
Hybrid
Simulations

R.G.Cole

Introduction
Motivation

Hybrid Simulation
Models

Stochastic
Hybrid
Simulations
Our Approach

Brownian Motion
Model Example

Initial Results
Simulation Model

UDP Results

TCP Results

Challenges

Summary

Mixed Stochastic and Event Flows
Brownian Motion Modeling for Simulation Dynamics

Robert G. Cole1, George Riley2, Derya Cansever3 and
William Yurcick4

1Johns Hopkins University
2Georgia Institue of Technology

3SI International, Inc.
4University of Texas - Dallas

04 June 2008 / ACM PADS Workshop 2008



Hybrid
Simulations

R.G.Cole

Introduction
Motivation

Hybrid Simulation
Models

Stochastic
Hybrid
Simulations
Our Approach

Brownian Motion
Model Example

Initial Results
Simulation Model

UDP Results

TCP Results

Challenges

Summary

Outline

1 Introduction
Motivation
Hybrid Simulation Models

2 Stochastic Hybrid Simulations
Our Approach
Brownian Motion Model Example

3 Initial Results
Simulation Model
UDP Results
TCP Results

4 Challenges



Hybrid
Simulations

R.G.Cole

Introduction
Motivation

Hybrid Simulation
Models

Stochastic
Hybrid
Simulations
Our Approach

Brownian Motion
Model Example

Initial Results
Simulation Model

UDP Results

TCP Results

Challenges

Summary

Motivation
Scalable Network Simulation Models

Future network design and modeling requires large
scale, high fidelity simulations capability.
Training requires real-time speedup of network
simulations.
Parallelization of network simulations not always useful
due to lack of topological communities of interest.
Hybrid analytic/event simulations appear to be an
attractive alternative.
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Hybrid Simulation Types

Network models:
Partitioned models, e.g., packet edge and analytic core
Mixed node models, i.e., packet and analytic traffic
mixed at each network queue.

Analytic models:
Deterministic models, e.g., dynamics described by
deterministic differential equations.
Stochastic models, e.g., Brownian motion models of
queue dynamics.
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Challenges to Stochastic, Mixed Node Models

Network

Split

Merge

Input
External

Departures

Loss

Simulation of network of queues.

Mixing the two fundamentally different traffic types at a
single, finite queue.
Time dependent models of finite-sized queue
dynamics.
Splitting and merging mixed-traffic flows within network
simulation.
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Approach to Hybrid Stochastic Simulations
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Contrasting deterministic versus stochastic fluid mixing at queue.
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Brownian Motion Models

Cumulative Distribution Function for a GI/G/1/K queueing
system, F (w , t |w0, t = 0) satisfies the Fokker-Planck
Equation [Kobayashi, 1974a], [Kobayashi, 1974b] and
[Heyman, 1975]
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Boundary Conditions

Initial Conditions:

F (w , t = 0) = H(w − w0); H(x) is the Heavy-side Function.

Upper and lower limits on work in system:
Common BCs -

lim
w→0

F (w , t |w0, t = 0) = 0 (4)

lim
w→wmax

F (w , t |w0, t = 0) = 1 (5)

Our alternative BCs -

lim
w→max [0,w0−µt]

F (w , t |w0, t = 0) = 0 (6)

lim
w→wmax

F (w , t |w0, t = 0) = 1 (7)
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Rationale for Our Alternative BCs

t0 t1 t2 t3

Condition
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Maximum
Work

Work
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Time

Work
Drain Rate
Maximum

Boundary Points

Mean
Drain Rate

Alternative BCs and their impact of density functions versus time.

Buffer size sets maximum and minimum limits to work
in queue.
Maximum drain rate (assuming no arrivals) sets short
term time-dependent limit on the minimum work in
queue.
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Simple Simulation Model

Foreground
Packet

Hyper−Exponential

Merge
C1 R1

500 Kbps100 Mbps

S1

Background

Router Interface

Buffer

Loss Sink

Simple simulation model in GTNets.

Background is hyper-exponential arrival with
deterministic service, modeling UDP packets
Foreground is exponential arrival with deterministic
service, modeling UDP packets
Foreground is later modeled as TCP stream
Investigate foreground packet delay (UDP and TCP),
loss (UDP and TCP), and goodput (TCP)
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UDP Delay and Loss Results
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UDP delay and loss versus rate in mixed traffic-type queue.

Deterministic fluid model has no mechanism to allow
foreground traffic buffer access at high utilization.
Stochastic model allows foreground traffic access even
in overload situations.
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UDP Delay Results versus Cv
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UDP delay versus Cv in mixed traffic-type queue.
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TCP Goodput Results
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TCP goodput versus rate in mixed traffic-type queue.

Stochastic model matches well with simulation results
for TCP dynamics.
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TCP Goodput versus Cv
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TCP goodput versus Cv in mixed traffic-type queue.
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Research Challenges

Improve Mixed Queue Models:
Not happy with Cv 6= 1 results.
Possible solution: discretize distribution
[Kobayashi, 1974b] or investigate scaling laws for
diffusional drift and variance.
Develop the background loss models.
Possible approach is based upon applications of Bayes
Theorem (see below).

Develop Network Flow Models:
Only investigated mixing at single node models to date.
Leverage literature of network queueing, e.g.,
[Whitt, 1995], [Kobayashi and Mark, 2002], others.
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Loss Models of Fluid
Application of Bayes Theorem
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Summary

Initial investigations into mixed, hybrid stochastic
simulation models
Much work to be done:

Improve Cv 6= 1 results
Develop time-dependent fluid loss models
Develop network flow models, i.e. time-dependent
network calculus

Outlook
Initial simulation results are encouraging
Need much more development and simulation studies
results of time-dependent dynamics
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