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Abstract

Mobile Ad-hoc Networks (MANETs) are used for
emergency situations like disaster–relief, military appli-
cations, and emergency medical situations. These ap-
plications make MANETs attractive targets for cyber–
attacks and make the development of counter–measures
paramount.

The study of worm behavior is critical to the de-
sign of effective counter measures in MANET environ-
ments. This paper studies the behavior of TCP based
worms in MANETs. We develop analytical models for
the spread of TCP worms in the MANET environment
that account for payload–size, bandwidth–sharing, ra-
dio range, nodal density, packet discards and several
other parameters specific to MANETs. We present nu-
merical solutions for the models and verify the results
using high fidelity packet–level simulations.

The results show that the analytical model developed
here matches the results of the packet–level simulation in
all cases except when topologies result in a high prob-
ability of disconnected clusters. Our simulation studies
show that under many cases, due to the resource con-
strained nature of the MANET and its underlying wire-
less layers, the TCP-based worms rapidly become self-
throttling. This may benefit the design of effective miti-
gation technologies in these critical networking environ-
ments.

1 Introduction

Internet worms are programs that can replicate and
propagate on the Internet by exploiting security flaws
in some services. Once resident on a host computer,
the worm implements a search strategy for the selec-
tion of future host targets. This involves an algorithm
for choosing a host IP address from the total IP ad-
dress range. Various target host selection algorithms
have been discussed, analyzed and found within Inter-
net worms. Once a target host is selected, the worm at-

tempts to transfer its payload to the target. If successful,
these newly infected hosts continue the infection pro-
cess. This results in the well known exponential growth
of the number of infected hosts as reflected in the Stan-
dard Epidemic Model [1].

Worms have demonstrated that they can cause serious
damage to the economy. In 2001 the Code Red worm in-
fected 360,000 hosts in 14 hours [10]. The direct costs
of recovering from this epidemic (including subsequent
strains of Code Red) have been estimated to be in excess
of $2.6 billion [11]. In 2002 the Slammer worm infected
90% of its vulnerable hosts (75,000) in less than 10 min-
utes [9], the estimated loss was about $1 billion [18]. In
2003 the Blaster worm was estimated to have infected
more than 500,000 systems worldwide and the cost to
North American companies was $1.3 billion [18]. How-
ever, a more recent report showed that the number of in-
fections was actually between 8 million and 16 million
systems [8]. In 2004 the Witty worm had a malicious
payload that targeted firewalls. Not only did it spread
to additional hosts, but it also formatted a portion of the
hard drive of the infected host [15].

According to [17] the severity of the worm threat has
grown recently with (i) the increasing degree to which
the Internet has become part of a nation’s critical in-
frastructure , and (ii) the recent, widely publicized in-
troduction of very large, very rapidly spreading Internet
worms, such that this technique is likely to be particu-
larly current in the minds of attackers.

The effect of worms on a Mobile Ad-hoc Network
(MANET) topology is much more serious, due to the re-
source constrained nature of such a network. According
to the recent DARPA BAA Defense Against Cyber At-
tacks on MANETS [6], “One of the most severe cyber
threats is expected to be worms with arbitrary payload
that can infect and saturate MANET based networks on
the order of seconds.”

A MANET is a self-configuring network of mobile
nodes that act as routers and hosts, and are connected by
wireless links. The topology of MANETs is arbitrary
and dynamic. MANETs can operate in a standalone



fashion, or may be connected to the Internet. Because
of the fact that MANETs require minimal configuration
and are quickly and easily deployed, they are suitable for
emergency situations like disaster–relief, military appli-
cations, and emergency medical situations. These ap-
plications make MANETs attractive targets for cyber–
attacks and make the development of counter–measures
paramount. As such, we have embarked on a pro-
gram to investigate worm propagation and mitigation in
MANETs [3] [4].

Here we extend our prior analysis to the investiga-
tion of TCP-based worms; our previous work focused
on UDP-based worms. Our investigations involve ex-
tensive, high fidelity simulations of TCP-based worms
using theGeorgia Tech Network Simulator(GTNetS)
[14]. Further, we develop and investigate a model of the
TCP worm propagation in MANETs. The model results
are compared against the simulation experiments. The
model is an extension to the Standard Epidemic Model,
which is

di(t)
dt

= βi(t)[1− i(t)] (1)

wherei(t) is the probability of nodal infection at time
t, andβ is the rate at which a given infected node is
successful in infecting other susceptible nodes.

For a simple, UDP-based flash worm,β is generally
set to the product of: i) the inverse of the UDP packet
transmission time onto the communication interface of
the infected host, times ii) the probability that the packet
is addressed to a susceptible host, times iii) the probabil-
ity that the UDP packet is not lost in transit due to net-
work congestion. The first term is simply proportional
to the communications line speed divided by the size of
the single UDP packet. The second term is usually taken
as the ratio of the susceptible host population divided
by the entire address space, assuming a worm which
implements a random address search strategy. Zou et.
al. [2], have suggested that the last term be approxi-
mated by[1− i(t)]η whereη is a fitting parameter. This
term estimates the probability of packet receipt success
at the susceptible host under conditions of buffer over-
flows within the network.

For a TCP-based worm,β must assume a somewhat
different form for two reasons: i) the rate at which an in-
fected node can transmit the worm to other nodes is re-
lated to the number of simultaneous TCP connections di-
vided by the mean time for a TCP connection to transmit
the worm payload, and ii) network congestion does not
decrease the probability of receipt of the payload at the
susceptible host, but instead congestion slows the time
to transmit the payload due to bandwidth competition.
Bandwidth competition can slow the TCP transmit times
due to increased bandwidth sharing and increased packet
losses. Therefore, we investigate a TCP model which ac-
counts for bandwidth sharing and includes mechanisms

within the underlying 802.11 Link and Physical layers
which cause packet discards at moderate to high loads.

2 Related Work

Several studies were carried out to analyze and model
the propagation of computer worms in digital communi-
cation networks. In [19] the authors present the different
kinds of worms depending on their scanning strategies,
worm carrier mechanism, possible payload and plau-
sible attackers who would employ such a worm. In
[17] the authors provide an extensive investigation into
the mechanisms of worm propagation and their perfor-
mance. They also provide some improvements for the
worms and the effort needed to mitigate worm propaga-
tion throughout the Internet.

Zou et. al. [2], studied the Code Red worm out-
break and provided an analysis of its propagation by ac-
counting for two factors: i) the dynamic countermea-
sures taken by ISPs and users, and ii) the slowed infec-
tion rate due to the rampant propagation of the worm
causing congestion and troubles to some routers. They
derived a general Internet worm model called thetwo-
factor worm model.

The most relevant work to this paper is [3] and [4].
In [3] the authors investigated the impact of communi-
cations and mobility effects on worm propagation mech-
anisms in MANETs, where they found that network de-
lays and channel congestion had a large impact on the
UDP-based worm propagation behavior. They also pro-
vided a set of relatively simple analytical models that re-
produced these communications. In [4] the authors dis-
cussed the effect of mitigation techniques on the UDP-
based worm spread in MANETs and provided analyti-
cal models and simulation experiments to validate their
findings. The authors represented the mitigation tech-
nologies as having a constant detection time represented
by a lifetime parameter of the worm, after which the
worm dies and stops infection of other hosts. These
studies were limited to UDP worms. In this paper we
extend their simulation models to be used in GTNetS
and to include TCP style worms in MANETs as well.

3 The TCP Worm Propagation Model

We first investigate the performance of TCP worm
propagation through analytic models. Our analytic mod-
eling describes the 802.11 wireless MANET as residing
in one of two states: a low load state where the num-
ber of TCP flows in the network is relatively small and a
higher load state where the number of TCP flows is mod-
erate to high. In the state with a small number of flows
we develop a bandwidth-sharing expression forβ which
accounts for a slowing of the worm propagation as a
result of competition for the radio channel bandwidth,



without however causing significant packet losses. In
the state with a moderate number of TCP flows we de-
velop a model that accounts for high probabilities of
packet discards as a result of collisions and 802.11 retry
limits, but not resulting from buffer overflows. This fol-
lows the work of Fu et al. [5], who found that 802.11
networks settle into a state where the nodal probability
of packet losses becomes flat as more and more trans-
mitters (or flows) are added to the network.

3.1 Low Number of Flows

This model applies to small values for the probability
of nodal infections.
Define:

i(t) = probability of infection
b = bandwidth of the radio channel (Bps)
d = nodal density (nodes/sq.meter)
r = radio range of the channel (meters)
c = radio interference range factor

n(t) = mean number of infected neighbors
α = (zero load) TCP throughput in propor-

tion to the channel bandwidth

Assuming perfect sharing of channel bandwidth dur-
ing the transmission of a TCP worm payload, the chan-
nel bandwidth is partitioned equally to each of the neigh-
boring TCP transmissions. Thus, the portion of the
channel bandwidth available to each TCP transmission
is

b̄ =
b

(n(t) + 1)
(2)

Assuming uniform placement of nodes in the MANET,
we write

b̄ =
b

[πd(r(1 + c))2i(t) + 1]
(3)

So, we consider each infected node seeing a time-
varying available bandwidth because of an increasing
probability of infection over time. The Standard Epi-
demic Model becomes

di(t)
dt

= β(t)i(t)[1− i(t)] (4)

whereβ is now time dependent.
For a single threaded TCP operation, as modeled

in our simulation studies discussed below, letτtcp be
the average TCP throughput for the transmission of the
worm payload. Then, the time to transmit the TCP worm
payload is

ttcp =
Pw

τtcp
(5)

wherePw is the payload size of the worm. From the
above, modified Standard Epidemic Model,β(t) is

β(t) =
1

ttcp(t)
=

τtcp(t)
Pw

(6)

and
τtcp(t) = αb̄(t) (7)

whereα is the proportion of the available channel band-
width that a TCP connection is able to obtain under
zero load situations, see for example, [7] [12] and [13].
Hence,α is a function of the mean number of hops
across the MANET, the packet size, etc. We assume that
α is a constant with respect to time. Inserting these ex-
pressions into the above Epidemic Model yields

di(t)
dt

=
[

αb

Pw(1 + πd(r(1 + c))2i(t))

]
i(t)[1− i(t)]

(8)
This expression is comparable to the expression for

the UDP-based Flash worm proposed by Zou et. al., [2]

di(t)
dt

= β[1− i(t)]ηi(t)[1− i(t)] (9)

These equations are different because they consider
the different effects of network congestion. Our TCP
worm model is predicting a diminishing TCP through-
put due to channel sharing at higher infection probabili-
ties. While Zou et al.’s model is predicting a decreasing
probability of end-to-end packet delivery success due to
buffer overflow under increased network competition at
higher infection probabilities.

3.1.1 Analytic Results

In this section we investigate the analytic solution to our
TCP worm model given in Eq.(8). Following the method
of factoring used to solve the Standard Epidemic Model
of Eq.(1), we rewrite Eq.(8) as

di(t)
dt

= γlowi(t)
[

1− i(t)
1 + θi(t)

]
(10)

whereγlow = αb/Pw andθ = πd(r(1+c))2. We factor
this expression into

(1 + θi(t))
[

1
i(t)

+
1

1− i(t)

]
di(t) = γlowdt (11)

Integrating both sides of this equation and rearranging
terms yields

i(t)
i(o)

[
1− i(o)
1− i(t)

]1+θ

= eγlowt (12)

or
i(t)

[1− i(t)]1+θ
= g(i0)eγlowt (13)

where

g(i0) =
i0

[1− i0]1+θ
(14)

Here i0 = i(t = 0). This is as far as we can get in
writing the explicit solution to our TCP model. For gen-
eral values ofθ, we cannot solve this expression fori(t).



However, whenθ = 1, 2 or 3 this expression represents
a quadratic, cubic or quartic expression ini(t), respec-
tively. For other values ofθ, i.e., θ real orθ > 3, no
known explicit solutions exist.

We can determine the general asymptotic behavior of
i(t) as t → ∞ from Eq.(13). The right hand side of
Eq.(13) clearly approaches infinity ast → ∞. This im-
plies that the left hand side of Eq.(13) also approaches
infinity, which can only happen ifi(t →∞) = 1. Also,
by writing i(t) ≈ 1 − ε where for larget, ε << 1, we
can perform an expansion of Eq.(13) in terms ofε. This
yields the follow expression fori(t →∞),

lim
t→∞

i(t) ≈ 1− g−1/(1+θ)e−γlowt/(1+θ) + ... (15)

Clearly, the largerθ is, the slower is the convergence of
i(t) toward unity, reflecting that fact that greater band-
width competition is slowing the propagation of the
TCP-based worm.

While it is interesting that results for the asymptotic
behavior is available, we will find that in 802.11 wire-
less networks with TCP worms, the results of this low
load model will apply only for very small probabilities
of infection, i.e.,i(t) < 0.2. We now turn our attention
to the derivation of a TCP worm propagation model for
moderate to high numbers of TCP flows.

3.2 Moderate to High Number of Flows

We rely on the fact, shown in [5], that the network
saturates as the number of TCP flows increases. In this
saturated state, many of the network performance char-
acteristics become independent of further increases in
the number of TCP flows. This allows us to derive a
simple relationship between the TCP throughput versus
the number of TCP flows in the network.

In this saturated state, the per node packet loss rate
becomes a fixed constant independent of further in-
creases in the number of TCP flows. Further, the packet
loss rate is a result of collisions due to hidden termi-
nal issues and not buffer overflow. In fact, they show
that the mean buffer occupancy in this saturated state
is extremely low and they find that little, if any, pack-
ets are lost through buffer overflow as verified through
simulation studies. In 802.11 networks, nodes will dis-
card a data packet in the event that the node has at-
tempted to send an RTS seven times without success.
Here seven is a default parameter of the Medium Ac-
cess Control (MAC) protocol. Hence, packets handled
by the nodes are either transmitted to the next hop or
are discarded due to a failure of the node to gain ac-
cess to the channel after seven attempts. The explana-
tion for the network saturation is that as the number of
flows increases, the number of “backlogged nodes”, i.e.,
those nodes with packets to transmit, quickly approaches
N , the total number of nodes in the network. Once in

this state, the network performance saturates in terms of
the packet loss rate and the overall network throughput.
This behavior does not change as further increases in the
number of TCP flows occur.

Define:

p = the nodal packet loss probability
u = the nodal packet processing rate
m = the number of “backlogged” nodes
f = the number of flows in the MANET
l = the mean number of hops per path

The TCP flows are generated by our TCP worm, and
hence we have thatf = N × i(t). To estimate the de-
pendence ofm on f let us assume the following model.
At a minimum,m ≥ f , because by definition each flow
has a different source node in our worm model. Fur-
ther, because each flow on average makesl hops through
the network, we know thatm is greater thanf . In fact,
we can estimate the probability that a node is not back-
logged givenf as follows. As previously stated, at least
f nodes are backlogged, one for each flow. Of the re-
mainingN − f nodes, imagine that each flow randomly
travels overl nodes. Hence,

Pr{node not backlogged|f flows} =
(

N − f − l

N − f

)f

(16)
Given thatf nodes are backlogged as sources of thef
flows and the remaining nodes are backlogged according
to one minus the probability in the above equation, we
have that

m = f + (N − f)

{
1−

(
N − f − l

N − f

)f
}

(17)

This functional relationship betweenm and thef shows
that the network soon becomes saturated as the num-
ber of flows is randomly increased within the network.
In fact, our simulation studies, indicate that this occurs
wheni(t) is much less than 0.2.

We now analyze the relationship of the per flow
throughput across the saturated network versus in-
creased number of flows in terms of a simple flow
model. In the saturated state, the network is character-
ized byp, the per node packet loss rate, which is inde-
pendent off in the saturated state. Further, we define
u as the per node packet processing rate, where packet
processing includes both the time to successfully trans-
mit a packet to the next node as well as the time to fail
to transmit a data packet because of a failure to gain ac-
cess to the channel and hence ending up discarding the
packet. In the saturated network state,u is also inde-
pendent of the number of active flows in the network.
Finally, because network routing is independent of net-
work load, we know that the mean path length,l, is also
independent of the number of flows. So the quantities



p, u, andl, characterizing aspects of the network perfor-
mance, are independent of the number of flows when the
network reaches the saturated state.

Let fr,in be the average flow rate into the network
for a single flow, and letfr,out be the average flow rate
out of the network for a single flow. Given that each
flow traverses (on average)l hops in the network and
that each node has an average packet loss rate ofp which
is independent of the number of flow, we have that

fr,out = fr,in(1− p)l (18)

Therefore, the per flow loss rate is

pflow = fr,in − fr,out = fr,out

(
1

(1− p)l
− 1

)
(19)

Equating the total network packet loss rate forN nodes
and forf flows we get

N × u× p = f × pflow (20)

or

fr,out =
up(1− p)l

i(t)(1− (1− p)l)
(21)

where we have used the fact thatf = N × i(t).

3.2.1 Analytic Results

When the 802.11 network is in the saturated state we
have derived an expression for the flow rate per TCP
flow in the network, Eq.(25) above. Assuming this is
roughly equal to the TCP throughput, we get the follow-
ing result forβ(t),

β(t) =
τtcp

Pw
=

up(1− p)l

Pwi(t)(1− (1− p)l)
=

γsat

i(t)
(22)

and the corresponding SEM becomes

di(t)
dt

= γsat[1− i(t)] (23)

This expression has a simple solution, given by

is(t) = 1− (1− i∗)e−γsatt (24)

where we have defined (or labeled)is(t) as the evolution
of the probability of worm infection when the network
is in the saturated state, and we have indicated the solu-
tion’s initial condition asi∗, which we also define as the
transition point between the low load network behavior
and the network moderate load behavior.

3.3 Combined Results

We now combine our results for the low load and the
moderate to high load regimes. Equation(10) for the low
load regime was

di(t)
dt

= γlowi(t)
[

1− i(t)
1 + θi(t)

]
for i < i∗ (25)

Parameter Description Range Base Case
Number of hosts 50-150 50
Initial population size 1-20 1
Transport layer protocol TCP TCP
Simultaneous connections 1 1
Range of vulnerable Addresses 50 - 500 50
Transmission Rate (Mbps) 0.1 - 2.0 2.0
Time delay(µ seconds) 2 2
Transmission range (m) 100 - 500 250
Area of topology (m2) 1000 1000
Payload size (KBytes) 0.4 - 4000 4
Simulation time (seconds) 200 200

Table 1. Parameter definition for simula-
tion experiments.

Equation(27) for the moderate to high load regime was

di(t)
dt

= γsat[1− i(t)] for i > i∗ (26)

Let us definei∗ as the value of the infection probabil-
ity where the transition from low load behavior to satu-
rated network behavior occurs. We can pick the transi-
tion point, i.e.,i∗, as a fitting parameter which is chosen
to best fit the simulation data.

Note that our combined TCP model makes the fol-
lowing assumptions:

• A single threaded TCP operation.

• A throughput model for the time to transmit the
TCP worm payload, which assumes a large payload
in relation to the TCP segment size in the network.

• Sufficient nodal density and radio transmission
range to maintain connectivity across the MANET
cluster.

• No background traffic.

It is relatively straightforward to incorporate the effects
of multi-threaded TCP operation. Work to relax the as-
sumption of large payloads may not be extremely useful
because we would expect that most TCP worms have rel-
atively large payloads. It may be possible to incorporate
topological effects into our models to account for prob-
abilities of island formation at low densities or small
radio ranges, although we have not investigated this to
date. We plan to investigate improvements to our model
relaxing these assumptions in future studies.

4 Simulation

In this section, we present the simulation experiments
conducted usingGeorgia Tech Network Simulator(GT-
NetS).

GTNetShas an application that models the spread of a
computer worm. The worm is designed as an application



Figure 1. The TCP Model results (top)
for various worm payload sizes compared
with simulation results (bottom).

that exists on all susceptible nodes, which is listening on
a specific port for incoming packets. When the worm
application receives the infectious packet it is activated
and starts choosing targets to send infectious packets to
them.

There are different models for worms as discussed
in [16]. The models include a number of parameters that
specify the behavior of the worm

The MANET nodes are initially arranged in a rectan-
gular grid, where they are uniformly placed across the
grid. For our mobility studies, the Random Waypoint
model was used to describe the motion of the nodes dur-
ing the propagation of the TCP-based worm through the
MANET.

Table 1 define our baseline MANET TCP worm sim-
ulation model parameters.

4.1 Results

In our experiments we create the MANET topology
and set the simulation parameters according to Table 1
baseline case. We then start the worm infection in the
initial population and measure its spread against time for
varying one parameter at a time and compare the average
of the results of 30 runs with the output of the TCP worm
model described in Section 3.

Figure 1 shows the results of varying the TCP pay-
load size. Here it is clear that for payload sizes in ex-
cess of 4 KBytes, the worm propagation soon congests

Figure 2. The TCP Model results (top) for
various transmission rates with simula-
tion results (bottom).

the capacity of the radio links and the rate of spread de-
creases dramatically. Also apparent is the fact that for
small payloads, the time for the worm to overrun the
entire network is extremely short. This is one of the rea-
sons the DARPA program in [6] was so concerned about
worm attacks against tactical MANETs. As mentioned
before, the analytic modeling compares well with the
simulation results shown in Figure 1.

Figure 2 shows the results of the TCP worm model
and simulations after varying the transmission rate of the
wireless channel, ranging from 0.1 Mbps to 2.0 Mbps.
It is clear from the figures that as the transmission rate
decreases the worm spread flattens due to saturation of
the network and the infection growth tends to become
linear. The model does a very good job in qualitatively
representing the simulation results.

Figure 3 shows the results of the TCP worm model
and simulations after varying the initial infected popula-
tion size, ranging from 1 to 20 nodes. The model does a
good job in qualitatively representing the simulation re-
sults. The results show as expected that with increasing
the initial population, the worm spread rate is increased.
The increase is not as significant as might be expected
because this is a low scanning worm (only one simulta-
neous connection).

Figure 4 shows the results of the TCP worm model
and simulations after varying the radio range of the
nodes, ranging from 100 meters to 500 meters. It is clear



Figure 3. The TCP Model results (top) for
various initial population size with simula-
tion results (bottom).

Figure 4. The TCP Model results (top) for
various radio ranges with simulation re-
sults (bottom).

Figure 5. The TCP Model results (top) for
various number of nodes with simulation
results (bottom).

from the simulation results that for low radio ranges
some of the nodes can not communicate with each other
and therefore the final infection probability is very low.
As the radio range increases to 250 meters the final in-
fection probability improves, afterwords the increase in
radio range has a negative effect on the worm spread
due to more bandwidth competition between nodes. The
TCP worm model captures the effect of bandwidth com-
petition and packet discards for topologies where the
network remains connected with a high probability. But
the model breaks down at low radio ranges where con-
nectivity begins to break down.

Figure 5 shows the results of the TCP worm model
and simulations after varying the number of nodes
(nodal density). The simulation results show the effect
of increased contention with increasing nodal density,
which results in an increase in the packet drop rate.

5 Conclusion

We have presented a study of TCP worm propaga-
tion in MANETs. We investigated the impact of pay-
load size, channel bandwidth, initial infection probabil-
ities, packet discards due to collisions in the wireless
channel, radio range and routing protocols on the effec-
tiveness of the worm propagation. Previous studies have
proposed analytic models of UDP-based worm propaga-
tion in MANETs. Here, we develop an analytic model of



TCP-based worm propagation in MANETs. The model
compares well to our simulation results. The model cap-
tures the effects of variable payload sizes (for large pay-
loads), channel bandwidths, initial conditions, and radio
range. The model does not include topological consid-
erations and hence does not predict situations where the
MANET becomes disconnected due to either low nodal
densities or short radio ranges. This effect will be the
topic of future investigations. The model relies on the
fact that the wireless network exists in one of two states;
a low load state where packet discards are rare and the
TCP flows share channel bandwidth and a moderate to
high load state where the nodal packet discard proba-
bility is flat with respect to increases in the number of
flows. This effect was discovered by Fu, et al., [5], and
is confirmed by our simulation results.

We believe that our studies will aid in the de-
sign of efficient counter measures for worm attacks in
MANETs. All these factors need to be addressed when
designing an efficient mitigation technique. Further
studies of worm propagation and mitigation in the chal-
lenging networking environment afforded by MANETs
is required. In future studies we hope to further quantify
the behavior of TCP-based worms and to investigate the
efficiency of specific worm mitigation technologies.
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