if-then[-else)
conditionals, assignment statements. Procedures have not been implemented, although they
are specified in the original AL report. There are some control structures not at all
standard in ALGOL, which are necessary for parallel execution of several tasks and for
asynchronous use of feedback.

Simultaneous Processes

The cobegin-coend construct is used to split control from one locus into several
simultaneously executing loci. The two words cobegin and coend bracket a set of
statements, each of which is to execute at the same time as the others. These statements can,
of course, be entire blocks performing large tasks. The principal use for the cobegin
construct is the independent control of several manipulators, although it is quite feasible to
let some complex computation execute as a background to arm motions through this
mechanism. cobegins can be nested, to split the locus of control arbitrarily. ‘

There is no way to specify the priority of any thread of the simultaneously executing
processes, but it is possible to have one thread wait for another to reach important places.
This is done by the event mechanism. Events are declared as if they were variables. The
two operations avallable on events are signal and wait. Waiting on an event decrements its
count, which is initially zero. If the count should be negative after the decrement, the
thread of execution is temporarily suspended. Signalling an event adds one to the count. If
the result should be zero or negative, one of the waiting threads is reawakened and
continues its execution. '

Asynchronous Feedback

Use of asynchronous feedback is accomplished by means of the condition monitor. A
condition monitor is written in this way: :

on <ondition> do <body>

The condition can be any scalar or boolean expression, just as is used in while loops and.
if-then[-else] conditionals. (The convention used in SAIL [107,65) applies: any non-zero
scalar result is considered true, and zero is considered false.) The condition may also be an
event. -

After the execution of the on statement, the condition monitor periodically checks to see if
the condition has the value true. If it ever should happen (or if the event given as the
condition should ever be signalled), then the monitor is said to trigger, and the body of the
monitor is executed. A side effect of triggering is that the monitor is disabled. It can
explicitly re-enable itself in the body by executing the statement enable. If the block in
which a condition monitor was declared is exited, the monitor ceases to function.

Condition monitors are essential for manipuiator control, since they allow programmed
response to expected termination or error conditions detected by testing the force on the
moving arm. ' :

192 ' Appendix A

Force is detected by means of scalar functions that have these forms:

force(<vector expression))
torque(<vector expression))

The arguments refer to direction (for force) and axis (for torque) along which the force is to
be sensed. The vectors are understood as pertaining to the hand coordinate system; as the
arm moves, the vectors move with the hand.

A.3 Motion Specifications
Simple Motions

Motions are accomplished by executing motion statements. The motion statement has the
following form: -

move <controliable variable)
<clauses>

where the <clauses> include information. about the destination, intermediate points, timing,
and conditions. The controllable variable should either be the name of a predeclared
manipulator variable, such as blue, or should be a variable affixed to a controllable
variable. (Long chains of affixment ultimately involving a manipulator variable are legal.)
The various clauses are these:

Clause to < frame expression>

This clause is required to indicate where the terminus of the motion is to be. The
remaining clauses are ali optional.

Clause with duration { s | = | 2 } <scalar expression>

The duration clause tells the time for the whole motion. If this optional clause is omitted,
the time required for the motion, based on the distance each joint is expected to travel and
its maximum speed, will be used.

Clause via dist of decorated frame expressions>

The controllable frame is to pass through each of the frames Iistéd on its way to the
destination. The optional decorations can be of these forms:

with <duration clause>
with velocity = <velocity vector expression>
then <statement>

The first of these specifies how long it should take to reach this intermediate point from the
previous intermediate point (or the start of the motion); the second tells what velocity the
manipulator should have. (This was included for the sake of -accurate tossing of ob jects).

Motion Specifications 193

If some particular action should begin at the time that the intermediate point is reached, it
can be specified in the THEN decoration.

Clause on <condition> do <statement>
The condition monitor is active only during - the motion. One legal condition is
"ARRIVAL”, which will trigger only if the arm arrives at its destination without .having
been halted, either through execution of the STOP command or some error condition
detected by the arm control code. The principal use of the condition monitor is to stop the
arm on acquistion of some force limit.

Clause with force(<vector expressiond) = <scalar expression>
Clause with torque(cvector expressiond) = <scalar expression>

These unimplemented options allow the arm to apply force or torque during the course of
the motion. The vectors, for direction (force) and axis (torque), are understood to be in the
hand’s coordinate frame.
Center Motions

The purpose of the center statement is to grasp an object in the hand of a manipulator by
closing the hand until one of the fingers touches it, then continuing to close, moving the
whole arm to accomodate to the location of the ob ject, until the other finger has touched it.
This process leaves the ob ject unmoved. The syntax is quite simple:

center <Aand frame>
<clauses>

The only legal clause is the condition monitor.
Stopping
Any device may be stopped by the command
stop <manipulator variable>.

Although this statement is likely to be used most often in the conclusion of a condition
monitor, it is legal anywhere.

Device Control
AL is intended to be usable even when devices like electric screwdrivers and pneumatic
vises are interfaced into the runtime machine. These devices are what may be called “scalar
devices”, that is, their operation can be described as a scalar function of time. There is an
operate statement to run such machines:

operate <device variable>
<elauses> :

The clauses will depend on the particular device, but duration and velocity will likely be

L

194 Appendix A

common. Note that even though the gripping end of the arm is a scalar device, it is treated
by means of the move statement.

195

. Appendix B.

Notational and Arithmetic Conventions

In AL, frames are used to represent coordinate systems, and transes are used to represent
mappings between coordinate systems. Aside from this difference in usage, the two data
types are isomorphic, since the value of any frame is given by a transformation from a

distinguished coordinate system, station.3 AL allows free coercion between the two types,
both of which have the same internal representation:*

IR RigRys vy |
trans(R,v) = frame(R,v)= IRg} Rog Rog vo |

IRgy Rgg Rgg vg |
{0 0 0 1|

where the R; i form a rotation matrix. Similarly, the internal representation for a vector is:

vector(x,y,z) =

N R

The rules for multiplication of frames and transes with each other and with vectors are
then easily derived from the corresponding matrix products.

trans(R,v}su = Ru + v
frame(R v, Jotrans(Rp,vp) = trans(R Ry, v, +R,vp)

inv{trans(R,v)) = trans(R"! .R-1v) -
AL rotations are represented internally as transes
rot(axis,magn) = trans(rot(axts,magn).nilvect)
and are multiplied in the obvious manner.

In Chapter 7, we frequently wanted to split a trans into its constituent rotation and
translation. This was facilitated by use of the construction function, transl:

? In retrospect, the inclusion of two data types for essentially the same thing was probably a
bad idea: the principal consequence has been the confusion of persons trying to understand
the language.

4 Since the bottom row is constant, it does not actually have to be stored. This
representation is just a special case of the *homogeneous coordinates” first popularized by
Roberts (88] : '

196 Appendix B

transl(v) = trans(nilrotn,v)
Thus
trans(R,v) = transl{(viR

Transformation between coordinate systems (frames) In AL is generally accomplished by
multiplying on the right by a trans.

B A'.\TAB

In this case, T 5 g gives the location and orientation of B's coordinate system with respect to
the coordinate system of A.

For instance, suppose that we have a box with a hole drilled in it. Suppose, further, that
the hole’s center is at h with respect to the box, and that the box is at position

frnme(rot(;ﬂ).b) with respect to the work station. Then the location of the hole center will
be given by
hStatON _¢rame(rot(z,B).bh
=rot(z.8)sh+b

Similarly, if Rgy gives the hole’s rotation with respect to the box, then the rotation of the
box in the work station will be given by:

R f‘tatlon -rot(;.ﬁ)ak BH

Thus, the coordinate system of the hole (with respect to the work station) will be given by

Hole = frame(R f‘tation_hstatlon)
- f rame(lfot(;.ﬁ)»:uR BH.rot(;ﬂ)»:.h +b)

- frame(rot(;.ﬁ).b)»:«trans(RBH.h)
- BOX#TBH

Text Conventions

A number of textual conventions have been used in this document. Although we haven't
adhered rigidly to any single convention, it seems only fair to tell you about the most
common ones. Generally, boldface symbols in the coding examples are reserved words,
while italic symbols are user identifiers. In the mathematical sections, vectors are commonly

given as bold lower case letters, such as “v”, and unit vectors by the use of a hat, as in “x".
T B refers to the trans that takes A into B:

5

Notational and Arithmetic Conventions : 197

B = A#TAB
- Similarly, R o g and pp g refer to the orientation and displacement parts of T 4 p.

TAB = trans(Ry g.pA) = transpp pRAB

In Chapter 7, especially, we use “I” to refer to the identity matrix, transformation, or
rotation, as appropriate for the context.

198

Appendix C.

Automatic Updating Implementation

C.1 Overview

As we stated in Chapter 3, affixments are translated by AL into commands to build a
“graph structure” expressing the relation between the variables. Whenever a variable is
changed, all values that depend on it are marked as “invalid”. Whenever an “invalid”
value is needed, it may be computed from the dependency relations.

This appendix defines the various favors of affixment in terms of the corresponding
graph structure modifications. It then presents a “pseudo-ALGOL" description of the data
structures and algorithms used to implement the graph structure primitives. Minor details
of implementation, such as ring structure pointers, will be left out of this description.

C.2 Semantics of Affixment
The most general form of the affix statement is
affix framel to frame2 [by trans_var][at trans_exp) [rigidly]

where the clauses in the brackets are optional and may occur in any order. If the by clause
is omitted, then the AL compiler will invent a variable to use in relating framel to frameZ.
If the at clause is missing, then inv(frame2}sframel is used as a default. The semantics of
rigid affixment are:

trans_var « trans_exp;)
framel <s frame2strans_var} { Read "framel is computed by frame2strans_var” }
frame2 <= framelsinv(trans_var);

For example,
affix Aandle to driver by Axf rigidly;

would be translated into

hxf « inv(driver)ehandle;

handle <= drivershxf;

driver <= handlexinv(hxf);
Non-rigid affixment is translated as follows:

trans_var « trans_exp;
framel <= frame2strans_van;
when_changing framel also do trans_var « inv(frame2)framel;

199

C.3 Data Structures

Every “active” instance of a variable in an AL program is represented by a graph node
containing the following information:

value — a pointer to a block of storage containing the current value of the
variable. The size of the block depends on the data type of the variable.

+ invmark — an integer. If invmark(var)=0, then value(var) points to a “valid”
value. Otherwise, value(var) contains an old value which may no longer be
correct.

calculators — a list of expressions which may be used to calculate new values of
the variable. Each such expression is represented by a graph node, whose
contents are described below.

dependents — a list of (expression) nodes in the graph structure whose value
directly depends on the variable. If a node e uses var, then e will be in
dependents(var).

‘side_effects — a list of additional statements that are to be executed whenever
the variable is changed by the AL program.

- Nodes associated with “continuously” evaluated expressions are very similar to those
assoclated with variables. They have the following fields:

value — pointer to the value.
invmark — integer. Same use as for variables.

needed — list of (variable) nodes whose values must be valid in order for this
expression to produce a valid value.

dependents — list of (variable) nodes currently calculated by this expression.

code — pointer to the code needed to evaluate the expression. Executing code(e)
returns a pointer to a block of storage containing the value of the

ex pression.5

5 In the actual version used by the runtime system, there is also a pointer to an
“environment” of address bindings to be used in interpreting the code. This will be left out
of our discussion. ;

200 Appendix C

C.4 Algorithms

Explicit updating of values in AL occurs when the interpreter executes an assignment
statement. This is accomplished by a call to change(var,val), which is given below. Briefiy,
this procedure works by invalidating all nodes whose value depends on the node being
changed, putting the new value away, and executing all side-effect procedures.

procedure change(pointer(variable node) varipointer(value) val);
begin '
pointer(value) oldvali®
pointer(statement) s;
invalidate(var time«time+1%
{ Causes all nodes dependent on var to be marked invalid. {see below)}

value(var) « val;
invmark(var) « 0; { We have put away a good value }
for each s such that s € side effects(var) do

execute(s);
end;

invalidate(n,f) is called as a subroutine by change. n is marked “invalid”, and the
procedure is called recursively to invalidate all dependents of n. One difficulty with the
algorithm is that there may be dependency cycles, which could cause infinite recursion.
Therefore, ¢ is used as a cycle breaker. Any time a node and its dependents are to be
invalidated, a unique integer is generated for use as the “invalid” mark. Any time
invalidate encounters this value, it just returns right away.

procedure invalidate(pointer(node) njinteger 1);

if invinark(n)= ¢ then
begin
{ Note that this procedure works on both flavors of graph node. }
pointer(node) dj
invmark(n) « &
for each d such that d € dependents(n) do

invalidate(d.t)

end;

When the interpreter requires the value of a graph node, it calls getvalue(n). If n is
invalid, then evalnode is called to try to get a good value. After the call to evalnode the
value is returned, even if evalnode failed to produce a “valid" answer. This may seem a bit
risky — an alternative would be to generate a runtime error message — but doesn’t seem to
cause much trouble in practice. The assumption embodied in this decision is that even an

old value may still be approximately correct.”

® Actually, oldval is a global variable. It is used to allow side effect procedures to have
access to both the old and new values of the variable being changed.

7 An “invalid” result most often comes from an explicit change to a “by” trans linking two
rigidly affixed frames. The problem is that it is impossible to tell which frame has moved.

o =it 3

Algorithms 201

pointer(value) procedure getvalue(pointer(node) n)k
begin :
if invmark(n) » 0 then
evalnode(ntimevtimesl);
{ time generates a unique invocation count (see below) }
return(value(n))
end;

evalnode(n,t) is the workhorse procedure for the automatic updating. If n contains a valid
value, then the procedure just returns. Otherwise, if n is a variable, then the procedure
tries to obtain a valid value from one of the calculators of 7. To avoid needless
recomputation, an initial check is made to see if one of the calculator nodes is already valid
before trying to re-evaluate any expressions. If n is an expression node, then the procedure

© attempts to get valid values for all the needed parameters to n. If it succeeds, the expression
is evaluated and the value tucked away. Once again, ¢ is used as a cycle breaker. Each
time evalnode is called from a "top” level — le, from getvalue — a unique value is
generated for f. Any time evalnode is called for an invalid node n, t is put into invmark(n);.
if the procedure encounters a node with an invimark = ¢, then It just gives up right away.

-

- g i e -
- m e
oy AT M iy g A LTy T
e Gl I ey g e il
g e T R A Ay T Oy A s

,..
sty

procedure evalnode(pointer(node) niinteger t)
begin :
if invmark(n)0 or invmark(n) = ¢ then
return; { value(n) is either valid or cannot be validated }
invmark(n)et; { This is used to break cycles }
if kind(n) = "variable" then
begin
- pointer(node) ¢
{ First check to see if there is some calculator
with a currently valid value. }
for each ¢ such that e € calculators(n) do
if invmark(e) = 0 then
begin
{ This one will do.}
value(n) ¢ value{(e)
invmark(n) « 0;
return;
end;
{ If we get here, no calculator had a value “ready to go”.
We will now try to get new values the hard way.}
for each ¢ such that ¢ ¢ calculators(n) do
begin
evalnode(ety; { Try to find a new value.}
if invmark(e) = 0 then
begin
{ Eureka! }
value(n) « value(e);
invmark(n) « 0;
return;
end;

S

end;
end

202 Appendix C

else
begin { Must be an expression node)
pointer(node) x;
{ Try to evaluate all arguments}
for each x such that x ¢ needed(n) do
begin
evalnode(x.t);
{ Give up if could not get valid value }
If invmark(x)»0 then
return;
end;
value(n) « evaluate(code(n));
invmark(n)«0;
end;
end;

C.5 Fine Points
Generating Unique Invalidity Marks

One minor difficulty with using the cycle-breaking mechanism discussed here on a small
word-size machine is that the invocation counter may overflow: If ¢ gets to 0, then invalidate
will mark nodes “valid”, and evalnode will give up on encountering a valid node. This is
readily remedied by the simple expedient of checking for overflow after fime is incremented:

procedure bumptime;

begin

pointer(node) n;

time « timesl;

if overflow then
begin
time « I
for each n such that n € set_of_all_graph_nodes do

if invmark(n)=0 then invmark(n)e -I;

end;

end;

Changes in Dependency Relations
Another important point with this method is that before a calculator is deleted, any nodes
that depend on it should be validated. The easiest way to do this is to run down the
dependents list and call getvalue for each element.

An interesting bug

The original implementation of invalidate always used - as the invalidity mark, and gave
up whenever it encountered an invalid node:

Fine Points 203

procedure invalidate(pointer(node) n)

if invinark(n)» O then
begin
{ Note that this procedure works on both flavors of graph node. }
pointer(node) d;
invmark(n) « -J;
for each d such that d ¢ dependents(n) do

invalidate(d);

end;

At first glance, this seems perfectly safe. Why go to the trouble of invalidating a node
whose value is already known to be bad? Unfortunately, the following code sequence then
produces the wrong result.

affix a to b rigidly;

affix b to ¢ rigidly;

{ Assume that, here, a,b, and ¢ all have valid values. }
a + value_I; { Invalidates b and ¢ }

¢ « value_2; { Implicitly changes b and ¢ }

move blue to g; { goes to the wrong place }

Here the change to ¢ results in a call to invalidate(b). Since b is already invalid,
invalidate(a) is never called, thus leaving value_I marked as an incorrect "valid” value to a.

Appendix D.
Ob ject Model for Box Assembly

This section gives a computer generated printout of the object model for the box assembly,
together with several other ob jects.

OBJECTi1HORKSTATION KIND=RSSEMBLY
SUBPRRT BMANIP ‘
" LOCUS_ESTIMATE IS <FLUENT 131223>
DETERM_ESTINATE 1S <FLUENT 131236>
SUBPART TABLE AT NILTRANS .
DETERN_ESTIMATE IS FULLY DETERMINED
OETERN_TENPLATE 1S FULLY DEVERMINED
OBJECT:BNANIP KIND=ASSEMBLY
PRRENT = WORKSTRTION LOCUS ITEN ls 1TEN_8367
OBJECT:TRBLE KIND=PART
DESCR ={ .100e4, .100ed, .060)
PARENT = HORKSTATION XF ITEM IS NILTRANSITH
FEATURE TRBLETOP AT NILTRANS
DETERN_ESTINATE IS FULLY DETERMINED
DETERN_TENPLATE IS FULLY DETERMINED
TRBLETOP: SURFACE (SHOOTH PLRANAR POLYGON
(.100e4,.100e4) (-.100@d,.10004) (-.100a4,-.100ed) (.100eé,-.100e4))

OBJECT:BOX KIND=RSSEMBLY

SUBPART BXBTH RT NILTRANS
LOCUS_ESTINATE IS <FLUENT 131014>
DETERN_ESTINATE IS <FLUENT 131021>
DETERH_TEHPLATE IS FULLY DETERMINED

SUBPART COVER AT TRANS(NILROTN, VECTOR(.808, .068, 4.38))

LOCUS_ESTINATE IS <FLUENT 131026>
DETERM_ESTINATE IS <FLUENT 131033>
DETERM_TEMPLATE IS FULLY DETERMINED
SUBPART SC1 AT TRANS(ROTN(YHAT, 180.080+DEG), VECTOR(3.85, 3.28, 5.84))
LOCUS_ESTINATE 1S <FLUENT 1310‘5>
DETERM_ESTINATE IS <FLUENT 131852>
DETERM_TENPLATE IS FULLY DETERMINED])
SUBPRRT SC2 AT TRANS (ROTN(YHAT, 188.008¢DEC), VECTOR(-3.8S, 3.20, 5.84))
LOCUS_ESTINATE IS <FLUENT 131857> .
DETERM_ESTIMARTE IS <FLUENT 131064>
DETERM_TEMPLATE IS FULLY DETERNINED :
SUBPART SC3 AT TRANS (ROTN(YHAT, 180.008«DEG), VECTOR(-3.85,-3.28, 5.84))
LOCUS_ESTIMATE IS <FLUENT 131071>
DEVERM_ESTIMATE IS <FLUENT 131876>
DETERM_TEMPLATE IS FULLY DETERMINED
SUBPART SC4 AT TRANS (ROTN(YHAT, 188.0004DEG), VECTOR(J.85,-3.20, 6.84))
LOCUS_ESTINATE IS <FLUENT 131103>
DETERM_ESTIMATE IS <FLUENT 131118>
DETERM_TEMPLATE IS FULLY DETERMINED
OBJECT:BXBTH KIND=PART
PRRENT = BOX XF ITEM IS ITEM_6293 LOCUS ITEM 1S ITEM_0340
SUBPART BB1 AT TRANS (ROTN(YHRT, 180.080+DEGC), VECTOR(3.85, 3.20, 4.99))
DETERM_ESTIMATE IS FULLY DETERMINED
DETERN_TEMPLATE IS FULLY DETERMINED

SUBPRRT BB2 AT TRANS (ROTN (YHRT, 180.0088+DEG), VECTOR(-3.85, 3.20, 4.38))
DETERM_ESTIMATE IS FULLY DETERNINED
DETERM_TENPLATE 1S FULLY DETERMINED

SUBPART BB3 AT TRANS (ROTN (YHAT, 180.8004DEG), VECTOR(-3.85,-3.20, 4.98))
DETERM_ESTINATE IS FULLY DETERMINED
DETERM_TENPLATE IS FULLY DETERMINED

SUBPART BB4 AT TRANS(ROTN(YHAT, 180.800:DEG), VECTOR(3.85,-3.28, 4.90))
DETERM_ESTIMATE IS FULLY DETERMINED
DETERM_TEMPLATE IS FULLY DETERMINED ;

SUBPART BIB AT TRANS(NILROTN, VECTOR(.008, .000, 1.80))

Ob ject Model far Box Assembiy _ 205

DETERM_ESTIHRTE IS FULLY DETERMINED
DETERM_TEHPLATE IS FULLY BEVERNINED
FEATURE Bi5 AT TRANS(ROTH{XHAT, S€,988:DEG), VECTOR(.008,-3.88, 2.45))
DETERM_ESTIMATE S FULLY DETERMINED
DETERN_TEMPLRTE 1S FULLY DETERMINED
FERTURE B25 AT TRANS (ROTN(YMAT, 96.660+DEG), VECTOR(4.45, .888, 2.45))
DETERM_EST:#RTE IS FULLY DETERMINED
DETERM_TEMPLATE IS FULLY DETERMINED
FEATURE B35 AT TRANS(ROTN(-XHAT, 90.088eDEC), VECTOR(.080, 3.88, 2.45))
DETERH_ESTINATE IS FULLY DETERNINED
DETERM_TEMPLRTE IS FULLY DETERMINED
FEATURE B45 AT TRANSC(ROTN(-YHAT, 96.808+DEG), VECTOR(.888,-4.45, 2.45))
DETERM_ESTIMATE IS FULLY DETERMINED
DETERM_TEMPLATE IS FULLY DETERMINED
FERTURE BBS AT TRANS (ROTN(YMAT, 180.888+4DEG), NILVECT)
DETERM_ESTINATE IS FULLY DETERMINED
DETERK_TENPLATE 1S FULLY DETERMINED
FEATURE BTS AT TRANS(NILRGTN, VECTOR(.889, .008, 4.99))
DETERM_ESTIMATE 1S FULLY DETERMINED
DETERK_TENPLATE IS FULLY DETERMINED
FEATURE BVL AT TRANS(NILROTN, VECTOR(-4.45,-3.80, .080))
DETERH_ESTIMRTE 15 FULLY DETERMINED
DETERM_TENPLATE IS FULLY DETERMINED
FERTURE BV2 3T TRANS (HILROTN, VECTOR(4.45,-3.80, .008))
DETER®_ESTINATE 1S FULLY DETERMINED
DETERN_TENPLATE IS FULLY DETERMINED
FERTURE BV3 AT YRANS(NILROTN, VECTOR(4.4S, 3.80, .088))
DETERM_ESTIMRTE i$ FULLY DETERMINED
DETERM_TEMPLATE IS FULLY DETERMINED
FEATURE BV4 AT TRARNS(NILROTN, VECTOR(4.45, 3.89, .008))
DETERM_ESTIMATE IS FULLY DETERKINED
DETERM_TEMPLATE I3 FULLY DETERMINED
FEATURE BVS RT TRANS (NILROTH, VECTOR(-4.45,-3.88, 4.99))
DETERM_ESTIMRTE 15 FULLY DETERMINED
DETERM_TERPLATE IS FULLY DETERMINED
FEATURE BVE AT TRANS (NILROTN, VECTOR(4.45,-3.80, 4.90))
DETERN_ESTIMATE IS FULLY DETERMINED .
DETERN_YEHPLATE IS FULLY DEVERWINED
FEATURE BY7 AT TRANS (HILROTH, VECTOR(4.45, 3.88, 4.98))
DETERH_ESTINATE 1S FULLY DETERHINED
DETERN_TEMPLATE IS FULLY DETERMINED
FEATURE BYS BT TRANSI(NILROTM, VECTOR(4.45, 3.88, 4.98))
DETERM_ESTIHATE IS FULLY DETERMINED
DETERA_TERELRTE 1S FULLY DETERRINED
FERTURE BE1 AT TRANS {(ROTK(VECTOR(.357, .863, .357), 98.421sDEG), VECTOR(-4.45,-3.80, .088))
DETERM_ESTIHATE 1§ FULLY DETERMINED
DETERM_TEHPLATE S FULLY DETERMINED
FEATURE BE2 AT TRANS(ROTH(VECTOR(.863, .367, .357),-98.421¢DEC), VECTOR(A.4S,-3.88, .008))
DETERM_ESTINATE IS FULLY DETERMINED
DETERF_TEMPLATE 1§ FULLY DETERMINED
FEATURE BE3 AT TRAHS(ROTN(VECTOR(.578, .281, .679), 148.680sDEG), VECTOR(4.4S, 3.88, .800))
DETERM_ESTIRATE IS FULLY DETERRINED
* DETERH_TEMPLATE 1S FULLY DETERNINED
FEATURE BEA RT TRANS (ROTH(VECTOR(.281, .679, .679),-148.680+DEG), VECTOR(4.45, 3.88,. .800))
DETERW_ESTIARTE S FULLY DETERWINED
DETERM_TEMPLRTE IS FULLY DETERNINED
FERTURE BES AT TRANS (ROTH(VECTOR(.67S, .281, .679),-148.6804DEG), VECTOR(-4.45,-3.80, 4.98))
DETERH_ESTIMATE I3 FULLY DETERHINED
DETERN_TENPLATE IS FULLY DETERHINED
FEATURE BEE AT TRANS (ROTH(VECTOR(.863, .357, .357),-98.421+DEG), VECTOR(4.45,-3.88, 4.90))
DETERM_ESTIMSIE IS FULLY DETERMINED
DETERW_TEMPLRTE i3 FULLY DETERKINED
FEATURE BE7 AT TRANS(ROTN(VECTOR(.357, .863, .357),-98.421+DEG), VECTOR(4.45, 3.38, 4.90))
DETERM_ESTIMATE IS FULLY DETERMINED
DETERM_TERPLRTE 1S FULLY DETERMINED
FERTURE BES AT TRONS(ROTN(VECTOR{.261, .679, .678), 148.6684DEG), VECTOR(4.45, 3.80, 4.98))
DEVERK_ESTIMATE IS FULLY DETERMINED
DETERH_VERSLRTE IS FULLY DETERMINED
FERTURE BES RT YRANS (ROTH(ZHAY,~135.808¢DEC), VECTOR(-4.45,-3.88, .088))

206

Appendix D

DETERM_ESTINATE 1S FULLY DETERMINED
DETERM_TENPLATE IS FULLY DETERMINED
FEATURE BEI8 AT TRANS (ROTN(ZHAT,-45.B804DEG), VECTDR(4 45,-3.89, ,088))
DETERM_ESTINATE 1S FULLY DETERMINED
DETERM_TEMPLATE IS FULLY DETERMINED
FERTURE BE11 AT TRANS (ROTN(ZHAT, 45.888¢DEC), VECTOR(4.4S, 3.88, .0808))
DETERM_ESTIMATE IS FULLY DETERMINED :
DETERM_TEMPLATE IS FULLY DETERMINED
FERTURE BE12 AT TRANS(ROTN(ZHAT, 135,0864DEG), VECTOR(4.45, 3.80, .800))
DETERM_ESTINATE IS FULLY DETERMINED
DETERM_TEMPLATE 1S FULLY DETERMINED
OBJECT:BBL KIND<BORE
DESCR »PROFILE: NSECTS =2 LEN = .80 CROSS SECTION =CIRCLE
DIR « 1.08 1 {-i,CIRCLE, .525, .525, 2.54, .008,1TEN_6011)
DIR = 1.80 :+ [-1,CIRCLE, .525, .8089, .089, .000,SHOOTH)
PRRENT « BXBTM XF ITEM IS ITEW_8177 .
OBJECT:BB2 KIND«BORE *
DESCR =PROFILE: NSECTS =2 LEN » .000 CROSS SECTION =CIRCLE
DIR = 1.00 ¢+ [-1,CIRCLE, .525, .525, 2.54, .088,1VEN_8011)
DIR » 1.00 :+ (-1,CIRCLE, .525, .088, .800, .880,SMO0TH)
PARENT = BXBTHM XF ITEW IS ITEM_0182
0BJECT{BB3 KIND=BORE
DESCR =PROFILE: NSECTS =2 LEN = .808 CROSS SECTION =CIRCLE
DIR = 1.80 s (-1,CIRCLE, .525, .525, 2.54, .08@,1VEN_8811)
DIR = 1.80 1 [-1,CIRCLE, .525, .00, .888, .000,SNOOTH)
PARENT = BXBTM XF ITEM IS ITEM_0187
© OBJECT:BB4 KIND«BORE
DESCR =PROFILE: NSECTS =2 LEN = .808 CROSS SECTION =CIRCLE
DIR « 1.08 : (-1,CIRCLE, .525, .525, 2.54, .088,1TEN_0011)
DIR = 1.08 ¢+ (-1,CIRCLE, .525, .000, .080, .808,SHOOTH]
PARENT = BXBTM XF ITEW IS ITEN_8192
0BJECTIBIB KIND=BORE
DESCR =PROFILE: NSECTS =2 LEN = 3.98 CROSS SECTION =1TEM_8194
DIR « 1.00 1 ([-1,ITEN_0184, 1.00, 1.88, 3,88, .000,SMOOTH)
DIR = 1.88 : {-1,ITEN_B19¢, 1.08, .008, .00, .000,SNOOTH)
PARENT = BXBTM XF ITEM IS ITEN_0197
B1S: SURFACE (SMOOTH PLANAR POLYGON
(4.45,2.45) (<4.45,2.45) (-4.45,-2.45) (4.45,-2.45))
B2S: SURFACE (SMOOTH PLANAR POLYGON
(3.80,2.45) (-3.80,2.45) (-3.88,-2.45) (3.88,-2.45))
B3S: SURFACE (SMOOTH PLANAR POLYGON
(4.45,2,45) (-6.45,2.45) (-4.45,-2.45) (4.45,-2.45))
BAS: SURFACE (SHOOTH PLANAR POLYGON :
(3.80,2.45) (-3.88,2.45) (-3.80,-2.45) (3.88,-2.45))
BBS: SURFACE (SMOOTH PLRNAR POLYGON
(4.45,3.80) (-8.45,3,88) (-4.45,-3.89) (4.45,-3.88))
BTSs SURFACE (SNOOTH PLANAR POLYGON
(4.45,3.80) (-4.45,3.80) (-4.45,-3.80) (4.45,-3.89))
BVL: (SMOOTH, .eee, .086)
BV2: [SMOOTH, .000, .008)
BV3: [SMOOTH, .080, .008)
BVA: [SMOOTH, .080, .000)
BVS: (SMOOTH, .060, .868)
BVE: [SMOOTH, .80, .808)
BV7: [SMOOTH, .@@e, .808)
BVS: ([SMOOTH, .80, .086)
BE1: (1,CIRCLE, .008, .800, 8.98, .785,SHOOTH)
BE2: (1,CIRCLE, .000, .00@, 7.68, .785,SHOOTH)
BE3: [1,CIRCLE, .000, .0800, .0808, .785,SHOOTHI
BE4: [1,CIRCLE, .880, .880, 7.60, .78S,SHOOTH)
BES: [1,CIRCLE, .00, .88, 8.98, .785,SMOOTH)
BE6: [1,CIRCLE, .800, .88, 7.60, .785,5HO0TH)
BE7: [1,CIRCLE, .808, .088, .808, .785,SMOOTH)
BE8: ([1,CIRCLE, .88, .80, 7.68, .785,SH00TH)
BES: [1,CIRCLE, .008, .880, 4.38, .785,SHO0TH)
BE18: (1,CIRCLE, .900, .88, 4.38, .785,SHO0TH)
BELL: [1,CIRCLE, .88, .88, 4.9, .785,SHOOTH}
BE12: [1,CIRCLE, .808, .88, 4.80, .785,SHOOTH)
OBJECT:COVER KINDePART

Ob ject Model for Box Assembly 207

PARENT = BOX XF ITEM IS ITEM_8295 LOCUS ITEM IS ITEM_0342
SUBPART CBI AT TRANS(ROTN(YHAT, 180.800¢DEG), VECTOR(3.85, 3.20, .300))
DETERM_ESTINATE IS FULLY DETERMINED
DETERN_TEMPLATE 1S FULLY DETERMINED
SUBPART CB2 AT TRANS (ROTN(YHAT, 180.808+DEG), VECTOR(-3.85, 3.20, .380))
DETERM_ESTIMATE IS FULLY DETERMINED ‘
DETERM_TEMPLATE 1S FULLY DETERMINED
FEATURE C1S AT TRANS (ROTN(XHAT, 98.0084DEG), VECTOR(.00,-3.88, .150))
. DETERM_ESTINATE IS FULLY DETERMINED
DETERM_TENPLATE 1S FULLY DETERMINED
FEATURE €25 AT TRANS(ROTN(YHAT, 90.608:DEG), VECTOR(4.45, .008, .158))
DETERN_ESTIMATE 15 FULLY DETERMINED
DETERM_TENPLATE IS FULLY DETERMINED
FEATURE C35 AT TRANS (ROTN (-XHRT, 98.800+DEG), VECTOR(.880, 3.80, .158))
DETERM_ESTIMATE 15 FULLY DETERMINED
DEVERH_TEMPLATE 1S FULLY DETERMINED
FEATURE C45 AT TRANS (ROTN(XHAT, 98.000sDEG), VECTOR(.088,-4.45, .158))
DETERM_ESTIMATE IS FULLY DETERMINED
DETERM_TEMPLATE IS FULLY DETERMINED
FERTURE CBS AT TRANS (ROTN (YHAY, 180.000+DEG), NILVECT)
DETERN_ESTIMATE 1S FULLY DETERMINED
DETERN_TEMPLRTE 1S FULLY DETERMINED
FEATURE CTS AT TRANS(NILROTN, VECTOR(.808, .088, .380))
DETERM_ESTIMATE 1S FULLY DETERMINED
DETERM_TEMPLRTE IS FULLY DETERMINED
OBJECT:CBI KIND=BORE
DESCR «PROFILE: NSECTS s2 LEN = .080 CROSS SECTION =CIRCLE
DIR = 1.00 : [-1,CIRCLE, .908, .760, .188, .888,SHOOTH)
DIR = 1.88 1 {-1,CIRCLE, .708, .768, .268, .808,SNOOTH)
PARENT = COVER XF ITEM 1S I1TEM_6122
OBJECT:CB2 KIND=BORE
DESCR =PROFILE: NSECTS =2 LEN = .088 CROSS SECTION «CIRCLE
DIR « 1.88 : (-1,CIRCLE, .900, .700, .188, .880,SMOOTH)
DIR = 1.08 : (-1,CIRCLE, .780, .766, .208, .088,SHOOTH)
PARENT = COVER XF ITEM IS ITEM_8138
C1S: SURFACE (SHODTH PLANAR POLYGON
(4.45,.150) (-4.45,.158) (-4.45,-.158) (4.45,-.158))
C2S: SURFACE (SNOOTH PLANAR POLYGON
(3.80,.150) (-3.80,.158) (-3.80,-.158) (3.88,-.150))
C3S: SURFACE (SNOOTH PLANAR POLYGON
(4.45,.158) (-6.45,.150) (-4.45,-.158) (4.45,-.158))
CASt SURFACE (SMOOTH PLANAR POLYGON
(3.80,.158) (-3.80,.150) (-3.80,-.158) (3.88,-.150))
CBS: SURFACE (SMOOTH PLRANAR POLYGON
(4.45,3.80) (-4.45,3.80) (-4.45,-3.80) (4.45,-3.80))
CTS: SURFACE (SNOOTH PLANAR POLYGON
T (4.45,3.80) (-4.45,3.80) (-4.45,-3.80) (4.45,-3.80))
OBJECT:SC1 KIND=PRART
PARENT = BOX XF ITEM 1S ITEM_6297 LOCUS ITEM IS ITEM_0344
SUBPRRT SC1.SCRHSH AT NILTRANS
DETERN_ESTIMATE IS FULLY DETERMINED
DETERM_TEMPLATE 1S FULLY DETERMINED
SUBPART SC1.SCRWSLT AT NILTRANS
DEVERN_ESTIMATE IS FULLY. DETERNINED
DETERN_TEMPLATE 1S FULLY DETERNINED
OBJECT:SC1.SCRWSH KIND=SHRFT
DESCR «PROFILE: NSECTS =3 LEN = 3.18 CROSS SECTION =CIRCLE
DIR = 1.08 1 (1,CIRCLE, .826, .826, .635, .088,SNOOTH)
DIR » 1.88 : (1,CIRCLE, .635, .635, 1,91, .0880,17EN_86811)
DIR « 1.88 : (1,CIRCLE, .635, .800, .635, .088,5MO0TH)
PARENT = SC1 XF ITEM IS ITEM_0270
OBJECT:SC1.SCRHSLT KINDsBORE
DESCR =PROFILE: NSECTS w2 LEN » .588 CROSS SECTION =ITEM_8263
DIR = 1.88 1+ [-1,17EN_0263, .635, .635, .588, .080,5MO0TH)
DIR = 1.08 + (-1,ITEN_B263, .635, .089, .88, .806,5M00TH)
PRRENT = SCI XF ITEM IS ITER_9263
OBJECTISC2 KINDsPART
PARENT = BOX XF ITEM IS ITEN_0208 LOCUS ITEN IS ITEM_8348
SUBPART SC2.SCRUSH AT NILTRANS

208

DETERH_ESTINATE IS FULLY DETERMINED
DETERM_TEMPLATE IS FULLY DETERMINED
SUBPART SC2.SCRWSLT AT NILTRANS
DETERM_ESTIMATE 1S FULLY DETERMINED
DETERH_TEMPLATE 15 FULLY DETERMINED
OBJECT:SC2.SCRWSH KIND=SHAFT
DESCR «PROFILE: NSECTS =3 LEN = 3.18 CROSS SECTION =CIRCLE
DIR = 1.88 : [1,CIRCLE, .826, .826, .635, .008,SHOOTH)
DIR = 1.80 : [1,CIRCLE, .635, .635, 1.91, .008,1TEN_8611]
DIR = 1.8 : [1,CIRCLE, .635, .88, .635, .808,SN00TH)
PARENT « SC2 XF ITEM IS ITEM_8278
OBJECT:1SC2.SCRHSLT KIND=BORE
DESCR »PROFILE: NSECTS =2 LEN = .588 CROSS SECTION =ITEN_8263
DIR « 1.88 3 (-1,ITEN_8263, .635, .635, .508, .088,SNOOTH)
DIR » 1.88 : I-1,1TEM_8283, .635, .808, .880, .808,SMOOTH)
PARENT = SC2 XF ITEM 15 ITEM_6268
OBJECT:SC3 KIND=PART
PARENT = BOX XF ITEM IS ITEM_8381 LOCUS ITEM IS 1TEW_8348
" SUBPART SC3.SCRUSH AT NILTRANS
DETERNM_ESTINATE IS FULLY DETERMINED
DETERM_TEMPLATE 1S FULLY DETERMINED
SUBPART SC3.SCRWSLT AT NILTRANS
DETERM_ESTIMATE 1S FULLY DETERMINED
DETERN_TEMPLATE IS FULLY DETERMINED
OBJECT:SC3.SCRUSH KINDsSHAFT
DESCR <PROF ILE: NSECTS =3 LEN = 3.18 CROSS SECTION =CIRCLE
DIR = i.e6 : [1,CIRCLE, .826, .826, .635, .B8@,SHOOTH)
DIR « 1.88 s+ [1,CIRCLE, .635, .635, 1.91, .808,I1TEN_8011)
DIR = 1.88 :+ Ul,CIRCLE, .635, .90@, .635, .068,SMOOTH)
PARENT = SC3 XF ITER IS ITEW_6278
OBJECT:SC3.SCRWSLT KIND=BORE
DESCR <PROFILE: NSECTS =2 LEN = .588 CROSS SECTION =ITEM_8263
DIR « 1.80 : [-1,1TEN_8263, .635, .635, .568, .808,SHOOTH)
DIR = 1.88 : (-1, ITEM_8263, .835, .808, .060, .888,SHOOTH]
PARENT = SC3 XF ITEM 1S 1TEM_8268
DBJECT:SC4 KIND=PART
PARENT « BOX XF ITEM IS ITEM_8303 LOCUS ITEM IS I1TEM_8358
SUBPART SC4.SCRHSH AT NILTRRNS ,
DETERM_ESTINATE 1S FULLY DETERHINED
DETERM_TEMPLATE 1S FULLY DETERMINED
SUBPART SC4.SCRUSLT AT NILTRANS
DETERM_ESTIMATE IS FULLY DETERMINED
DETERM_TEMPLATE 1S FULLY DETERMINED
OBJECT:SC4.SCRUSH KINDsSHAFT
DESCR =PROFILE: NSECTS =3 LEN = 3.18 CROSS SECTION =CIRCLE
DIR =« 1.88 : (1,CIRCLE, .826, .826, .635, .80@,SHOOTH)
DIR « 1.00 : [,CIRCLE, .635, .635, 1.91, .000, ITEM_8@11)
DIR « 1.88 : (1,CIRCLE, .635, .008, .635, .888,SHOOTH)
PARENT = SC4 XF ITEM IS ITEN_8278
OBJECT:SC4.SCRUSLT KIND=BORE
DESCR «PROFILE: NSECTS «2 LEN = .508 CROSS SECTION =1TEM_8263
DIR = 1.88 : (-1,I1TEN_0263, .635, .635, .508, .808,SHO0TH)
DIR = 1.88 + (-1,1TEM_8263, .635, .888, .008, .888,SMOOTH)
PRRENT = SC4 XF ITEM 15 ITEW_8268

OBJECT:PRACK KIND=PART
SUBPART PRACK.BI AT TRANS (ROTN(YHAT, 188.000+DEG), VECTOR(-2.54,-3.81, 2.54))
DETERN_ESTINATE 1S FULLY DETERMINED
DETERH_TEMPLATE IS FULLY DETERMINED
SUBPRRT PRACK.B2 AT TRANS (ROTN(YHAT, 188.8004DEG), VECTOR(2.54,-3.81, 2.54))
DETERN_ESTIMATE IS FULLY DETERMINED
DETERN_TEMPLATE IS FULLY DETERMINED
FEATURE PRKTS AT TRANS (NILROTN, VECTOR(.880, .088, 2.54))
DETERM_ESTIMATE IS FULLY DETERMINED
DETERM_TEMPLATE IS FULLY DETERMINED
OBJECT:PRACK.B1 KIND=BORE
DESCR =PROFILE: NSECTS =3 LEN = 2.41 CROSS SECTION =CIRCLE
DIR = 1.80 : {-1,CIRCLE, 1.91, .508, .635, .808,SHOOTH)
DIR = 1.88 ¢ t-1,CIRCLE, .508, .508, .78, .8@8,SHOOTH]

Appendix D

Ob ject Model for Box Assembly

DIR = 1.00:

209

[-1,CIRCLE, .508, .000, .02, .800,SMOOTH)

* PARENT = PRACK XF ITEM 1S ITEM_8315

OBJECT:PRACK.B2 KIND=BORE

DESCR «PROFILE: NSECTS =3 LEN = 2.4}

DIR =
DIR =
DIR =

1.0 1
1.80
1,08 4

CROSS SECTION =CIRCLE

(-1,CIRCLE, 1.85, .508, .635, .008,SMOOTH)
{-1,CIRCLE, .508, .608, 1.78, .000,SNOOTH]
{-1,CIRCLE, .508, .008, .000, .080,SN0OTH)

PARENT = PRRCK XF ITEM IS ITEM_0320

PRKTS: SURFACE (SHOOTH PLANRR POLYGON

(3.81,5.83) (-3.81,5.08) (-3.81,-5.08) (3.81,-5.08))

OBJECT: ITEN_0321 KIND=SHRFT
DESCR =PROFILE: NSECTS =4 LEN = 4,58

OIR = 1.88 s [1,CIRCLE, .000,
OIR = 1.86 : ([1,CIRCLE, .44S,
DIR » 1.80 ¢« [1,CIRCLE, .635,
DIR = 1.80 :. 1],CIRCLE, .63S,

OBJECT:1PINL KIND=SHAFT .
DESCR =PROFILE: NSECTS =4 LEN = 4.51

DIR = 1.00 : (1,CIRCLE, .809,
DIR = 1.80 3 [1,CIRCLE, .445,
DIR = 1.88 : {1,CIRCLE, .635,
DIR = 1.88 s [1,CIRCLE, .63,

CROSS SECTION =CIRCLE
445, .445, .008,SNOOTH)
445, 1.27, .080,SMOOTH)
.835, 1.48, .000,SHOOTH)
.800, 1.48, .008,SMOOTH) .

CROSS SECTION =CIRCLE
445, 445, 0088, SHOOTH)
45, 1,27, .008,SNO0TH)

.635, 1.40, .2800,SN00TH)

.00, 1.40, .000,SNOOTH)

210

Appendix E.

Examples of Location and Accuracy Calculations

E.l1 Box in a Fixture

This sequence of problems illustrates the translation of symbolic relations into constraints,
and shows the output estimates that result from application of the iterative method of
Section 7.6.5 to the resulting sets of equations. Here, we have placed our box (whose model
is given in Appendix D) into an open-topped fixture, as illustrated in Figure E.l. In the
first problem, the box is allowed to rattle around loosely inside the confines of the fixture.
In subsequent subproblems, we push the corner edges up against sides of the fixture, thus
further restricting the box.

First Problem

The box has been placed in the fixture, with the bottom surface of the box in contact with
the bottom inside surface of the box. This is reflected in our data base by the assertion:

(contacts, bxbtm, bjl.sb, inside_of)

where bxbtm is the bottom of the box, and bjl.sb is the bottom of the fixture. This produces
the constraint set:

YHAT+Re 5.85s VECTOR(-.760,-.649, .800)

S 5.800 - YHAT . PV

-XHATeR% 5.85¢ VECTOR(-.760,-.649, .008) S 4.000 - ~XHAT . PV
-YHAToRs 5.85% VECTOR(-.768,-.649, .8868) S 5.880 - -YHAT . PV
XHAT+R2 5.85s VECTOR(-.760,-.649, .800) s 4.880 - XHAT . PV

YHRT#R% 5.85¢ VECTOR(.760,-.649, .0008) s 5.008 - YHAT . PV

~XHAT+Rs 5.85¢ VECTOR(.760,-.649, .008) < 4.800 - -XHAT . PV
-YHRT#R# 5.85¢ VECTOR(.768,-.649, .8008) < 5.800 - -YHAT . PV
XHRT+R+ 5.85# VECTOR(.768,-.649, .8008) < 4.880 - XHAT . PV

YHAT#R« S.85« VECTOR(,768, .649, .060) < 5.800 - VYHAT . PV

-XHAT#R+ 5.85% VECTOR(.760, .649, .800) < 4.000 - -XHRY . PV
~YHAT#«Re 5,85« VECTOR(,768, .649, .888) < 5.860 - ~YHRT . PV
XHAT#Re 5.85s VECTOR(.760, .649, .800) < 4.800 - XHAT . PV

YHRT#R# 5.85¢ VECTOR(-.760, .649, .808) s 5.800 - VYHAT . PV

-XHATeR+ §.85« VECTOR(-.768, .649, .008) < 4.800 - -KHAT . PV
~YHRT+R& 5.85« VECTOR(-.760, .649, .088) s §5.800 - -YHAT . PV
XHRATsR« 5.85¢ VECTOR(-.760, .649, .800) < 4.8060 - XHAT . PV

9. .080 - ZHAT . PV
MHERE R = NILROTNsROTN (-ZHAT,W)
PV = IX,Y,2)

A pplying the algorithm given in Section 7.6.5 gives two possible orientations:

ESTINATE LIST:

1TENA16:

1] -.204 TO .2084

Yi -.555 T0 .55

4} -.081 70 .861

u: 87.368sDEG TO 92.6322DEC

COS(H8) = .0800 SIN(NG) = 1.008
COS(DM) = .999 R = .846

Box in a Fixture 211

Figure E.l. Box in Fixture

Figure E2. Screw on Driver

212 Appendix E

ITEMALT:

X1 -,204 TO .284

Yi -.555 T0 .555

2: -.80]1 TO .%01

W -82.632¢0EG TO -B87.368sDEC
€OS(He) = .0668 SIN(WG) = -1.000
COS(OU) = .999 R = .846

These results also illustrate the replacement of equality constraints with a pair of
inequalities: here, Z goes from -0.001 to 0.001. This approximation is not strictly necessary.
However, it proved useful in some (other) cases where overdetermination was a problem.

Second Problem

“We now assert that one of the corner edges of the box is in contact with a side of the
fixture.

(contacts, bxbtm, bjl.sb, inside_of)
(contacts, be9, bjl.s2, extent_irrelevant)

This gives:
-XHATeRe 1.80¢ VECTOR(-.707,-.767, .000) < -.707
" YHATeRs 5.85¢ VECTOR(-.768,-.649, .808) < 5.008 - YHAT . PV
—XHAT#R+ 5.85¢ VECTOR(-.768,-.649, .086) < 4.808 - -XHAT . PV
-YHATeR« 5.85s VECTOR(-.760,-.643, .808) < 5.800 - -YHAT . PV
XHAT#Re 5.85¢ VECTOR(-.760,-.649, ,000) < 4.800 - XHAT . PV
YHATsRe 5.852 VECTOR(.760,-.649, .088) S 5.808 - YHAT . PV
-XHRTsRe 5.85¢ VECTOR(.760,-.849, .000) S 4.000 - -XHAT . PV
-YHATsRe 5.85¢ VECTOR(.760,-.649, .088) < 5.808 - -YHAT . PV
XHATsRe 5.85s VECTOR(.768,-.649, .880) < 4.800 - XHAT . PV
YHAT¢Re 5.85s VECTOR(.760, .649, .808) < 5.080 - YHAT , PV
—XHAT+Rs 5.85¢ VECTOR(.768, .649, .8088) < 4.800 - -XHAT . PV
-YHATeR# 5.85¢ VECTOR(.768, .649, .808) S 5.000 - -YHAT . PV
XHATsR« 5.85# VECTOR(.768, .649, .0888) S 4.880 - XHAT , PV
YHATsRe 5.85¢ VECTOR(-.760, .649, .888) < 5.860 - YHRT . PV
—XHAT#R+ 5.85¢ VECTOR(-.768, ,649, .0808) < 4.808 - -XHAT . PV
-YHATeRs 5.85s VECTOR(-.768, .649, .808) S 5.800 - -YHAT . PV
XHATsRe .85+ VECTOR(-.768, .549, .088) S 4.660 - XHAT . PV
-XHATsRs 5.85s VECTOR(-.760,-.649, .880) = ~4.808 - -XHAT . PV

0= .000 - ZHAT . PV
WHERE R = NILROTNsROTN(-ZHAT,?)

ESTINARTE LIST:

ITENA26:

X3 -.080 TO .200

\L ~-.558 70 .S58

4] -.801 T0 .00l

Hs -92.632+DEG TO -98.0080+DEG

COS(H8) = -,823 SIN(HE) = -1,0800
cOS(DH) = 1.880 R = .0823

Notice that we have now rid ourselves of the ambiguity in the gross orientation of the box.

Final Problem

. A

e e e

We now proceed to add two more edge-to-surface contacts:

Box in a Fixture 218

(contacts, bxbrm, bjl.sb, inside_of)
(contacts, be9, bjl.s2, extent_irrelevant)
(contacts, bel0, bjl.s3, extent_irrelevant)
.(contacts, bell, bjl.s4, extent_irrelevant)

and wind up with the final estimate:

-YHRT#Rs §.§0¢ VECTOR(,707,-.707, .880) € -.707
XHATsRs 1.08@s VECTOR(.767, .767, .000) S -.707
~XHAT#*Re 1.80s VECTOR(-.707,-.7087, .08060) S -,707
YHATeRa 5,85+ VECTOR(-.760,-.649, .008) S 5.080 - YHAT . PV
-XHAT#R* 5.85s VECTOR(-.760,-.649, .808) < 4,080 ~ -XHRT . PV
~YHATsRs §,85s VECTOR(-.760,-.649, .800) S 5.000 - -YHAT . PV
XHAT#Re §,85¢ VECTOR(-.768,-.649, .000) S 4.000 - XHRT . PV
YHATsRs 5.85¢ VECTOR(.76@,~.648, .000) < 5,000 - YHAT . PV
~XHATeRs §.85s VECTOR(.768,-.649, .808) s 4.808 - -XHAT . PV
-YHATsRs 5.85s VECTOR(.760,-.649, .000) < 5.0080 - -YHRT . PV
XHATsRe 5.85% VECTOR(.768,-.649, .800) S- 4.000 - XHAT ., PV
YHATsRs §.85s VECTOR(.768, .649, .008) S 5.800 - YHAT . PV
~XHATsRe 5.85¢ VECTOR(.76, .649, .0800) S 4.800 - ~XHAT . PV
-YHATsRe 5.85¢ VECTOR(.760, .649, ,008) S 5,800 - -VHRT . PV
XHAT#Re 5.85¢ VECTOR(.760, .649, .000) S 4.000 - XHAT . PV
YHRT#Re 6.85¢ VECTOR(-.766, .649, .888) < 5.800 - YHAT . PV
~XHAT#Re 5.85s VECTOR(-.768, .649, .008) < 4.000 - -KHRT . PV
-YHATsRs 5.85% VECTOR(-.760, .649, .800) S 5.000 -~ -YHAT . PV
XHATsRe 5.85¢ VECTOR(-.7608, .649, .0888) S 4.800 -~ XHAT . PV
~YHATsRs 5.85¢ VECTOR(.760,~.649, .008) = -5.008 ~ -YHAT . PV
XHATeRs 5,85¢ VECTOR(.766, .643, .0080) = -4.000 - XHAT . PY
-XHATeRe 5.85s VECTOR(-.768,-.649, .008) = -4.008 - -NHRT . PV

8= .000 - ZHAT . PV
UHERE R = NILROTN#ROTN (-2HAT,?)

ESTINATE LIST)

1TENAA2:

X3 .000 TO .800

Y1 .379 T0 .38l

23 -.901 70 .68l :

H: -92,632+DEG T0 -92.60340EG

COS(H®) a -,046 SIN(N®) = -.999
COS(DW) = 1.808 R = .000

E.2 Screw on Driver

This example illustrates use of the differential approximation methods of Section 7.9 to
estimate runtime errors. The task is insertion of a screw into a hole of our favorite box.
The box is assumed to sit on the table, with possible displacement errors in the xy plane
and rotation error about the z axis:

Dbox = tranle; * p;)mt(;ﬂ)

where
0.3 inches s A s 0.3 inches
-0.2 inches < p s 0.2 inches
-5 degrees s 7 < b degrees

The screw is held on the end of a driver, as shown ir{ Flgﬁre E.2, and the driver is held in.

214 Appendix E

the hand. We will assume that errors in the driver's p.osition with respect to the hand are
negligible. However, the hand'’s position will only be assumed accurate to within 0.05 inch
" in displacement and 0.25 degree in orientation.

DAhand = transl(vector(&x.ﬁybz))trot(;.¢x)trot(;.dﬁ,)trot(;.'ﬁz)

_ where
-0.05 inches < by, By. 5, s 0.05 inches

-0.25 degrees < ¢, ¢y. ¢, < 0.25 degrees

Likewise, the screw can wobble about the tip of the driver.

ATy - rot(;(,a)».\rot(;,ﬂ)
=1 aM, ¢+ ﬁMy
where

-5 degrees s a s 5 degrees
-5 degrees < B s 5 degrees

We are interested in producing a parameterized estimate for AThe the relation between the
center of the hole and the tip of the screw. In this case, the system finds only one acyclic

path of relations linking the hole and tip.
The - hole"-mp
= (boxsTpp) L(hands T go T o Tgy)
= Tﬁﬂ.#box' 'ManduThdwTds-uTst

where)
Tbh = Location of hole with respect to box.
Thd = Location of driver with respect to hand.
Tys = Location of screw with respect to driver.
Ty = Location of tip with respect to screw.
box = Location of box in work station

hand = Location of hand in work station

;,-:g;.
In this case, the nominal values for these quantities are given by: %’f
Tbh < trans(nilrotn,vector(3.85,3.20,4.90)) (Distances in cm) ‘i

Thd = niltrans S

S

Tds = trans(nilrotn,vector(0,0,25.4)) =

=}
£y
i

Ty = trans(nilrotn,vector(0,0,3.18))
box < trans(nilrotn,vector(45.7,101.6,0))

Screw on Driver 215

hand % trans(rot(y,I80sdeg)vector(49.6,104.8,30.3)

ANl errors other than those described above are assumed to be negligible. Using this
information, application of the algorithm given in Section 7.9 gives us a parameterized form

' for ATht:
ATy, = transApp ARy,

where ' :
Appe = Ysvector(3.20,3.85,0)

N ¢xwe¢tor(0.28.6.0) N ¢’¢vector(-28.6.0.0) + ¢ avector(0,0,0)
+ asvector(0,3.18,0) + Puvector(-3.18,0,0)
+ AX -dy +8,% 06,)' + 6,2

CORpy 14 YMy e My + My + M, » aMy + BM,

Sub Ject to constraints:

t1.8 , .008 , .088) . V1S .762

t1.e8 , .809 -, .868) .Vl 2-.762

t.e08 , 1.08 , .08) .Vis 588

(.00 , 1,00 , .888 1 . Vl2-.508

{.080 , .0ee , 1.88) .VisS.873-1

t.ee8 , 000 , 1.88) .Vl 2-.873e-l

t1.8¢ ., .08 , .08 , .68 , .eee , .ee8) . V25 .12
(1.6 ., .ee0 , .800 , .80 , .geee , .800) . V2 2-.127
t.006 ., l.06 . , .80 , .66 , .800 , .08 1, VZ s .127
t.ee8 . 1.08 , .6e® , .ees , .88 , .608) . V2 2-.127
{.e0¢ ., .e00 , .60 , .00 , .88 , .00) . V25 .12
t.ee60 , .e28 , 1.0 , .6e9 , .ee8 , .08) . V2 2-.127
{.008 . .00 , .009 , 1.08 , .88 , .88] . V2 S .43Be-2
.08 , .e08 , .009 , 1.80 , .000 , .08] . V2 2-.436e-2
.e00 . .0e6 , .80 , .808 , 1.88 , .000) . V2 5 .A36e-2
t.o06 ., .op8 , .00 , .0e8 , 1.89 , .080) . V2 2-.436e-2
t.e00 ., .008 , .00 , .000 , .868 , 1.0) . V2 S .436e-2
(.00 . .ee8 ., .e08 , .008 , .060 , 1.80) . V2 2-.436e-2
(1.0 , .088) . V3 S .873e-)

[1.00 , .080) . V32-.873e-1

t.068 , 1.80) .V3s.873-1

t.008 , 1.88 1, V32-873-!

where

Vis LA B 7 .
vaetd, 8, 5, b, 9, ¢
iata, B1 “

We are interested in finding the maximum displacement errors in the plane of the hole (Ax

and Ay) and along the axis of the hole (Az). These quantities are given by the ob jective
functions:

216 | Appendix E

Ax = 13.20, 080, -28.6, .00, .000, -3.18, 1.80, ,008, 1.08, .088, .808) . V
Ay - 13,85, 28.5, .009, .000, 3.18, .00, .008, -1.00, .000, 1.00, .008) . V
Oz = t .000, .000, .080, .000, .900, .08, .000, .008, .009, .889, 1.00) . V

where

Vet ¢,49,9,a, _ﬂ. Aow, b, b 8,0

Solving these linear programming problems, the system gets

-1.57 s Ax s 1.57 (1.57 cm = 0.62 inches)
-1.37s Ay s 1.37 (1.37 cm = 0.54 inches)
127 Ar 5.127 - (.127 cm = 0.05 inches)

Also, we need to know the maximum direction error between the screw and hole axes. This
quantity will be given by:

A0 = max (|A0) IAOYD
where

A0, « 1 .vee, -1.00, 000, .008, -1.00, 898) . V
Aog « [.988, .00, -1.08, .000, .800, -1.80) . V

where
Vs ['ru ¢X' ¢“| ¢'l a, 61
Solving gives us:

-0916 s Af, s .0916 (0.0916 radians = 0.525 degrees)
-0916 s Aoy $.0916

217

Appendix F.

The POINTY System

One of the more bothersome aspects of AL programming is the difficulty of writing
statements like

affix in_hole_position to hole rigidly

at trans(nilrotn,vector(0,0,-4.25%cm));
affix hole_approach to hole at trans(nilrotn,vector(0,0,2.54¢cm));
affix Aole to box at trans(nilrotn,vector(3.85+cm,3.2scm,4.92cm));
box « frame(nilrotn,vector(45.2¢cm,/02+cm,0));

that describe accurately the relevant “constant” values in the program. We have
implemented an interactive system, POINTY, which simplifies this process by allowing the
user to use the manipulator as a measuring tool to define positions. This system is described
fully elsewhere [48,19). The summary description given in this appendix has been included
because of the references made to POINTY in Chapter 3, and because the system exhibits,
at very simple level, the use of an interactive system to write parts of a manipulator
program, as is discussed in Chapter 9.

System Architecture
POINTY contains three principal “working” modules:

1. The affixment editor contains facilities for creating and modifying the frame
affixment hierarchy. The principal data structures associated with these
routines are the tree used to represent the hierarchy and a set of stack-
structured context pointers (called "cursors”) are used to control editing
functions.

2. The arithmetic section includes a full set of arithmetic operations for scalars,
vectors, and transes, together with routines for- modifying the location
attributes of the affixment hierarchy. The principal data structures are a
pair of stacks used to hold operands. Typically, one stack is used to hoild
values specifying incremental motions for the manipulator, while the other
is used for computing new location values. '

3. The manipulator interface routines contain facilities for moving the
manipulator under either computer or user control and for retrieving the
current location of the manipulator for use by the rest of the system. For
the latter purpose, the node arm in the affixment hierarchy always contains
the current location of the manipulator.

In addition, there are three “service” modules:
1. The command interpreter accepts commands typed in from the terminal and

executes them. In the current implementation, this facility is provided by
BAIL[86], which is a source-level debugger for SAIL. In addition, there is

218

Figure F.l. Pointing at a Feature

a simple macro facility, which allows users to string together commonly
occuring command sequences.

2. The display routines update the screen of the user’s terminal to reflect the
current state of the affixment editor, arithmetic section, and manipulator
interface.

3. The ‘input-output facility includes routines for saving and restoring
affixment heirarchies in files, for saving and restoring macro definitions, and
for translating affixment trees into a text file of AL declarations,
affixments, and assignment statements.

Display Scene

The display facilities of POINTY must provide the user with an up-to-date picture of the
data structures. To do this, the display screen is broken up into regions, as shown in Figure
F.2.

Here, the current state of the affixment editor is displayed in the large box in the upper left.
Parent-child relations are indicated by paragraphing, the kind of affixment by the use of a
single character flag (" means rigid, “+" means nonrigid, and “” means unaffixed), and the
current values of the editing cursors are indicated by placing the cursor name (“N:", “D:",
etc.) on the appropriate line. The relative location of each node in the affixment tree to its
parent node is displayed using Euler’s angles for rotations.. Thus, the location of the arm in
Figure F.2 is given by

The POINTY System 219

i .
P:R:T: N:
-WORLD at TR(.@00, .000, .00, .0808, .000,.080808) 2: HOLEZ
D: -BOX at TR(.009,.000,.08080,45.2,102.,.000) 1: BOX
xHOLE1 at TR(.008,.009,.008,3.85,3.20,4,90) 8: WORLD

N: -HOLEZ2 at TR(.008,.0080,.008,.000,.0800,.000)
-FIDUCIAL at TR(-166.,167.,-117.,11.8,35.2,5.61)
-ARM at TR(155.,163.,-146.,14.0,31.6,12.5)

+POINTER at TR(155.,12.8,-153.,-.098,.413,6.60)

x A: @: TR(184.,176.,-133.,12.3,308.7,6.75)
1: TR(-19.9,163.,44.2,9.36,23.5,5.51)
2: TR(.000,.0009,.008,3.85,3.28,4.90)

B: @: TR(.eee,.000,.000,.000,.088,0.2)

LAST MACRO: UNCLE

Figure F.2. POINTY Display Scene

trans(rot(zhat,-J66«deg)srot(yhat,/67+deg)srot(zhat,-117+deg),vector(14.0,31.6,12.5))

The column to the right of the affixment tree gives the most recent values of the most
recently referenced editing cursor. These cursors are “stack structured”; whenever a new
value is assigned to a cursor, the old value is saved away (to a depth of four) where it can
be recalled if need be. This facility provides a nice way for a user to recover from errors,
~ as well as to suspend temporarily one editing sequence and go do something else.

The boxes below the affixment tree show the top few elements of the arithmetic stacks (“A:"
and “B:"). Both stacks are “general purpose”, and either may be used to perform any
arithmetic or manipulator control operation. In the absence of an explicit request by the
user, operations requiring a stack use whichever one was used last. The current default is
indicated by an asterisk.

Example

The following sequence illustrates a typical use of the system to define a feature location. In
this dialog, the system typeout is distinguished from user input by underlining.

43 NK_NODE("HOLE2®);

This command creates a new node, HoLt2 and sets the “current
node” cursor, N, to point to it. At this point, the situation is
as shown in Figure F.2,

Now, we wish to ‘use the manipulator to determine the

220 Appendix F

position of the hole with respect to the box. To do this, we
position the tip of the pointer at the center of the hole and
say

1t POINTIT,

This causes the system to read the arm position, compute the
absolute location of the tip of the pointer, and push the -
result onto A:, the current arithmetic stack. Now we store
this location away as the absolute position of the hole.

e

RABSSET;
RIGID,

The first command causes the absolute position of the current
node (here, HOLE2) to be set to the value in the top of the

current arithmetic stack.® The second command causes the
tree structure to be modified so that the current node is
affixed “rigidly” to the node pointed to by D:, the current
*dad” cursor. When this affixment is made, the location
attribute of HoLe2 is modified to show its relative location to
BoX. A typical value would be something like:

TR(168. ,15.8,-155.,-3.85,3.20,4.90);

Here, the rotation angles are incorrect because the pointer’s
rotation was not well defined when we performed the
pointing operation. To correct this deficiency, the following
code sequence may be used:

TN
ne

RAPUSH (RELLOC) ;
TEDIT;

APUSH (TR(168.,15.8,-155. ,—3.85,3.28,4.90))‘

The first command causes the relative location of the current
node to be pushed onto the A: stack. The second command
removes the top eiement of the A: stack and assembles
command text to push it back. This text is then loaded into
the terminal line editor, where it can be modified using
standard facilities provided by the timesharing system [51).
By changing the first three numbers to 0, and activating with
a carriage return, we get:

2

1+ RPUSH(TR(9,0,0,-3.85,3.28,4.90));

which puts the corrected value back on the stack. We then
put it back away into the current node.

1: RELSET;

& In practice, macro operations are used to reduce the amount of typing required. For
instance, The first three commands in this example, can be replaced by a macro, PNTND,
which expands into nK_NODE (PRONPT (*NANE=")) ; POINTIT{ABSSET;.

The POINTY System

Now, to generate the AL declarations corresponding to the
box model, we execute the command sequence:

11 CPOP("N:*);
i AL_MRITE;
QUTPUT FILE = BOX.AL

The first command pops the N: stack, so the current node is
now Box. The second command writes out the AL
declarations for the current node. If an output file were
already open, then the system would use it without
prompting for a new one. Thus, several structures can be
written out on one file. The output file is closed when the
program is exited or else by typing the command:

11 AL_CLOSE;

The declarations generated by the program are shown below:

. FRANE BOX;
BOX « FRAME (NILROTN,VECTOR(45.2, 162., .000));

FRAME HOLE2,
AFFIX HOLE2 TO BOX AT TRANS(NILROTN,VECTOR(-3.85, 3.28, 4.98)) RIGIDLY;

FRANE HOLELs
AFFIX HOLEL TO BOX AT TRANS(NILROTN,VECTOR(3.85, 3.20, 4.88)) RIGIOLY;

221

	4514_001
	1st batch
	4516_001
	4517_001
	4518_001
	4519_001
	4520_001
	4521_001
	4522_001
	4523_001
	4524_001
	4525_001
	4526_001
	4527_001
	4528_001
	4529_001
	4530_001
	4531_001
	4532_001
	4534_001
	4535_001
	4536_001
	4537_001
	4538_001
	4539_001
	4540_001
	4541_001
	4542_001
	4543_001
	4544_001
	4545_001
	4546_001
	4547_001
	4548_001
	4549_001
	4550_001
	4551_001
	4552_001
	4553_001
	4554_001
	4555_001

