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An Experimental System for Computer Controlled

Mechanical

Assembly

PETER M. WILL anp DAVID D. GROSSMAN

Abstract—This paper describes the software and hardware
architecture of a system designed as a research tool for experiments
on programming the computer controlled assembly of mechanical
objects. The software consists of a real-time control level and a
background level in which an on-line interpreter permits interactive
programming. The hardware consists of a manipulator with sensory
feedback coupled to an IBM System/7. Additional facilities are
available through a link to an IBM System/370 Model 145. The
application of the system to sample assemblies is also discussed.

Index Terms—Experimental system, manipulator, mechanical
assembly, robot.

I. INTRODUCTION
Preface

RESEARCH project was recently initiated at IBM
in the field of computer controlled mechanical as-
sembly. As a first phase of this project, an experimental
system was designed and built to act as a research tool
for experiments on the assembly of mechanical objects.
The hardware and software of this system and its pre-
liminary application to sample assemblies are discussed in
this paper.

Background

Broadly, the combination of computer assisted design
and manufacturing (CAD/CAM) has become of signifi-
cant interest in recent years. The output of such a process
does not usually extend to the physical control of the
primary production capacity of the plant, and the manu-
facturing cycle is therefore not complete. The outstanding
exception is the numerical control of machine tools. De-
tailed analysis and subsequent implementation of the
assembly function would give integrated computer control
over a larger portion of the manufacturing process than
heretofore has been possible [17, [2].

The current situation in computer controlled mechanical
assembly is that a scant beginning has been made on the
substantial and complex research problems involved. It is
still too early to predict with any reliability whether or
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not a computer controlled general purpose assembly
machine will ever be able to perform satisfactorily. The
subject area is sufficiently interesting to be worth examin-
ing in detail.

Assembly Functions

Little exists in the technical literature on the broad
theory of assembly [3]. The literature deals only with a
host of specific details: methods of fastening, machines
for wire wrapping and component insertion, devices for
orienting, designs of transfer mechanisms, etc. [4]. The
lack of theory is understandable because no language exists
either for describing parts operationally or for describing
motions, especially those required in causing parts to be
assembled into a structure.

The problem in this regard is exemplified by the com-
ment of Michie [5] that while the difficulty of Grandmas-
ter chess is easily appreciated by amateurs, we fail to
appreciate the subtle complexity of moving, since all of
us are Grandmasters at moving, having spent our entire
lives in continual practice. A second example is the diffi-
culty of recording choreography and the existence of
Labanotation [6] for this purpose. There is evidence [7]
that these linguistic and conceptual difficulties may be
fundamental in that motion is a right-hand-half brain
function and may be basically nonlinguistic, while lan-
guage, logic, and other formal notions are left-hand-half
brain functions which can be discussed, defined, and
understood.

The basic procedures, functions, mechanical tolerances,
and sensory inputs required for assembly can be deter-
mined by considering the operations of any assembly
factory or by studying the assembly manuals accompany-
ing many products delivered to the consumer in disas-
sembled form. The assembler requires a workbench, a
supply of parts; some hand and power tools, and an as-
sembly procedure or a set of drawings from which a pro-
cedure can be deduced. Component parts may be ordered
in pallets or magazines, but more customarily they are
disordered although sorted in bins. Another important
but mostly unappreciated function is that of inspection.

In factory environments the assembly procedure is
typically given in verbal rather than in written form and
is highly contextual. “Pick up this piece like this and
put it there.” Unfortunately, this form of description is
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too loose to be of use currently in programming the com-
plex moves of an assembly operation. Long-term research
may eventually determine how closely such a form of
description may be approximated.

The only computer languages for motion deal with
numerically controlled machine tools, and a typical exam-
ple is APT [8]. There is a significant difference between
the pre-APT environment and the current pre-‘‘Assembly
Language” environment. Prior to APT, the machining
of parts was already highly systematized in terms of
cutting speeds, feed rates, and tolerances. No such ap-
plication knowledge appears to exist for the assembly
function. There is no commonly accepted computer
language for the more free-form motions necessary to
perform the assembly function and such a language is one
possible long-term output of the research in this paper.

State of the Art

The subject of computer controlled manipulators can
be viewed as belonging to several fields, each with its own
literature, background and history of well defined prob-
lems, e.g., prosthetics, teleoperator systems, hand-eye
intelligent systems, or industrial robotics. The differences
lie in the degree to which computers are integrated into
the systems.

The present research emphasis in the field is towards
the investigation of systems which attempt to solve a
generic and complex job. The example most used is the
assembly of mechanical parts. The solution desired is not
simply a piece of mechanical hardware plugged into a
general purpose computer with the applications research
left to the eventual customer. Instead it is a total systems
solution in which all issues are fully understood.

The systems approach to the assembly problem has
been taken by the three leading groups in the area, the
Japanese, the Research Applied to National Needs
(RANN) group of the National Science Foundation
(NSF), and the leading European groups.

The extent and scope of the Japanese work in computer
controlled manipulator systems is clearly shown in the
proceedings of the three Symposia on Industrial Robots in
1970, 1972, and 1973 [97]. Over 90 companies in Japan have
products in the area, contrasting with 15 in the United
States and 32 in Europe [10]. The outstanding technical
achievements are exemplified by the work of Ejiri et al.
[11] in which a program analyzed a line drawing and a
disordered scene containing building blocks, developed a
strategy for assembling the blocks to form the object in
the drawing, and then built it successfully. This work
solves in principle all the assembly problems which have
become standard in the West in the last 10 years of arti-
ficial intelligence (AI) research. What remains is the
expansion of the work to handle a real-world environment:
nonblock parts, real objects and assemblies, effects of
imperfect manipulators, and convenient methods of
programming.
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The work at the Electrotechnical Laboratory in Japan
covers the fields of manipulator design, analysis, control,
object recognition, strategic planning, ete. [127]. Mit-
subishi and other companies are also known to have
significant research activities.

Work in the United States [13]-[15] was formerly
funded by the Advanced Research Projects Agency
(ARPA) at the major AI research centers under the
subject of hand—eye coordination. The present emphasis
is a great deal more practical and is funded by the RANN
office of the NSF. Three major efforts are underway: The
Charles Stark Draper Lab [16] is working on program-
mable assembly machines with emphasis on good low-level
control and tactile sensing. Stanford Research Institute

[17] is working on packaging applications and is using

vision. Stanford University [18] is working on languages
and the theory of assembly. They have successfully
demonstrated the assembly of a modified automobile
water pump by ecomputer controlled manipulator.

The above citations are to work funded by national
agencies. There are signs that private industry is also
sponsoring work in the general area of computer controlled
assembly. Two examples are General Motors Research
[19] where the emphasis is on vision as an input and
General Telephone and Electronics Research [207] where
a command language for automation is under development.

Work in Europe is led by the University of Edinburgh
Department of Machine Intelligence [217], a major AI
center in which significant assembly work has been done.
The University of Nottingham [227] has concentrated on
mechanical expertise and is working in the direction of
increasing the pattern recognition content of their work.

In parallel with this effort going on in the West, there
have been developments in the USSR. The state of the
art at least in the Leningrad Institute [23] shows both
breadth and depth. The work appears to be motivated
by problems in the design and control of undersea manipu-
lators and articulated vehicles for traversing rough terrain.
The research includes hardware development, command
language design, and question answering systems for
path planning. Ignatiev also gives a comprehensive set of
references to other Soviet work.

Against this background, the Research Division of
IBM is a relative newcomer in the field of computer
controlled manipulators. The system described in the
following sections is designed for the class of assemblies
which have a size less than a 30 cm cube, a total weight
less than 3 kg, and contain up to 50 parts weighing be-
tween 1 g and 500 g. Such assemblies require force sensing
and are not possible with simple pick and put devices.

The initial hardware and software described in this
paper comprise an experimental system which will be the
common denominator in future discussions of mechanical
and electronic hardware, systems software, and applica-
tions results. The system is currently being used to study
some highly complex real-world assemblies.
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Fig. 1. Block diagram of the hardware system.

II. HARDWARE SYSTEM

Overview

A block diagram giving a general overview of the hard-
ware system is shown in Fig. 1. The central role in this
system is played by an IBM System/7 computer. The
user station consists of a keyboard terminal, storage scope,
function keyboard, and joystick. A second terminal con-
nects to an IBM System/370 Model 145 which provides
host support. The System/7 also interfaces to the motors
and sensors of the manipulator and to power tools and
other devices at the work station.

Motors

A manipulator needs three nonredundant motors to
have the capability of reaching an arbitrary position in
three-dimensional space. In order to achieve an arbitrary
gripper orientation it needs three additional motors.
Finally, the gripper itself must have a motor. Thus alto-
gether at least seven degrees of freedom of motion are
required. Adding additional motors beyond seven makes
it possible to bring the gripper to a desired orientation
and position while still having degrees of freedom which
offer the possibility of avoiding obstacles.

A photograph of our manipulator is shown in Fig. 2.
The rectilinear geometric configuration was chosen to
allow modularity in motor drives and to minimize the
geometrical transformations required in motion control.
Given the fact that motion in the direction of gravity
is a convenient primitive, a case can be made for a Car-
tesian frame. The machine has a vertical size of about 1.8
m and a mass of about 300 kg. The machine was originally
designed to be an articulated structure with 12 motors
driving 12 joints. The convention was adopted to number
these motors in the order of their articulation, starting
at the base of the manipulator. To date, motors 5-7 have
not yet been implemented, so in fact there are only nine
degrees of freedom. Some of the joints are rotary, some
are prismatic, and some involve more complicated linkages.

The first motor at the base of the machine is a rotary
hydraulic motor. It is detented in integral multiples of
2.5 degrees. Peak speed is approximately 90 degrees/s.

The next three motors in the order of articulation are
the 2z, ¥, and z prismatic joints. All three of these motors
are identical linear hydraulic motors of a novel design
[24]. A photograph of the motor is shown in Fig. 3. The
only moving parts are four pistons which push 90 degrees
out of phase from one another against a periodic cam seen
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Fig. 2. Photograph of the computer controlled manipulator.
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Fig. 3. Photograph of the linear hydraulic motor.

in the picture. Because each piston contains a spool valve,
the motor is self commutating. The motor is therefore
similar in behavior to a single hydraulic cylinder while
not being subject to any corresponding limitation in
travel. Each of the three axes has a travel of approxi-
mately 51 ecm with a repeatibility of about 0.38 mm. For
safety reasons the peak speed has deliberately been held
to only 20 em/s.

Motors 5-7 do not exist. These numbers have been
reserved for fine 2, fine y, and fine x motors, should they
prove desirable in the future.

Motors 8-10 are the rotary joints of a roll, yaw, pitch
gimbal. The first of these is hydraulic and the other two
are electric. Speeds are on the order of 90 degrees/s.

Motors 11 and 12 drive the gripper through a compli-
cated linkage which permits the opening angle of the
fingers to be varied as well their separation. The gripper
is shown in Fig. 4.

Sensors

The manipulator is provided with sensors in addition
to the potentiometers which measure motor positions. The
signals from these sensors are fed back to the System/7
as analog or digital inputs, so that they are available to
the software system for the strategic control of motors.

The first of these sensors is referred to as the wand. This
is a thin probe, built into one of the fingers of the gripper,
which gives a contact signal when it is deformed slightly
by touching an object. The wand and its housing can be
seen in Fig. 4.

IEEE TRANSACTIONS ON COMPUTERS, SEPTEMBER 1975

Fig. 4. Photograph of the gripper.

A second type of sensor is a strain gauge array which is
built into the base of each finger. In the current manipula-
tor each array measures three components of strain,
although designs are complete for a full six degree of
freedom array. The resolution is better than 5 g over a
range of 1.5 kg.

An ultrasonic proximity sensor is mounted on the
gripper just above the fingers as shown in Fig. 4. This
sensor can measure the distance from an object with an
accuracy of about 2.0 mm over a range of about 0.5 m.

Other sensors are under active development and will be
incorporated into the manipulator at a later date. These
include fluidic, optical, and area tactile devices.

Computers

The manipulator hardware described above is con-
trolled by an IBM System/7, which is a 16-bit word
length machine intended for sensor based applications.
The configuration used here has 16K words of memory
and a single disk with 1.2M words of storage. There are
21 digital input words, 3 process interrupt words, 16
digital output words, 64 analog input points, and 8 analog
output points.

The machine is basically a data acquisition and control
device and the host communication is via a 50K baud
asynchronous communications module. I/0 is also possible
to a terminal which supports keyboard interaction as
well as paper tape. Initial program load (IPL) is normally
performed from the host, but in the present application
in which the System/7 is being used primarily in a stand
alone minicomputer role, a local bootstrap loader was
written to allow IPL from the disk in about 1 s rather
than the usual 15 s.

The basic cycle time of the System/7 is only 400 ns,
and, because of the interrupt level structure, interrupts
can be serviced in less than 2 us. However, all input—
output is by direct programming with the exception of
the disk which is provided with a cycle steal feature. In
addition, multiply and divide and floating point arith-
metic are software functions.

The timing of the system is dominated by the response
of the hydraulic components of the hardware. The motors
in the manipulator had as a design goal an average of
one second per operation. The bandwidth of the hydraulic
system is about 50 Hz. A sampling rate of 100 Hz is used
in the control cycle. In this 10 ms period, the state of
the system must be sampled, a correction must be com-
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puted, and each control variable must be output. Thus,
every 10 ms, all motor positions and sensor readings are
taken and commands are given to all motors.

These real-time constraints in addition to normal sys-
tem overhead resulted in the decision to design closed-
loop servo system outboard of the System/7 and supply
only set points to them. Since the actual position of all
motors is monitored in the System/7 anyway, direct
digital control may be retrofitted at a later date as time
permits.

At present the sampling, computation, and control
cycle of 10 ms consumes about 80 percent of the System/7
power. A dramatic change in utilization can of course be
made by reducing the bandwidth of the servos and in-
creasing the sampling time. So far there has been no need
to take this step.

III. SOFTWARE SYSTEM

General Description

The software system described in this paper is solely
the low-level system which was operational about a year
ago. The principal improvement since that time has been
the provision of an off-line symbolic assembler language
which will not be described here. It is clear that higher
level languages are necessary if manipulators are ever
to perform highly complex assemblies with only moderate
programming effort. A )

The software system which controls the manipulator
hardware will be referred to as the manipulator operating
system (MOS). MOS has two main functional levels, the
higher priority of which is concerned with the tactical
problems associated with monitoring sensory input and
providing real-time control of motors. The lower priority
level is concerned with the strategic problems of assembly
as they are represented in the form of programs written
in manipulator language (ML). On this lower level, MOS
interpretively executes, ML programs and interacts with
the user at the terminal. The user is also provided with a
function keyboard and joystick which can be used to
enter geometric data to the manipulator by guiding it
through a sequence of points. From his terminal, the user
may write and debug ML programs, may direct MOS to
execute these programs normally or step through them
slowly, and may inspect or modify control tables.

MOS is designed to allow two independent manipulator
arms to run concurrently at the same work station. Up
to the present, only the ‘“right” arm has been installed,
although there are plans to add a “left” arm of very
dissimilar design in the near future. The system provides
the capability of synchronizing the two arms at the back-
ground level, but there is no provision for them to co-
operate at the real-time level. There is also no provision
for collision avoidance.

The System/7 normally operates in a stand alone mode
although MOS is linked to a program running under VM
on an IBM System/370 Model 145. This link provides
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certain functional capabilities which are not essential to
manipulator operation. Thus although the stand alone
ML is at a very low level, the provision exists for a much
higher level language in VM to invoke any of the ML
functions and for ML to be the target language for a VM
resident assembler or compiler. These VM functions will
be discussed only very briefly in this paper.-

Safety

Safety is of paramount importance, since an errant
manipulator could harm people, equipment, or itself. As
a safety precaution, the manipulator operates inside an
interlocked room with Lexan windows, and the work
tables shown in Fig. 2 contain structural fuses and inter-
locks.

Unfortunately, formulation of adequate safety rules is
almost impossible since exceptions which would cause
trouble can almost always be found. The set of safety
rules chosen is simple and reasonably complete. The
fundamental assumption built into the software is that
it is always safe for the manipulator to remain stationary.

A second highly important safety provision is that a
fail-soft system supplies electric power to the hydraulic
pump which drives all the hydraulic motors. When this
electric power is turned off, the manipulator is in a relaxed
state.

When the hydraulic pump is enabled, the manipulator
can actively maintain its position or move to a new posi-
tion. In the enabled state, possible emergency conditions
include class interrupts on the System/7 (program check,
machine check, power-thermal warning), certain program-
ming errors detected by MOS, the user pushing a panic
button or tripping an interlock, and unexpected collisions
of the manipulator with its environment. When an emer-
gency condition is encountered, MOS immediately com-
mands all motors to freeze at their current positions and
turns off the hydraulic pump. "

MOS8 Tables

In order to permit easy debugging and make efficient
use of memory, MOS is a table driven system. Naive
users need not concern themselves with the nature and
content of these tables. Commands are provided in ML,
however, which permit knowledgeable users to interact
directly with the internals of MOS.

There are altogether about 30 tables, each having a
distinet two-character table name. Within any particular
table the format consists of a fixed number of lines, each
containing a fixed number of words.

The tables are divided into two classes called internal
and external. Internal tables are those which are used
by the real-time level of MOS. For reasons of performance,
these tables must remain permanently resident in main
memory. External tables are those which are used only
by the background level of MOS and are therefore ac-
cessed infrequently. The external tables are maintained
on disk and are swapped into page frames in main memory
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as needed. These tables are few in number but large in
size, so that the software paging in effect creates a virtual
machine environment of about 100K words.

The three tables of greatest importance in MOS are
termed the motor, sensor, and task tables. The first two
of these are internal and the last one is external.

The motor table contains data relevant to each motor
in the manipulator. These data include the state of the
motor in recent sample times as determined by feedback
potentiometer, and strategic and tactical goals for the
motor, as well as control, and input—output parameters.

The sensor table contains data relevant to each logical
sensor in the manipulator. Each logical sensor is either a
physical analog or digital input or it is computed by
adding the on bits in a masked digital input word. This
count is useful for implementing threshold functions on
some types of digital sensors. The sensor table also in-
cludes emergency limits for each sensor, upper and lower
expected limits, the current reading, and a flag which
tells whether or not the expected limits have ever been
exceeded, as well as input and conversion parameters.

The task table contains the entire stored ML program
of up to 5000 statements. Space in this table may also
be used to store points in space to which the manipulator
can later be commanded to move.

Real-T'ime System

Every 10 ms the real-time system samples the state
of the world by reading all analog and digital inputs and
entering these state data into the motor and sensor tables.
The sensor readings are compared to the expected and
emergency limits to determine if a force event has oc-
curred. If so, the strategic goal in the motor table is re-
placed by the current position, and the background level
is posted. Next, the actual motor positions are compared
to the strategic goal to determine if a goal has been reached.
If so, the background level is posted. Finally, control
routines compute tactical goals from the strategic goals,
and commands are output to all motors. The entire sample
and control cycle consumes about 8 ms out of every 10 ms.

ML Syntax

The user inputs ML commands from the terminal
keyboard. The basic syntax of each command is

(sequence number) (command code) (parameters).
For example, the following are valid user inputs:

250 BrRANCH 700
408 Move 0 8505000 —50 0 0 8 —&57
827 GoproINT 817 1

BRANCH 700
MOVE 83 881 05000812000 8 —7
GOPOINT 28.

Sequence numbers may be in the range from 1 to 5000.
From the examples above it should be clear that the
sequence number is optional. If a sequence number is
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absent, the command is executed immediately. If a se-
quence number is present, the command is not executed;
instead it is filed as a part of a stored ML program which
can be invoked at a later time.

From 0 to 15 parameters are allowed, the number
depending on the particular command code. All param-
eters may be constants or variables. Constants are fixed
point integers in the range from —32768 to +32767, these
values being determined by the 16-bit word size. Variables
are of the form &1 through §256, and they may be assigned
any 16-bit fixed point integer.

Chained &’s are permitted to a depth of six. Thus if
817 is assigned 25 and &25 is assigned 700, then the follow-
ing two commands are equivalent:

BRANCH 8817
BRANCH 700.

ML Command Codes

There are about 100 ML command codes. These com-
mands can be divided into nine main categories: control,
flow, motion, sense, data, arithmetic, edit, test, and host.
The various command codes are itemized below.

Conitrol: DISABLE, ENABLE, EXIT, LEFT, PRINT, RIGHT,
RUN, TRACE, TRY, TN (where TN is any valid two character
table name).

DISABLE and ENABLE turn the hydraulic pump off and
on, respectively. LEFT and RIGHT set the context in
which all subsequent commands pertain either to the
right or left of the two manipulators. The other com-
mands are self explanatory.

Flow: BAL, BRANCH, BRCOMP, BROVFL, DELAY, GOSUB,
IF, LOOPI, LOOPJ, NEXTI, NEXTJ, STOP, RETURN.

cosuB and RETURN offer a very limited subroutine
capability. BAL performs a branch and link operation
useful for subroutine calls with greater generality.
BRANCH performs a branch which may be conditioned
on a logical combination of sensors. There are also
branches which test for overflow or the result of a
comparison. IF performs a branch to any of three ad-
dresses depending on whether an argument is less than,
equal to, or greater than zero.

Motion: DEFPOINT, DMOTOR, DMOVE, GOPOINT, JOY,
HAND, MOTOR, MOVE.

MOVE positions the entire manipulator at a point in
12 space. DMOVE is a differential move which specifies
the change in all 12 motors. MoTOR and DMOTOR are-
the analogous commands when only one motor at a
time is moved. HAND moves only the gripper fingers.
DEFPOINT and GOPOINT, respectively, store the present
position in 12 space and go to this stored position. Joy
permits the joystick and function keyboard to be used
to guide the manipulator about and define a stored
position. ‘
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Sense: CALIB, SENSOR, WAND.

cALIB is used to dynamically calibrate sensors. SENSOR
sets expected threshold limits for the various sensors,
of which the wand is one.

Data: POINT.

This nonexecutable command saves space in the ML
program for a 12-space position defined by DEFPOINT
or Joy. This PoINT data may then be used by a copoINT.

Arithmetic: LOAD, DLOAD, ADD, DADD, MULT, DIVD, GET,
PUT, GETSEN, GETPOS, GETGOL, LT?, LE?, GT?, GE?, EQ?,
NE?, COMPON, COMPOFF, OVFLON, OVFLOFF.

The first six of these commands perform integer arith-
metic in single or double precision. GeT and puT are
the table access commands. The commands GETSEN,
GETPOS, and GETGOL assign to a variable the current
value of a sensor, a motor position, or a motor goal,
respectively. The remaining commands perform com-
parisons and set an overflow indicator on or off.

Edit: ERASE, FILE, LIST, QUERY, QPOINT.

ERASE is used to erase sections of an ML program.
L1sT produces a listing of the ML program on the ter-
minal or storage scope. FILE and QUERY are used for
direct user interaction with MOS tables. qroinT dis-
plays the most recent PoINT’s accessed by DEFPOINT
and GOPOINT.

Test: TESTAI, TESTAO, TESTDO.

These commands are used for testing analog input,
analog output, and digital output.

Host: CMSLOAD, CMSDUMP, VMCNTL, QUIT, UPROCA,
UPROCB, UPROCC, UPROCD, GROT, GTRANS, GOLINE, GOMEAN,
DHAND.

cMSLOAD and cMSDUMP can transfer entire ML pro-
grams between the System/7 and the host 370/145.
VMCNTL is used to start a much higher level language
interpreter on the host. The uproc commands allow
the user to provide his own Fortran semantic routines
~on the host. aroT and GTRANS provide rotation and
translation of the manipulator to be specified in the
coordinate frame of the gripper. GOLINE moves to the
nearest point on a line and GoMEAN moves to the mean
of two POINTs. DHAND is a differential HAND command.

Guarded M oves

A superficial analysis of dozens of ML programs written
by several users for various experimental applications
indicates that there is a basic sequence of ML statements.
This sequence can be characterized as a guarded move,
i.e., a move until some expected sensory event occurs. In
this respect ML is similar to the Mantran language [25].
The sequence of ML statements which corresponds to a
guarded move consists of multiple SENSOR commands
followed by multiple motion commands followed by
multiple BRANCH commands. The guarded move is illus-
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trated by the ML program below:

200 SENSOR 5 —178 450
210 sEnsor 8 0 1000
215 SENSOR 14 —800 —600

280 GOPOINT 5

285 move 0 0 2000 0 0 0 0 O 4000 —9000 650 1900
288 moTor 3 4000

295 pmoTOoR 2 —100

400 BraNcH 500 410 5 14
410 BraNCH 550 600 8

500 ete.
550 ete.
600 ete.

Statement 200 establishes for logical sensor number 5
a lower expected limit of —178 and an upper expected
limit of 450, and it clears a flag associated with this sensor.
MOS will set this flag on when sensor 5 first deviates from
the interval

—178 < logical sensor number 5 < 450.

In a similar fashion, statements 210 and 215 clear flags and
establish lower and upper expected limits for logical
sensors numbers 8 and 14.

Motion is permitted only as long as all sensor flags are
off. The moment any sensor flag comes on, MOS overrides
any motion command in execution and commands the
manipulator to freeze at its current position. In addition,
all subsequent motion commands become nullified, and
ML program control falls right through these motion
statements. _

Statements 280 through 295 are motion commands.
Statement 280 tells the manipulator to move to point
number 5 which must have been previously defined. Once
this motion is completed, statement 285 tells the manipula-
tor to move its motors according to the parameter vector.
As mentioned earlier, the numerical ordering of the motors
corresponds to the order of their articulation. Linear
dimensions for the prismatic joints are given in units of
0.001 in and angular dimensions for the rotary joints are
given in units of 0.01 degrees. Thus, for example, state-
ment 285 commands motor 3 to move to the absolute
position 2.000 in. Next, statement 288 commands only
motor 3 to move to the new absolute position 4.000 in.
When this motion is completed, statement 295 commands
motor 2 to move differentially a distance —0.100 in from
its current position.

Suppose that during the execution of statement 288,
logical sensor number 5 went out of its expected range
just as motor 3 was passing the position 2.750 in. MOS
would immediately override statement 288 and directly
command motor 3 to remain at position 2.750 in. All
other motors are also commanded to remain at their
current positions, but in this particular instance they
were stationary anyway. Because a sensor event has
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D T e T

* INITIALIZE VARIABLES TO DEFINE FORWARD DIRECTION *

1 LOAD 1 -1000
2 LOAD 2 0

Py

ey

* GUARDED MOVE IN FORWARD DIRECTION UNTIL FIRST HIT *

3 SENSOR 1 -1 1
4 DMOVE 0 0 &1 &2
5 BRANCH 13 4 1

* GUARDED MOVE DIFFERENTIAL STEP IN FORWARD DIRECTION *

6 SENSOR 1 -1 1
7 DMOVE 0 0 &1 &2
8 BRANCH 13 9 1

.....

9 LOAD 3 &2

10 LOAD 2 &1
11 LOAD 1 -&3
12 BRANCH 6

---------

* IF HIT THEN BACK OFF ONE DIFFERENTIAL STEP *

EL T

13 SENSOR

14 DMOVE 0 0 -&1 -&2

* GUARDED MOVE DIFFERENTIALLY ONE STEP TO THE RIGHT *

15 SENSOR 1 -1 1
16 DMOVE 0 0 &2 -&1
17 BRANCH 18 6 1

.............

* IF HIT THEN TURN RIGHT FOR NEW FORWARD DIRECTION  *

18 LOAD 3 &2
19 LOAD 2 -&1
20 LOAD 1 &3
21 BRANCH 13

Fig. 5. ML curve follower program.

occurred, statement 295 is nullified, and execution falls
through directly to statement 400.

Statement 400 asks whether logical sensors 5 or 14 have
ever gone out of range. If the answer were no, control
would. branch to statement 410. However, in this par-
ticular example it is assumed that sensor 5 has triggered,
so control will branch to statement 500.

Host ML Commands

A subset of the ML commands invoke communication
with a program running under VM on an IBM System/370
Model 145. Because these commands are not essential for
MOS operation, MOS can be thought of primarily as a
stand alone system.

There are three main functions which are obtained
through the link to VM. First, the link is being used for
development work on a language for manipulator control
which is on a much higher level than ML. Secondly,
through cMsLoap and cMspUMP commands it is possible
to transfer entire ML programs between machines. This
facility permits the loading of ML object code generated
offline by the symbolic assembler. It also permits users to
prepare ML programs offline with the full power of the
cMs - editor. Thirdly, VM can be used to circumvent the
limitation on program size and speed inherent in the 16K
word System/7. Thus, for example, motion in the co-

ordinate frame of the gripper is provided by the VM pro-
gram. Such computations are sufficiently compute bound
in ML to be worth invoking the communications overhead
of being shipped to VM. Finally, individual users are
permitted to code their own special user procedures which
are already in ML as commands UPROCA,* * +, UPROCD.

IV. EXPERIMENTAL APPLICATIONS

Curve Follower

As an example of an ML program, a curve follower
program is instructive to the extent that it involves the
sort of sensory feedback which is used for pattern recogni-
tion in more advanced assembly work, and it is the simplest
that can be used in this paper for pedgogical purposes.
The ML program shown in Fig. 5 performs very simplistic
curve following of a monconvex object lying in the zy
plane. Because of the need to guard every move, even
when retracting to a supposedly clear position, this pro-
gram is more complex than would be required in video
curve following.

It is assumed that at the start of execution the manipula-
tor is already at a good starting position in the correct
zy plane, the wand has been assigned to logical sensor
number 1, and it normally reads 0. The command

SENSOR 1 —1 1
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is therefore used to guard a move until the moment that
the wand reading deviates from 0, i.e., until the wand
strikes anything. The command

SENSOR

sets all sensor limits to plus and minus infinity, effectively
unguarding subsequent moves.

Each time it moves forward and bumps into the object
the manipulator backs off, moves to the right, and then
repeats the cycle. When the forward move fails to produce
contact, the program assumes the manipulator has moved
too far to the right, so it rotates the search pattern 90
degrees to the left. If, on.the other hand, the move to
the right ever produces contact, the program assumes the
manipulator has encountered a concavity, so it rotates
the search pattern 90 degrees to the right. This particular
ML program is not able to detect when it has completed
a circuit around the object.

Current Work

In the initial learning phase of the project, programs
were written to stack toy blocks and assemble a toy train.
Work is now concentrating on real and demonstrably
useful assembly tasks. The overall assembly function was
divided into three subareas, each of which is being actively
pursued. The first area deals with the problems of reaching
into a pile of disordered but homogeneous parts, extracting
one, and performing some superficial inspection. The
second area deals with the problem of orienting a known
part which is held in the manipulator gripper. The third
area deals with the assembly of palletized parts, i.e.,
parts which are already in known positions and orien-
tations.

Using a symbolic assembler language which generates
ML object code, programs have been written which to a
limited degree perform the three operations of bin search,
orientation, and assembly of a rail support from a type-
writer, including the operation of picking up a power
screwdriver and inserting screws. This real-world assembly
consists of over 20 parts and involves motion control and
sensing to the tolerances required in industrial practice.
Work is continuing on assemblies which are spatially and
kinematically complex.

V. CONCLUSIONS

This paper has described a system built to allow ex-
periments to be performed in the area of computer con-
trolled assembly of mechanical objects. The hardware
has sufficient accuracy and freedom of movement to be
able to perform all but the most intricate movements
required in the application. The software deseribed in the
paper covered the operating system and low-level control
language only. High-level languages for part description,
orientation, trajectory and inspection specification, and
procedures for the programming of two cooperative manip-
ulators are under study.
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Image Data Processing by Hadamard-Haar Transform

K. R. RAO, SsENIOR MEMBER, IEEE, M. A. NARASIMHAN, anpo KRISHNAIAH REVULURI

Abstract—A hybrid version of the Haar and Walsh-Hadamard
transforms (HT and WHT) called Hadamard-Haar transform
(HHT), is defined and developed. Efficient algorithms for fast com-
putation of the (HHT), and its inverse are developed. (HHT), is
applied to digital signal and image processing and its utility and effec-
tiveness are compared with other discrete transforms on the basis of
some standard performance criteria.

Index Terms—Data compression, digital time processing, feature
selection, Hadamard-Haar transform (HHT),, Wiener filtering.

I. INTRODUCTION

IGITAL signal and image processing has come into
prominence in recent years. This requires, in many
cases, utilization of discrete orthogonal transforms [1],
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[2]. Fourier [3], slant [4], Walsh-Hadamard [5], Haar
[1], [6], [7], discrete linear basis [8], rapid [9], [10],
slant Haar [11], and discrete cosine [12] have already
been utilized in these areas. This utilization is stimulated
in part by the rapid development of digital hardware.
Efficient algorithms for fast implementation of the
orthogonal transforms have further accelerated their
effectiveness, leading to the design and development of
special-purpose digital processors tailored for specific
transforms. Since the linear transformation of image data
results in compaction of its energy into fewer coefficients
[13], image processing by transform techniques can lead to
lower transmission rates with negligible image degrada-
tion [4], [14].

II. HADAMARD-HAAR TRANSFORM [15]

The objectives of this paper are to develop a hybrid
version of the well-known Walsh—-Hadamard (WHT) and
Haar transforms (HT) such that the advantages of both of



