
HiNRG Technical Report: 21-09-2008
A Modular Approach for WSN Applications

Răzvan Musăloiu-E. Chieh-Jan Mike Liang Andreas Terzis
razvanm@cs.jhu.edu cliang4@cs.jhu.edu terzis@cs.jhu.edu

Abstract

We propose a mechanism for introducing loadable code to the TinyOS 2 frame-
work. Unlike previous proposals that use virtual machines, the loadable code runs
natively on the mote avoiding the overhead associated with interpretation. Loadable
programs interact with the rest of the system through a Proxy, a nesC component that
exposes abstract versions of system resources including the sensors, flash memory, com-
munication, and timers. We leverage the abstractions provided by the Proxy through
TinyJavaScript, a subset of the popular JavaScript language that can be used to de-
velop wireless sensor network applications. TinyJavaScript offers familiar syntax, type
inference, and the ability to simulate and debug mote programs in a browser. Tiny-
JavaScript programs are translated to equivalent C code and compiled to MicroExe
binaries that are dynamically linked by TinyLD, a dynamic linker/loader that runs
on the mote. We compare loadable code and TinyJavaScript to monolithic programs
developed in nesC/TinyOS. Our experimental results show that offering system mod-
ularity and the ability to program applications in a high-level language incurs only
moderate overhead in terms of increased memory footprint and runtime performance.

1 Introduction

Developing applications for sensor networks is a challenging task, currently mastered by a
small group of seasoned developers. However, if wireless sensor networks (WSNs) are to reach
their full potential, programming them has to be more accessible to the average programmer
who does not have the time or interest to become proficient with the intricacies of a new
programming paradigm before developing a WSN application. This problem is compounded
by the requirement to re-program WSNs after they have been deployed, either to correct
programming errors or to evolve the application based on experience from the deployment.
Doing so efficiently, requires minimizing the size of code updates to minimize the energy cost
of delivering the update to the network’s motes. This imperative in turn calls for assembling
applications from modular components and transmitting only modified components.

Virtual machines (VMs) [11, 12] were proposed in the past to address the two challenges
described above. In this paradigm, a developer writes the application in a high-level language
that is translated to bytecode for a virtual machine. This bytecode is then executed by an
interpreter running on the mote. While VMs offer both the ability to develop WSN applica-
tions using high-level languages (e.g., subsets of Java) and compact program representations,
they suffer from high execution overhead associated with the bytecode interpretation process.

1

Depending on the duty cycle of the application, this overhead and the energy consumption
associated with it, can considerably reduce the network’s operational lifetime.

In this paper we present a different methodology for developing and evolving WSN appli-
cations in the field. Our approach is driven by the observation that application developers
rarely need to modify system services such as the wireless radio, sensors, and flash memory
but can instead interact with service abstractions. These abstractions are offered by a Proxy,
that in turn interfaces with the corresponding low-level system components. The level of
abstraction provided by the Proxy offers the opportunity to develop WSN applications in a
high-level language that abstracts the intricacies of developing code for motes. We present
TinyJavaScript, an example of such a language that offers type inference and a simplified
debugging and testing process.

Raising the abstraction level however, should not be done at the expense of efficiency.
Instead, we provide a mechanism by which a TinyJavaScript program is translated to C and
eventually object code. TinyLD, a dynamic linker/loader we developed, links the application
object code to the system-level code. The result is a single binary that runs natively on the
mote. In this way, we achieve the best of both worlds: simplifying application development
and achieving execution efficiency comparable to that of monolithic programs.

The two parts of our approach (i.e., Proxy/TinyLD and TinyJavaScript) are independent.
One can leverage the ability to dynamically evolve application behavior by exploiting the
services exported by the Proxy without using TinyJavaScript, opting to use a system-level
language like C. At the same time, the proposed architecture provides a basis for the develop-
ment of multiple high-level languages that can raise the level of abstraction for programming
sensor networks.

Said differently, we advocate for a bottom-up approach to the problem of WSN pro-
gramming. Exposing system services is the basis upon which multiple novel programming
paradigms can be built upon. We take a modest step in this direction by presenting a simple,
yet expressive scripting language for developing WSN applications, but expect that other
more ambitious languages will continue down the same path.

Our experimental results show that the proposed reprogramming mechanism is efficient,
generating moderate overhead in execution performance and resource usage. The increase
in resource usage is mostly due to the addition of the Proxy and TinyLD components. For
the Tmote Sky platform the overhead we measured is less than 19.6% of the available ROM
and less than 4.7% of the available RAM. Overhead in execution time is limited to the cost
of one or two additional function calls for the services provided by the Proxy and copying
of buffers between the application and the Proxy. Finally, linking and loading a new binary
requires less than 1.5 seconds for the applications we implemented in our framework.

This paper makes the following three contributions. First, we propose an efficient way
for WSN reprogramming while leveraging the existing code base of TinyOS 2 [13] and the
community built around it. Second, we present TinyJavaScript, a simple scripting language
that can be used to develop WSN applications, and finally we show how TinyJavaScript
programs can be translated to native code and provide a dynamic linker and loader (TinyLD)
for loading such programs to the mote.

2

This paper has eight sections. In the section that follows we frame our work in the
context of the related literature. Next, we present an overview of our approach for providing
efficient reprogramming in TinyOS. Section 4 describes TinyJavaScript, an example of a
scripting language customized for writing WSN applications, while Section 5 describes the
steps required to translate TinyJavaScript to executable code that runs natively on motes.
We evaluate the performance and efficiency of our approach in Section 6. Finally, we outline
future work in Section 7 and close in Section 8 with a summary.

2 Related Work

The need for flexible programming models has inspired the use of virtual machines (VMs)
for sensor networks. Maté was the first VM-based approach proposed for this task. Maté
rograms are contained in sequences of capsules delivered to the mote and interpreted by
Bombilla, a stack-based VM optimized for resource constrained environments [11]. Subse-
quent work on Active Sensor Networks extends on Maté by providing a method for building
application specific virtual machines (ASVMs) [12]. ASVMs provide a flexible boundary
between native and interpreted code. VM? takes a similar approach, customizing the ser-
vice layer on a per-application basis [9]. VM? programs are written in Java and import
Java libraries to interact with the underlying hardware. Our approach also uses a high-level
language for programming WSNs (TinyJavaScript in our case, TinyScript and Mottle for
ASVMs, and Java for VM?). On the other hand, TinyJavaScript programs translate to na-
tive code avoiding the overhead of interpretation. Given a mote’s limited resources, we argue
that virtualization at the function level, as provided by our Proxy, is preferable to VMs.

A number of previous proposals have convincingly argued about the advantages of using
loadable code to dynamically evolve WSN applications. Among them, SOS is a dynamic
operating system for sensor networks that allows a high degree of modularity [7]. SOS
modules are fragments of position independent code (PIC) that can be inserted and removed
without rebooting. Even though SOS reuses some parts of TinyOS, it is incompatible with it.
The system Proxy we propose offers similar features with the SOS API in the context of the
TinyOS framework. While SOS uses C for application development, we use TinyJavaScript,
a high-level language that offers type inference and the ability to simulate and debug WSN
applications in a browser.

Contiki is another sensor operating system that supports loadable objects [4]. Contiki
uses ELF/CELF binaries which are similar to the MicroExe binaries we use. While the
MicroExe binary format we developed also derives from ELF it is not compatible with it
(like CELF). On the other hand, MicroExe is more compact thus reducing program transfer
cost. The approach followed by Contiki is more general in the sense that it allows arbitrary
loading and unloading. TinyLD works in more restrictive environments because it does not
assume the existence of a byte-level external memory (the ESB platform used in Contiki has
a 64KB EEPROM that is used by the loader to store the binary image during the linking
and relocating phase).

The work that is closest to ours is FlexCup [20]. FlexCup also allows dynamic load-

3

ing of TinyOS components. There are however many differences between Flexcup and our
approach. First of all, FlexCup uses a different linking and loading method that requires
rebooting the node for the new image to run. Moreover, the application halts during the
linking and loading process. On the other hand, using TinyLD, the application can continue
its operation during that time and it can restart immediately after the load process termi-
nates. Finally, in addition to TinyLD, we provide a system Proxy that abstracts system
resources and forms the basis for high-level programming languages such as TinyJavaScript.

A number of domain-specific languages for WSNs have been proposed in the past, span-
ning the design space from in-network query processors to macroprogramming ([3, 17, 19,
6, 22, 23, 2] among others). TinyJavaScript is a modest proposal in this space, offering a
familiar environment for non-specialists to develop WSN applications. By using a syntax
that is similar to C and retaining split-phase operations from TinyOS it is efficient and
easy to translate to native code. At the same time, it removes low-level constructs such as
pointers and explicit types. Moreover, TinyJavaScript offers an interesting opportunity for
prototyping and testing WSN applications. We expect that more ambitious languages will
emerge based on our approach but until then, TinyJavaScript offers a feasible alternative to
programming WSN applications in nesC.

3 Overview

Our approach is motivated by the observation that while the fine-level control and high ex-
pressivity provided by a system-level language such as nesC [5] are invaluable to system-level
developers, i.e., programmers that develop services such as MAC and time synchronization
protocols, it is seldom used by application-level developers, who are tasked to write appli-
cations such as environmental monitoring. The distinction between system and application-
level programmers is crucial. While the former need to intimately control hardware resources
(e.g., radio, sensors, and storage), the latter can interact with abstractions of these resources.

Our goal is to raise the level of abstraction for application developers who can code their
applications using abstract versions of the system’s resources. Given these abstractions,
application developers can use a high-level (scripting) language to encode application logic.
At the same time, we do not want to trade simplicity in the development process with poor
execution performance. For this reason, we require the high-level application code to run
natively on the mote’s hardware. This is a distinction with previous proposals in which
application scripts are interpreted by a virtual machine running on the mote [11].

Figure 1 provides a graphical overview of the proposed architecture. The user-level code
is dynamically loaded on the mote on which it runs natively. This code accesses system
resources by calling functions provided by the Proxy, a nesC component whose purpose is
to expose resources such as the radio interface, flash memory, onboard sensors, etc. We
retain the split-phase paradigm from TinyOS to avoid blocking during long operations. To
do so, the application code registers callback functions which the Proxy calls when certain
operations complete.

In turn, the Proxy implements the exposed services by internally connecting to other

4

Hardware

Proxy

T2 Components

Loadable Program

TinyLD

Application−level
code

System−level
code

Figure 1: Code organization on a running mote including loadable application code,
the system Proxy, and the TinyLD linker/loader.

TinyOS components and calling the corresponding functions provided by these components.
When a split-phase operation completes, the Proxy closes the loop by calling the callback
function registered by the application code. Note that the application code does not interact
with any other nesC components, effectively separating the application from the rest of the
system. At the same time, we do not provide any explicit mechanisms to ensure separation
between the application and system code. An application can take full control of the mote
(e.g., by going into an infinite loop) or corrupt system code by overwriting physical memory.
In other words, we implicitly trust that the application running on the mote is well behaved.
In this respect we follow the security model used in TinyOS today.

Figure 2 outlines the two parallel paths involved in the proposed code generation process.
The path to the right summarizes the generation of system code that includes the Proxy and
other TinyOS 2 components. It starts with the definition of the resources (e.g., radio, sensors,
etc.) that will be provided by the Proxy. We envision a graphical front-end in which the user
inputs the required components and that automatically generates a binary customized for
a specific deployment that can be installed on a mote. Creating such a customized binary
minimizes the Proxy’s memory footprint. The second output of the right path is a set of
helper .h files used for the compilation of the application code.

Moving to the left path, the application code written in a scripting language is first
translated to equivalent C code during the meta-compilation phase. The generated C code
is subsequently compiled into an object file for the target platform (e.g., the MSP430 micro-
controller used in the Tmote Sky mote [21]). During the pre-processing stage that follows,
the object file is encapsulated into a MicroExe binary, a compact binary format we developed
for embedded programs. The resulting binary cannot be executed as-is because it contains
unresolved references to external functions (i.e., the functions provided by the Proxy) and
unallocated variables. All these issues are resolved during the linking and loading phase. At
the end of this phase, the application code is properly patched, moved in the internal flash
ROM of the microcontroller and is ready to run in combination with the existing code.

While the first three stages in the system path of Figure 2 occur on the programmer’s
desktop, linking and loading occur on the mote after the application object code is placed
in its external flash memory. The code is transferred either through a serial connection or
via an over-the-air code distribution mechanism such as the one used in Deluge [8].

5

Meta−compilation

Compilation

Object code

Linking & Loading

Unified binary

High−level
program

C code

Preprocessing

MicroExe binary

exports.h

Mote Side

Application Path

PC Side

System Path

description
Proxy

Binary code

Compilation &
Loading

callbacks.h

Figure 2: The different stages of the code generation process.

Note that when one needs to modify the application running on a deployed sensor net-
work, only the application code needs to be transmitted over the air instead of the complete
binary image. This decreases the propagation cost and subsequently decreases the amount
of energy required for reprogramming.

4 The TinyJavaScript Language

The goal of TinyJavaScript is to simplify the development of loadable WSN applications.
As its name implies, it is a derivative of the popular JavaScript scripting language. This
choice has the advantage of preserving the expressiveness of C, without the incurring burden
of pointer arithmetic and explicit typing information associated with it. Moreover, as we
describe in Section 4.4, using JavaScript provides an easy way to simulate WSN applications.

TinyJavaScript programs interface with a global object called TinyOS. This object con-
tains all the objects and functions exposed by the Proxy mentioned in Section 3. More
specifically, a TinyJavaScript program can perform the following actions: (1) implement
callback functions that complete the two-way interfaces offered by the objects provided in
the global TinyOS object; (2) define local variables; (3) define local functions.

Appendix A.1 presents an example of a complete application written in TinyJavaScript
that is equivalent to the Blink application in TinyOS. Briefly, the application sets three

6

Objects Functions Callbacks

TinyOS nodeId(), post(fun) init()
TinyOS.Leds set(value), get()
TinyOS.Leds[n] on(), off(), toggle()
TinyOS.Timer[n] stop(), startOneShot(interval), fired()

startPeriodic(interval)
TinyOS.Radio start(), stop() startDone(error), stopDone(error)
TinyOS.Radio[am] send(addr, msg, len) sendDone(error)
TinyOS.Serial start(), stop() startDone(error), stopDone(error)
TinyOS.Serial[am] send(addr, msg, len) sendDone(error)
TinyOS.Sensor[n] read() readDone(error, val)
TinyOS.Volume[n] getSize(), read(addr, buf, len), readDone(error), writeDone(error),

write(addr, buf, len), erase(), eraseDone(error), crcDone(crc, error)
crc(addr, len)

TinyOS.Systime get()
TinyOS.Random get16(), get32()

Table 1: The objects available in TinyJavaScript through the TinyOS object. All call-
backs and functions from TinyOS.Leds, TinyOS.Leds[n] and TinyOS.Timer[n] return
void. Most of the other functions return an error code.

timers with different timeout values and toggles one of the mote’s LEDs when each of the
timers fires.

4.1 TinyOS Object

Table 1 summarizes the service abstractions and objects available through the TinyOS object.
Most of the table’s entries are self explanatory, so we focus on the ones that deserve further
explanation.

Some objects offer only functions (e.g., TinyOS.Systime), while others offer only indexed
objects (e.g., TinyOS.Timer), and others have both (e.g., TinyOS.Leds). Indexing has dif-
ferent semantics for different objects. For example, in the case of the TinyOS.Radio and
TinyOS.Serial objects, it represents the type of active messages sent over the radio and the
serial interfaces respectively, while in the case of TinyOS.Timer it represents a separate in-
stance of a Timer object. Applications can post tasks by using the TinyOS.post() function.
The Proxy enqueues tasks posted by the application for execution. Due RAM resource con-
straints, the task queue might not be able to handle all the tasks posted. In this case, the
Proxy returns an error to the application. Otherwise, after the Proxy regains control, it
executes all queued tasks and clears the task queue. Finally, the TinyOS.init() function is
used to define the application code segment that will run immediately after the application
has been loaded to the mote.

While Table 1 represents the current system interface, it is straightforward to include
additional TinyOS 2 services, such as Dissemination and Collection.

7

TinyJavaScript fragment

SENSOR_NO = 3;

readings = new Array(SENSOR_NO);

...

TinyOS.Sensor[0].readDone = function(error, val)

{

if (error == SUCCESS) {

readings[0] = val;

}

TinyOS.post(mainTask);

}

C fragment

#define SENSOR_NO 3

uint16_t readings[SENSOR_NO];

...

void _sensor0readDone(uint8_t _error, uint16_t _val)

{

if (_error == SUCCESS) {

readings[0] = _val;

}

_post(mainTask);

}

Figure 1: Type inference for arrays. The array size is determined by the con-
stant SENSOR NO. The type of the array (uint16 t) is inferred from the assignment of
readings[0] to val, which is known from the predefined function readDone.

4.2 Language Constructs

Next, we elaborate on the features offered by TinyJavaScript and provide examples of their
use.

Variables and Built-in Types. TinyJavaScript preserves the variable declaration method
using var from JavaScript. Variable and function return types are not explicitly declared but
are instead inferred. Type inference is possible due to the observation that the prototypes
of the external and callback functions are known at compile time. Another hint that guides
type inference is the type of the operation that a variable is involved in.

Arrays can be declared using the new operator on the object Array. The code snippet
in Figure 1 provides an example of a variable definition in TinyJavaScript and explains how
its complete type is determined.

Associative arrays in TinyJavaScript translate to C structures. If the types of a structure’s
elements have to be precisely defined (e.g., when defining packets sent over the serial link or
the radio), predefined values (uint16_t, uint32_t, etc.) can be used in dummy assignments
to indicate the desired type. To declare a field without setting its type, the undefined type
can be used. Figure 0 shows an example of explicit type definition for an associative array.

Operators. With minor exceptions (i.e., identity check, === and !==), all the JavaScript
arithmetic and logic operators are present in TinyJavaScript and can be directly translated
to C. The special operators delete and typeof are not supported, while the new operator
is partially supported when used in array declarations.

Control structures. The control structures that TinyJavaScript provides are: if, while,
for, for...in, break, continue and return. We do not currently support the with and
try...catch clauses from JavaScript.

Functions and Objects. JavaScript comes with a relatively rich set of built-in functions
(eval, parseInt, parseFloat, escape, unescape) and objects (Array, Boolean, Date, Math,
Number). Even though it would be easy to implement some of them (i.e., Boolean, Date,

8

TinyJavaScript fragment

rpkt_in = {’key’: uint32_t,

’version’: uint32_t,

’value’: uint32_t};

TinyOS.Radio[0].receive = function(payload, len)

{

rpkt_in = payload;

if (rpkt_in.key == curKey) {

...

}

}

C fragment

struct {

uint32_t key;

uint32_t version;

uint32_t value;

} rpkt_in;

void _radio0receive(void* _payload, uint32_t _len)

{

memcpy(&rpkt_in, _payload, sizeof(rpkt_in));

if (rpkt_in.key == curKey) {

...

}

}

Figure 0: Translation of associative arrays to C structures. The memcpy() operation is
necessary because the payload pointer might be misaligned.

and Number) their usefulness is limited in this application domain and for this reason we
chose not to do so. On the other hand, we do allow limited use of the Array object, in order
to describe arrays from C.

Finally, object prototypes is a JavaScript feature that we do not support in Tiny-
JavaScript.

4.3 Meta-Compilation

TinyJavaScript programs are translated to equivalent C code using a custom compiler we
wrote in Python. Lexical and syntax analysis is done using PLY [1], an implementation
of the standard lex and yacc tools for Python. Besides offering all the main features
(e.g., empty productions, precedence rules, ambiguous grammars) of standard lexical and
syntax analyzers, PLY offers a number of other useful features. It is compatible even with
old versions of Python (2.1), it is contained in only two files, and it does not have any
external dependencies. These features, coupled with the wide availability of the Python
interpreter, mean that the meta-compiler we developed can run on a wide range of systems
and configurations.

Due to the high degree of similarity between the syntax of TinyJavaScript and that of C
(alluded by the code snippets in Figures 1 and 0), the translation from TinyJavaScript to C
is relatively straightforward. The only real challenge is type inference. The meta-compiler
performs this task by exploring the abstract syntax tree and augmenting it with the type
information from external functions and operations in which the variables are used. Lastly,
because all the meta-compiler logic is encoded in the two Python files, it is possible for third
parties to augment its functionality.

9

1 #include <sys/inttypes.h>

2

3 extern void _led0On();

4 int i;

5

6 void inc() {

7 i = i + 1;

8 }

9

10 void _init() {

11 i = 1;

12 inc();

13 _led0On();

14 }

Figure 1: demo.c, a simple C program that increments a variable and requests services
from the Proxy.

4.4 Simulation

Because TinyJavaScript is a subset of JavaScript, TinyJavaScript programs are also valid
JavaScript programs. This allows us to build a simulation environment using any JavaScript
enabled web browser. To demonstrate this capability, we developed TinyOS.js, a library
that implements the objects from Table 1. Support for timers and tasks is provided by the
JavaScript function setTimer(). Because packets are JavaScript objects, JSON1 can be
used to simulate their transmission and reception. By using an HTML page in conjunction
with TinyOS.js we can quickly test and debug complete TinyJavaScript programs using a
web browser as a graphical front-end.

5 TinyLD

TinyLD is the dynamic linker and loader we developed for TinyOS. The purpose of TinyLD
is threefold: (I) Translate the object code produced by the C compiler to a loadable program.
(II) Patch unresolved address references and link the loadable program to the Proxy. (III)
Load the resulting program to the mote’s flash ROM. In the paragraphs that follow we
elaborate on each of these three phases.

5.1 Background

Before we delve into the details of how dynamic linking and loading is done in our case,
we provide background information on the steps required to link and load a program in
general. Given that the gcc compiler for the MSP430 uses the Executable and Linkable
Format (ELF), we use ELF to provide this information.

1JSON (JavaScript Object Notation) is a lightweight computer data interchange format. Support for
JSON was added to many languages and is used heavily in Ajax applications.

10

00000000 <inc>:

0: 05 12 push r5

2: 04 12 push r4

4: 92 53 00 00 inc &0x0000

8: 34 41 pop r4

a: 35 41 pop r5

c: 30 41 ret

0000000e <_init>:

e: 05 12 push r5

10: 04 12 push r4

12: 92 43 00 00 mov #1, &0x0000

16: b0 12 00 00 call #0

1a: b0 12 00 00 call #0

1e: 34 41 pop r4

20: 35 41 pop r5

22: 30 41 ret

Figure 2: Disassembly of demo.o. Entries that need patching are highlighted, including
the address location of variable i, the call to internal function inc() and external
function led0On. The push and pop instructions represent dead code which is removed
when compile optimizations are enabled.

An ELF object file includes the ELF symbol table and the ELF relocation table that
contain information about how to resolve address references in the code. Figure 1 lists a
simple C program similar to the one generated by the TinyJavaScript meta-compiler. This
program turns on LED 0 after incrementing the variable i. The C extern keyword on line 3
indicates that _led0On is an external function (defined in the Proxy). Function _init on line
10 is a reserved function name equivalent to the TinyOS.init() function in TinyJavaScript
(see Table 1).

The result of compiling the C code in Figure 1 is an object file demo.o whose disassembled
code is shown in Figure 2. As this figure shows, there are four unresolved address references
at address offsets, 0x0006, 0x0014, 0x0018, and 0x001c. These references have a value of
0x0000 in the machine code. The goal of the linking and loading process is to correctly
resolve these references before the program starts executing.

To help in this process, ELF files contain a symbol table and a relocation table, in
addition to the machine code. As their names imply, the first table contains the names and
types of all symbols used in the program, while the second contains all the offsets, relative
to the starting address of the code, in which these symbols are used. Figures 3 and 4 show
the corresponding symbol and relocation tables of demo.o respectively.

We focus first on entries 5-8 in the symbol table. Entries 5 and 7 indicate that inc and
_init are defined at address offsets 0x0000 and 0x000e in the machine code. Since _init

is a callback function that will be invoked by the Proxy component, the linker will need to
update the corresponding entry in the Proxy’s callback table with the start address of the
loaded code plus offset 0x000e. Entry 6 describes the two-byte variable, i. Since this is a
local variable, the loader will need to allocate two bytes in RAM for it. Entry 8 is a call to
the external function _led0On provided by the Proxy which needs to be resolved during the
linking process.

11

Num: Value Size Type Bind Vis Ndx Name

0: 00000000 0 NOTYPE LOCAL DEFAULT UND

1: 00000000 0 FILE LOCAL DEFAULT ABS demo.c

2: 00000000 0 SECTION LOCAL DEFAULT 1

3: 00000000 0 SECTION LOCAL DEFAULT 3

4: 00000000 0 SECTION LOCAL DEFAULT 4

5: 00000000 14 FUNC GLOBAL DEFAULT 1 inc

6: 00000002 2 OBJECT GLOBAL DEFAULT COM i

7: 0000000e 22 FUNC GLOBAL DEFAULT 1 _init

8: 00000000 0 NOTYPE GLOBAL DEFAULT UND _led0On

Figure 3: The ELF symbol table of demo.o. Entries of interest are highlighted.

Offset Info Type Sym.Value Sym.Name+Addend

00000006 00000603 R_MSP430_16 00000002 i + 0

00000014 00000603 R_MSP430_16 00000002 i + 0

00000018 00000505 R_MSP430_16_BYTE 00000000 inc + 0

Figure 4: The ELF relocation table of demo.o.

Moving on to the relocation table, the first two entries in Figure 4 indicate that variable
i is used in two address offsets, 0x0006 and 0x0014. This information, combined with size
knowledge from the symbol table as well as knowledge of the location in which the code
will be placed in physical memory, help the loader to resolve the references to i. Similarly,
the last two entries of Figure 4 specify function calls to inc and _led0On at address offsets,
0x0018 and 0x001c. Also shown in Figure 4 are addend’s which are equivalent to array
offsets. Because demo.c does not use any arrays, the addend values are always 0.

5.2 MicroExe

While widely used in Unix systems, using ELF for mote binaries is inefficient. For example,
addresses are encoded as 32-bit values while mote platforms based on the MSP430 micro-
controller, such as the Tmote Sky [21], have 16-bit address space. Moreover, symbol names
are encoded as text strings for ease of use, thus increasing the size of the file. To avoid the
inefficiencies associated with ELF, we designed MicroExe; a file format designed specifically
for loadable programs in TinyOS. Addresses in the MicroExe file format are 16 bits wide and
are encoded using the little-endian byte order to comply with the byte order used on mote
platforms. We use a PC-side script to construct the MicroExe files. The script invokes the
MSP430 tool-chain to extract the ELF symbol and relocation tables and re-arranges their
information according to the MicroExe format described below.

As Figure 5 indicates, there are four sections in a MicroExe file: metadata, callback table,
patch table, and finally the machine code of the loadable program.

Metadata. The metadata is the only section in the file with fixed size and provides the
size of each other section. The first four fields in this section specify the number of entries
in each of the subsequent sections, while the last field specifies the size of the machine code
in bytes.

12

to patch

First address

to patch

First address

to patch

First address L
o

c
a
l

R
e
lo

c
a
tio

n
s

E
x
te

rn
a
l

R
e
lo

c
a
tio

n
s

A
llo

c
a
tio

n
s

Local

address
ID

Size

ID

Offset

...

...

...

...

16 bits

relocations

Number of

external
Number ofNumber of

relocations

local

Number of

Code size
allocations

...

callbacks

P
a
tc

h
 T

a
b

le
M

e
ta

d
a

ta
C

a
ll
b

a
c
k
s

C
o

d
e

Figure 5: MicroExe file format.

Callback table. The callback table includes the address offsets of all callback functions
defined in the loadable program. These are the functions that the Proxy component will call
(e.g., readDone()). Since their actual location in memory is known only during loading, the
TinyLD linker will need to convert these address offsets before patching the corresponding
entries in the Proxy component. To simplify table lookups and reduce the size of the callback
table, callback functions are referenced by numerical identifiers instead of human-readable
strings.

Patch table. The patch table contains information about the type and location of each
unresolved address reference in the machine code. It contains three sub-tables: (1) The allo-
cation table, which contains locally defined symbols (i.e., global variables). (2) The external
relocation table, which contains references to external functions called by the program, and
(3) the local relocation table which contains references to variables and functions defined in
the program.

To minimize the footprint of these tables, MicroExe employs a common compiler tech-
nique called chained references [10]. This technique takes advantage of the observation that
references to unresolved addresses in the code contain useless values, or 0x0000 in the case
of the MSP430 gcc compiler (see Fig.2). We can then create a chain or linked list of all the
references to the same unresolved symbol. Specifically, a chain is created in the machine
code by having each unresolved reference point to the next unresolved reference of the same
symbol. By employing this technique, each entry in the patch table has only two columns:
the symbol and a pointer to the first chained reference of that symbol.

The symbol column acquires a different meaning depending on the sub-table it belongs.

13

T2

Flash ROMRAM

M
e
m

LP2

LP1

free

free

0x1100

0x38FF 0xFFFF

0x4000

Stack

free

T2

LP2

LP1
0xF800

0xF000

0xFDFF

Figure 6: RAM and flash ROM layout. Two loadable programs, LP1 and LP2, have
been loaded to the flash ROM. In addition, space in the Mem region is allocated for
the variables in LP1 and LP2.

As Figure 5 shows, the allocation table interprets the symbol column as the symbol size. The
external relocation table and the local relocation table interpret it as a Proxy service identifier
and address offset within the machine code respectively. This design decision ensures that
the patch table grows with the number of unique symbols in the loadable program, not with
the number of times each symbol is referenced.

Machine code. The machine code section of the ELF file is copied to this section.

5.3 Dynamic Linking and Loading

Before a loadable program can run on the mote, TinyLD must link its machine code to
the Proxy by patching unresolved addresses corresponding to calls for Proxy functions and
callbacks, allocate memory space for variables defined in the program, patch references to
local variables, and finally load the machine code to the flash ROM.

Figure 6 presents a graphical layout of the physical RAM and ROM of a mote in which
the loadable programs reside after the linking and loading process terminates. Shown in the
figure are two loadable programs LP1 and LP2, whose machine code resides in ROM. Also
shown in the figure is a pre-allocated area of the RAM (Mem), which TinyLD uses to store

14

the programs’ local variables.
TinyLD starts this process by reading the metadata section of the MicroExe file. Knowing

the size of the machine code, TinyLD calculates the flash ROM address in which the machine
code will reside. This location information is crucial, as all addresses in the callback table and
in the patch table are offsets with respect to the first address of the machine code. Contrary
to TinyOS, MicroExe places the machine code at the end of the flash ROM (i.e., the highest
address). However, special care must be taken because mote platforms such as the Tmote
Sky reserve the last sector of the ROM for interrupt vectors. Figure 6 shows this area as
memory range 0xFDFF - 0xFFFF. Another constraint is that the MSP430 can only erase
the flash ROM at sector-level blocks (512 bytes). To allow unloading individual programs,
MicroExe ensures that programs are sector-aligned. As Figure 6 shows, a disadvantage of
this decision is that ROM fragmentation may occur.

Next, the callback table is copied from the external flash to RAM. Instead of allocating
space in RAM, TinyLD temporarily stores the callback table in Mem. Since the new loadable
program is not running at this point, the unused portion of Mem can be safely used for other
purposes. Next, the callback identifiers are resolved, and their addresses are translated with
respect to the start of the machine code. Finally, MicroExe patches the Proxy with these
values.

The next step is to patch unresolved address references in the machine code. To do
so, the patch table is first copied in RAM in the same way with the callback table. Then,
TinyLD pre-processes the patch table because each table entry interprets the first column
differently (cf. Fig. 5). Based on the size of local variables, TinyLD assigns space within
Mem to each local variable and overwrites the size information in the patch table with the
resolved addresses. Next, TinyLD translates the Proxy service identifiers in the external
relocation table to the resolved addresses given by the Proxy. Finally, TinyLD adjusts the
address offsets in the local relocation table with respect to the machine code location.

Because RAM use is at a premium, the machine code is not cached in RAM. Instead, the
machine code is copied from the external flash in chunks, which are defined as code segments
between two consecutive unresolved references. The process starts by searching the MicroExe
patch table for the lowest unresolved address reference in the machine code. Then the code
chunk up to this address is copied to the flash ROM. TinyLD then writes the resolved address
reference to the flash ROM and the corresponding reference chain is updated with the next
unresolved reference. The process repeats by finding the next lowest unresolved reference
and terminates after all unresolved address references have been successfully resolved.

The section that follows presents an example to better illustrate the steps outlined above.

5.4 Linking and Loading Example

We use the simple C program from Figure 1, to demonstrate how a MicroExe file is created
and all the steps that TinyLD follows.

Building the MicroExe binary file. The process begins with a script that parses the
ELF symbol and relocation tables (shown in Figures 3 and 4). From the symbol table the

15

Number of allocations

Number of callbacks

Number of external relocations

Code size

Number of local relocations

01 00 01 00 01 00 01 00 24 00

00 00 0e 00

00 00 1c 00

00 00 18 00

05 12 04 12 92 53 14 00

34 41 35 41 30 41 05 12

04 12 92 43 00 00 b0 12

00 00 b0 12 00 00 34 41

35 41 30 41

Callbacks

Patch Table

Code

02 00 06 00

Figure 7: MicroExe binary file for demo.c.

script learns that i is a local variable with size of two bytes and inserts this information in
the allocation table. Since the list of Proxy services is known in advance, the pre-processing
script also knows _init is a callback function and fills the callback table with an entry
for _init and address 0x000e. Likewise, MicroExe fills the global relocation table with an
entry of _led0On. The location of _led0On function call, 0x001c, can be found in the ELF
relocation table. To reduce space use, _init and _led0On are recorded using predefined
numerical identifiers. Finally, inc and i are recorded in the local relocation table. Note that
i has two entries in the ELF relocation table because it is called twice in the code. Instead of
having two records for i in the local relocation table, we chain these two references and point
the first reference to the second reference. Therefore, the first reference has the little-endian
value, 0x1400. Figure 7 shows the resulting MicroExe binary file of demo.c.

Linking and loading. Linking and loading starts by reading the metadata portion of the
MicroExe file, which is then used to calculate the ROM location in which the machine code
will reside. Because the last sector of the flash ROM is reserved for interrupt vectors and the
code size is 36 bytes long, the machine code will be placed at address 0xfc00, as Figure 8
shows. The callback table is first copied to Mem. Using the callback table, we can update
the Proxy with the actual locations of all callback functions used by the program (_init
at 0xfc0e). The patch table is copied to RAM next. As mentioned before, entries in the
table need to be offset differently. Figure 8 shows this step. First, address references to
the functions that the Proxy exports are translated based on knowledge about the Proxy’s
location in ROM. Next, local function references need to be offset with respect to the machine
code location in the flash ROM. Last, local variables need to be offset with respect to Mem.

Patching unresolved address references starts by searching for the lowest unresolved ad-
dress in the address patch table, which is 0x0006. The code segment before 0x0006 is first
copied from the external flash to the flash ROM. Then, the resolved address reference, or
0x2000, is written to the flash ROM. Finally, the corresponding chain in the patch table is

16

_led0On

Exported Functions

0x0006

0x001c

0x0018

i

_led0On

inc

0x5000

...

0x0000

0x0000

0x0002

Code in Flash ROM

0xFC00

Mem

0x2000

i

free

0x2002

Patch Table

0x0006

0x001c

0x0018

0x2000

0xfc00

i

_led0On

inc

0x5000

Patch Table

Figure 8: TinyLD pre-processes the patch table before linking and loading. References
to exported Proxy functions are translated as given by the Proxy. Local functions are
offset with respect to the machine code location in the flash ROM. Local variables are
offset with respect to the location of Mem.

updated to the next unresolved reference, or 0x0014. The next lowest unresolved address is
0x0014. The code segment between 0x0008 and 0x0014 is copied, and the resolved address
reference is written. This process repeats until there are no unresolved address references
in the machine code. Figure 9 shows the final machine code in the flash ROM. Finally, the
Proxy gives control to the loadable program by calling _init.

6 Evaluation

We evaluate the performance of the proposed approach using three metrics: code size of the
loadable programs, overhead in terms of increased memory footprint and execution overhead,
and energy consumption associated with the linking and loading operations.

We perform all our experiments using Tmote Sky motes [21]. The Tmote Sky is based
on the MSP430-F1611 microcontroller with 10KB RAM and 48KB flash ROM. One notable
characteristic of the MSP430 is that it follows the Von Neumann architecture, which places
both RAM and flash ROM in the same address space. The Tmote Sky also features 1 MB
of external flash which we use to temporarily store loadable programs before we copy them
to microcontroller’s internal RAM and flash ROM.

6.1 Test Applications

To measure the performance across the three metrics defined above, we implemented a num-
ber of applications in TinyJavaScript and compared them with existing monolithic TinyOS
programs. The selection of applications is meant to demonstrate the effects of the interaction
between the loadable programs and the underlying Proxy services for different models of use.

17

<inc>:

 0: 05 12

 2: 04 12

 8: 34 41

 a: 35 41

 c: 30 41

<_init>:

 e: 05 12

 10: 04 12

 1e: 34 41

 20: 35 41

 22: 30 41

 1a: b0 12 00 00

 16: b0 12 00 00

 12: 92 43 00 00

14 00 4: 92 53

<inc>:

fc02: 04 12

fc08: 34 41

fc0a: 35 41

fc0c: 30 41

<_init>:

fc0e: 05 12

fc10: 04 12

fc1e: 34 41

fc20: 35 41

fc22: 30 41

fc1a: b0 12

fc16: b0 12 00 fc

fc12: 92 43 00 20

fc04: 92 53 00 20

00 05

fc00: 05 12

0x0006

0x001c

Code in External Flash Code in Flash ROM

0x0018

0x2000

0xfc00

i

_led0On

inc

Address Patch Table

0x5000

Figure 9: TinyLD chains references that resolve to the same symbol, demonstrated
by the arrows. Patching is performed sequentially with respect to the location of
unresolved address references in the machine code. The right side of the figure shows
patched machine code in the flash ROM.

Blink. This program is a re-implementation of the standard Blink application from TinyOS
2 using loadable code . It uses three timers and three LEDs. The full source is available in
Appendix A.1.

RadioCountToLeds. This is a re-implementation of another standard TinyOS 2 applica-
tion. It uses one timer to implement a 4 Hz counter. Each time the timer fires, the counter
is incremented and its value is sent via broadcast over the network. Each mote that receives
a packet displays the last three bits of the binary value it contains on its LEDs.

RadioSenseToLeds. This is also a re-implementation of an existing TinyOS 2 application.
As its name implies, it is similar to the previous program, except in this case the counter is
replaced with a sample from a sensor (DemoSensor).

BaseStation. This program implements a simplified version of the standard BaseStation
application from TinyOS 2. This version forwards packets with a single Active Message ID
to and from the radio and the serial interface. We implement a queue of twelve packets as
the original application does.

Dissemination. This program disseminates a value to all the motes in a network. It is
similar to the TinyOS dissemination service [16], as it borrows the ideas of Trickle timers
and advertisement suppression based on message overhearing [15]. Upon receiving a new
dissemination value from either the serial port or the radio, the mote resets a Trickle timer
to advertise the new value with maximum frequency. The full source of the program can be
found in Appendix B.1.

18

Application Code MicroExe ELF RAM Relocations Allocations
Size Size Size Usage External Local

(bytes) (ratio) (bytes) (ratio) (bytes) (bytes) All Unique All Unique All Unique

Blink 44 1.77 78 11.48 896 0 6 6 0 0 0 0
RadioCountToLeds 220 1.30 286 4.71 1348 1 11 10 0 0 3 1
RadioSenseToLeds 296 1.30 386 4.14 1600 5 11 11 0 0 11 2
BaseStation 572 1.23 706 4.02 2840 704 16 9 12 4 62 10
Dissemination 550 1.35 744 4.24 3156 68 12 7 2 1 119 12
Env. Monitoring 1140 1.23 1402 3.63 5092 68 52 22 4 4 119 13

Null 948 1.04-1.11 986-1050 2.73-2.57 2696 2 - - 20 - 21 3
Blink 2548 1.02-1.13 2610-2886 2.63-2.38 6856 51 - - 73 - 69 9
Sense 6912 1.01-1.14 7014-7878 2.54-2.26 17832 84 - - 220 - 126 23

RadioCountToLeds 8064 1.02-1.17 8190-9426 2.86-2.49 23460 197 - - 313 - 170 38
RadioSenseToLeds 12390 1.01-1.16 12552-14336 2.70-2.37 34000 249 - - 450 - 226 51
BaseStation 10412 1.02-1.19 10682-12346 3.13-2.71 33456 1429 - - 420 - 389 70
Oscilloscope 12568 1.02-1.16 12798-14570 2.71-2.38 34648 280 - - 447 - 268 55
MultihopOscilloscope 25316 1.02-1.16 25718-29326 2.84-2.49 73056 3075 - - 906 - 571 122

Table 2: Code sizes of sample TinyJavaScript applications. The ratio in the MicroExe
Size column is relative to the Code Size, while the ratio in the ELF Size column
is relative to the MicroExe Size. The lower half presents the same data for several
standard TinyOS 2 applications. The larger value in the range from the MicroExe Size
column is obtained by considering the worse case scenario when all the relocations are
unique.

Environmental Monitoring. This program is based on an environmental monitoring
application we have deployed [18]. This application periodically samples three sensors: volt-
age, temperature, and humidity. The measurements are then written to a circular buffer
implemented using two flash volumes. When one volume becomes full, the other is erased
and then used for new measurements. The measurements stored in these volumes can be
retrieved by sending the mote a download request over the radio. The source code for this
application is omitted due to paper length limitations.

6.2 Code Size

We compare the size of an application encoded in our MicroExe custom file format to that
of the equivalent ELF file. We also compare the size of the MicroExe file to the size of
the raw machine code. The first comparison quantifies the benefits achieved by the space
optimizations included in MicroExe, while the second indicates the overhead above the bare
minimum file size that MicroExe generates.

The size of the MicroExe format depends on three factors: the size of the machine code,
the total number of relocations (UReloc), and the total number of allocations (UAlloc). The
size of a MicroExe file is then given by:

MicroExe = Code+ (UReloc + UAlloc)× 4 + 5× 2

The size of the machine code represents an unavoidable cost unless MicroExe employs data
compression algorithms. The additive constant in the formula above corresponds to the fixed
size of the metadata section in MicroExe.

The upper part of Table 2 presents code size comparisons for all the applications we
developed in TinyJavaScript. As the table shows the overhead of MicroExe is lower than
35% of the raw machine code size (744 bytes vs. 500 bytes for Dissemination). Moreover,

19

the space optimizations in MicroExe are able to reduce the file size by a factor of three to
eleven compared to ELF.

Next, we investigate the overhead of the MicroExe format for programs larger than the
ones we developed. To do so, we build several TinyOS 2 applications (shown in lower
part of Table 2) and extract the total number as well as the number of unique allocations
these programs perform. Based on these values we can estimate the overhead required to
build the MicroExe patch table. While the information about the number of allocations is
accurate, no external relocations exist because these applications are not loadable programs.
Furthermore, due to the same reason, most local relocations are relative to the beginning
of the code. As the results in the lower half of Table 2 indicate, this makes the MicroExe
format extremely efficient; its ratio to the raw machine code size is never larger than 1.04.
We also present the worse case scenario, when all the relocations are unique. In this case,
the ratio of MicroExe size over the raw machine code grows to a maximum of 1.19. The only
parameter that we cannot estimate with this technique is the size overhead due to callbacks
and external relocations, again because we derive the estimates from monolithic applications.
However, this is not a big concern because the space they require is small and constrained
by the API the Proxy provides.

The results from larger applications are encouraging because they never exceed the max-
imum overhead observed for the smaller TinyJavaScript applications we developed. Based
on these results, we posit that the overhead of MicroExe files will not grow disproportionally
to the size of TinyJavaScript applications.

6.3 Runtime Overhead

We measure two types of runtime overhead: execution overhead and overhead in memory
use.

The first component of the execution overhead is the one indirection per each boundary
crossing between the loadable code and the Proxy. The indirection from the loadable code
to the Proxy exists because the address patched in the loadable code is that of a Proxy
function and not that of the actual TinyOS component. However, this indirection is crucial
when we want to limit the amount of information the Proxy passes to the loadable code (e.g.,
hiding the message_t structure). On the other hand, the overhead associated with other
forward indirections as well as most of the callbacks is unnecessary. Nonetheless, we keep
both types of indirection because they allow a clean integration of loadable code in TinyOS
2. Nevertheless, this indirection is cheap: it costs 8 cycles (2 µs at 4 MHz for the MSP430)
and is performed using a CALL and a RET.

The other source of execution overhead has to do with the buffer copy between the
application and the Proxy that occurs when a packet is sent or received over the serial or
radio interfaces. We chose to incur this buffer copy to avoid exposing the whole message_t

structure to the loadable programs. The cost of this operation is proportional to the size
of the buffer, with each byte copy requiring 11 cycles. For a buffer of 28 bytes, the default
maximum packet size from TinyOS 2, the copy operation represents 77 µs of execution
overhead. This value corresponds to 8.6% of overhead when sending the packet over the

20

Blink RadioCount RadioSense
ToLeds ToLeds

Code size 44 220 296
RAM usage 0 1 5
Proxy + TinyLD

ROM 12288 21486 17334
RAM 538 761 697

TinyOS 2
ROM 2618 12782 8452
RAM 55 300 236

Overhead
ROM 9670 8704 8882
RAM 483 461 461

Table 3: RAM and ROM memory footprints for three applications implemented as
loadable code and as monolithic applications. The additional memory used by loadable
applications is attributed to the memory size of the Proxy and TinyLD. All the values
are in bytes.

radio (896 µs at 250 Kbps) or 4% when the serial port is used (1.9 ms at 115 Kbps).
The runtime space overhead corresponds to the memory used by the Proxy and TinyLD.

This overhead can be further divided into the fixed cost of including the Proxy and TinyLD
to the code running on the mote and the variable cost of providing different services through
the Proxy.

In order to evaluate the fixed cost of including the Proxy and TinyLD, we compared the
ROM and RAM usage of three TinyOS 2 applications for which we have perfectly equivalent
implementations using TinyJavaScript. Table 3 summarizes the results of this comparison.
We compute the overhead by subtracting the memory sizes for the monolithic implementation
from their TinyJavaScript counterparts. As expected, the overhead is fairly consistent in all
cases. Blink shows a slightly higher overhead most likely because the small size of the
application makes the savings obtained by the global optimizations more relevant2.

As mentioned earlier, developers can customize the Proxy to expose only the services
that a particular WSN deployment might need. Table 4 shows the RAM and flash ROM
overhead imposed by each of the services provided by a Proxy we developed for the Tmote
Sky. Most services have a one-time cost associated with instantiating the underlying TinyOS
2 components that correspond to that service. For example, using TinyOS.Radio incurs a
fixed cost for instantiating the TinyOS 2 components that start and stop the actual radio.
Incremental cost captures the overhead of adding one additional instance of the service (e.g.,
adding transmission/reception of a new AM type).

2We compiled all the applications with the default compilation optimizations from the TinyOS 2 distri-
bution.

21

Proxy Services One-time cost Incremental cost
RAM ROM RAM ROM

LEDs 0 0 6 42
Timer 0 26 18 112
Radio 172 4426 10 332
Serial 54 260 8 234
On-board Sensors
- Air Temp / Humidity 42 1644 8 184
- Light (S1087PAR) 62 3212 10 76
- Light (S10871TSR) 62 3212 10 76
- Internal Temp 58 3176 10 758
- Battery Voltage 58 3728 10 502

Table 4: RAM and flash ROM memory use by various Proxy services. All the values
are in bytes.

Application Time (ms) Energy (mJ)
A B A B

Blink 15.33 55.83 0.031 0.117
BaseStation 21.73 655.19 0.050 1.383
Dissemination 24.17 653.79 0.054 1.373
Environment Monitoring 30.11 1330.51 0.070 2.796

Table 5: Cost in time and energy for linking and loading. “A” columns represent the
cost of pre-processing the patch and callback tables while “B” columns represent the
patching and copying of the code.

6.4 Energy Consumption

We estimate energy consumption by measuring the voltage drop on a 10 kΩ resistor connected
in series with the mote. The loadable program is initially stored in external flash when
we trigger a linking and loading operation by pressing the mote’s user button. Figure 10
shows the current draw trace we captured for the Blink application, while other applications
produce similar graphs. The two phases, pre-processing the patch and callback tables and
patching and copying of the machine code, are clearly demarked by explicitly turning on all
the LEDs at the end of each phase. In both phases the mote draws approximately the same
current, however the second phase dominates power consumptions when the machine code
size is large.

Table 5 summarizes the energy costs related to linking and loading for four TinyJavaScript
applications. We calculate the total energy used during those two phases by integrating the
current draw curve and multiplying it with the supply voltage (3 V).

22

 0

 2

 4

 6

 8

 10

 12

 2.28 2.3 2.32 2.34 2.36

C
u
rr

e
n
t
(m

A
)

Time (s)

A B

Figure 10: Current draw by a Tmote Sky for linking and loading the Blink application.
Phase A (pre-processing the callback and patch tables) requires 15.33 ms, while phase
B (patching and copying the code to the flash ROM) requires 55.83 ms. The current
spikes are due to turning all the LEDs on.

7 Future Work

We intend to extend the work presented in this paper along a number of dimensions. First,
we will develop and deploy additional applications written in TinyJavaScript to evaluate
the expressivity of the language and discover any limitations that will require changes to the
Proxy API. At the same time, we intend to add support for other execution platforms, among
which the ATmega/Mica family of motes is our top priority. While the level of abstraction
offered by the Proxy component is admittedly modest, it presents a conscious decision.
We want to follow a bottom-up approach, incrementally raising the level of abstraction by
exploring more ambitious language designs.

On a different topic, we will extend our work on the simulator outlined in Section 4.4.
We believe that such a simulator will complement existing whole-system simulators such as
TOSSIM [14]. We envision it being used earlier in the development process, providing a
quick and easy way to validate application designs and resolve logic flaws at an earlier stage.

23

Last but not least, we plan to improve the existing runtime in two ways. First, we
will investigate mechanisms to improve its performance by reducing the overhead associated
with indirections and buffer copies. Second, we intend to extend the existing runtime with
support for unloading programs as well as support for runtime resource checks.

8 Summary

We present a mechanism to introduce loadable application code to the TinyOS software
framework by exposing abstractions of the system’s resources through a Proxy component.
Application code can access these resources by calling functions provided by the Proxy and
receiving callbacks to functions it defines. External function resolution happens on the mote
at runtime, using TinyLD—a dynamic linker and loader that we developed. The result of
this linking process is a binary that combines system and application logic and runs natively
on the mote’s hardware.

As an example of a high-level language that can leverage the service abstractions that the
Proxy exposes, we present TinyJavaScript; an subset of the popular scripting language that
provides a more familiar programming paradigm for developing WSN applications. Tiny-
JavaScript programs are translated to equivalent C programs and eventually to object code
that runs natively on the target platform, avoiding the overhead associated with interpreta-
tion. The benefits of interfacing to the Proxy through TinyJavaScript instead of an existing
language, such as nesC, include the availability of high-level languages features (e.g., type
inference) as well as the ability to debug and simulate WSN applications in a web browser.

Our evaluation results show that providing these features generates only minor overhead
in terms of increased memory footprint and runtime performance. Execution speed is min-
imally affected, incurring a single additional pointer indirection for each call to functions
provided by the Proxy. Finally, runtime linking and loading a new binary requires less than
1.5 seconds, a small cost for an operation that we envision to be infrequent.

In summary, we present a feasible alternative to the way WSN applications are currently
developed in TinyOS. While we do not expect that current developers will initially migrate
to this paradigm, we hope that it will enable a new community of uninitiated developers to
approach the field of wireless sensor networks.

References

[1] D. M. Beazley. PLY (Python Lex-Yacc). Available at http://www.dabeaz.com/ply/.

[2] C. Borcea, C. Intanagonwiwat, P. Kang, U. Kremer, and L. Iftode. Spatial programming
using smart messages: Design and implementation. In Proceedings of the 24th International
Conference on Distributed Computing Systems (ICDCS 2004), Mar. 2004.

[3] A. Boulis, C. Han, and M. Srivastava. Design and Implementation of a Framework for Dis-
tributed Embedded Systems. In Proceedings of the First International Conference on Mobile
Systems, Applications and Services (MobiSys 2003), May 2003.

24

[4] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt. Run-time dynamic linking for reprogramming
wireless sensor networks. In SenSys ’06: Proceedings of the 4th international conference on
Embedded networked sensor systems, pages 15–28, New York, NY, USA, 2006. ACM Press.

[5] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC Language: A
Holistic Approach to Networked Embedded Systems. In Proceedings of Programming Language
Design and Implementation (PLDI) 2003, June 2003.

[6] R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming Wireless Sensor Networks
using Kairos. June 2005.

[7] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. A Dynamic Operating System for
Sensor Nodes. In Proceedings of the International Conference on Mobile Systems, Applications,
and Services (Mobisys), June 2005.

[8] J. W. Hui and D. Culler. The dynamic behavior of a data dissemination protocol for network
programming at scale. In Proceedings of the Second ACM Conference on Embedded Networked
Sensor Systems (SenSys 2004), Nov. 2004.

[9] J. Kosy and R. Pandey. VM?: Synthesizing scalable runtime environments for sensor networks.
In Proceedings of the Third ACM Conference on Embedded Networked Sensor Systems (SenSys
2005), Nov. 2005.

[10] J. R. Levine. Linkers and Loaders. Morgan Kaufmann Publishers, 2000.

[11] P. Levis and D. Culler. Maté: A tiny virtual machine for sensor networks. In Proceedings of the
International Conference on Architectural Support for Programming Languages and Operating
Systems, Oct. 2002.

[12] P. Levis, D. Gay, and D. Culler. Active sensor networks. In Proceedings of the Second
USENIX/ACM Symposium on Networked Systems Design and Implementation (NSDI 2005),
April 2005.

[13] P. Levis, D. Gay, V. Handziski, J.-H. Hauer, B. Greenstein, M. Turon, J. Hui, K. Klues, R. S.
Cory Sharp, J. Polastre, P. Buonadonna, L. Nachman, G. Tolle, D. Culler, and A. Wolisz. T2:
A Second Generation OS For Embedded Sensor Networks. Technical Report TKN-05-007,
Telecommunication Networks Group, Technische Universitat Berlin, 2005.

[14] P. Levis, N. Lee, A. Woo, M. Welsh, and D. Culler. TOSSIM: Accurate and scalable simulation
of entire TinyOS Applications. In Proceedings of Sensys 2003, Nov. 2003.

[15] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A Self-regulating Algorithm for Code
Propagation and Maintenance in Wireless Sensor Networks. In Proceedings of NSDI 2004,
Mar. 2004.

[16] P. Levis and G. Tolle. TEP 118 Dissemination. Available at http://www.tinyos.net/
tinyos-2.x/doc/html/tep118.html.

[17] J. Liu, M. Chu, J. Liu, J. Reich, and F. Zhao. State-Centric Programming for Sensor-Actuator
Network Systems. IEEE Pervasive Computing Magazine, Oct. 2003.

25

[18] Reference removed to preserve anonymity.

[19] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The Design of an Acquisitional
Query Processor for Sensor Networks. In Proceedings of SIGMOD 2003, June 2003.

[20] P. J. Marrón, M. Gauger, A. Lachenmann, D. Minder, O. Saukh, and K. Rothermel. FlexCup:
A Flexible and Efficient Code Update Mechanism for Sensor Networks. In Proceedings of
the Third European Workshop on Wireless Sensor Networks (EWSN 2006), pages 212–227,
February 2006.

[21] Moteiv Corporation. Tmote Sky. Available at http://www.moteiv.com/products/tmotesky.
php.

[22] M. Welsh and G. Mainland. Programming Sensor Networks Using Abstract Regions. In
Proceedings of NSDI 2004, Mar. 2004.

[23] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim, J. Jeong, J. Hui, P. Dutta, and D. Culler.
Marionette: using RPC for interactive development and debugging of wireless embedded net-
works. In Proceedings of the fifth international conference on Information processing in sensor
networks (IPSN), 2006.

A Blink

A.1 TinyJavaScript Version
TinyOS.init = function()

{

TinyOS.Timer[0].startOneShot(250);

TinyOS.Timer[1].startOneShot(500);

TinyOS.Timer[2].startOneShot(1000);

}

TinyOS.Timer[0].fired = function()

{

TinyOS.Led[0].toggle();

}

TinyOS.Timer[1].fired = function()

{

TinyOS.Led[1].toggle();

}

TinyOS.Timer[1].fired = function()

{

TinyOS.Led[1].toggle();

}

A.2 C Version
#include <sys/inttypes.h>

extern void _timer0startPeriodic(uint32_t dt);

extern void _timer1startPeriodic(uint32_t dt);

extern void _timer2startPeriodic(uint32_t dt);

26

extern void _led0Toggle();

extern void _led1Toggle();

extern void _led2Toggle();

void _init()

{

_timer0startOneShot(250);

_timer1startOneShot(500);

_timer2startOneShot(1000);

}

void _timer0fired()

{

_led0Toggle();

}

void _timer1fired()

{

_led1Toggle();

}

void _timer2fired()

{

_led2Toggle();

}

B Dissemination

B.1 TinyJavaScript Version
var minPeriod;

var maxPeriod;

var curPeriod;

var suppCounter;

var counter;

var curKey;

var curVersion;

var curValue;

rpkt_out = {’key’:uint32_t,

’version’:uint32_t,

’value’:uint32_t};

rpkt_in = rpkt_out;

spkt = {’key’:uint32_t, ’value’:uint32_t};

TinyOS.init = function()

{

curKey = 0x08070605;

curVersion = 0;

curValue = 0;

minPeriod = 1000;

maxPeriod = 1024000;

suppCounter = 1;

curPeriod = minPeriod;

counter = 0;

TinyOS.Radio.start();

}

27

TinyOS.Radio.startDone = function(error)

{

TinyOS.Timer[0].startOneShot(curPeriod);

}

function broadcast()

{

rpkt_out.key = curKey;

rpkt_out.version = curVersion;

rpkt_out.value = curValue;

TinyOS.Radio[0].send(0xFFFF, rpkt_out,

sizeof(rpkt_out));

}

TinyOS.Timer[0].fired = function()

{

TinyOS.Led[0].toggle();

if (counter < suppCounter) {

broadcast();

}

counter = 0;

curPeriod = curPeriod * 2;

if (curPeriod > maxPeriod) {

curPeriod = maxPeriod;

}

TinyOS.Timer[0].startOneShot(curPeriod);

}

TinyOS.Serial[0].receive = function(payload, len)

{

spkt = payload;

if (spkt.key == curKey) {

curVersion++;

curValue = spkt.value;

if (curValue % 2 == 0) {

TinyOS.Led[2].on();

} else {

TinyOS.Led[2].off();

}

counter = 0;

curPeriod = minPeriod;

TinyOS.Timer[0].startOneShot(curPeriod);

}

}

TinyOS.Radio[0].receive = function(payload, len)

{

rpkt_in = payload;

if (rpkt_in.key == curKey) {

if (rpkt_in.version > curVersion) {

TinyOS.led[1].toggle();

curValue = rpkt_in.value;

curVersion = rpkt_in.version;

if (curValue % 2 == 0) {

TinyOS.led[2].on();

} else {

TinyOS.led[2].off();

}

counter = 0;

28

curPeriod = minPeriod;

TinyOS.Timer[0].startOneShot(curPeriod);

} else if (rpkt_in.version == curVersion) {

counter++;

} else if (rpkt_in.version < curVersion) {

broadcast();

}

}

}

29

