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1 Introduction

Several attempts have been made to construct high-level languages for implementing TinyOS-
based applications. Some of these attempts have taken the form of general purpose languages
(TinyScript and Mottle in Maté [3]), some were designed for a specific application domain
(TinyDB [4], Regiment [6], WaveScope [5], etc), while others explored specific programming
paradigms (DSN [1]). The method used to run code written in each language also varies from
virtual machines (Matté), to interpreters (SensorScheme [2]), to binary code implemented
in nesC (DSN, Regiment, WaveScope).

The Latte programming language is another attempt, with similar goals. Specifically,
Latte makes several contributions:

• It brings to sensor networks JavaScript, a popular scripting language used in many
other application domains;

• It allows high-level emulation inside JavaScript enabled web browsers;

• Latte programs compile to binary code via a source-to-source translation into C.

The benefit of the first two contributions is that now sensornet applications can be rapidly
prototyped without the need for compiling them and running them either natively on a mote
or in a simulator such as TOSSIM. The fact that an application written in Latte compiles
to C, however, means it can be interfaced with TOSThreads and ultimately run on a mote.

2 The TinyOS Object

The entry point for a Latte program is through a function called main(). From within
main(), Latte programs interface with a TOSThreads kernel using a global object called
TinyOS. Table 1 presents some of the most common service abstractions available through
this object.

3 Language Constructs

Just as in JavaScript, users declare variables using the var keyword and declare arrays
using the new operator. The typing of these variables as well as the typing of return values
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Objects Functions

TinyOS NODE ID
TinyOS.Leds set(value), get()
TinyOS.Led[n] on(), off(), toggle()
TinyOS.Radio ALL, start(), stop()
TinyOS.Radio.AM[am] send(addr, msg, len),

receive([timeout])
TinyOS.Serial start(), stop()
TinyOS.Serial.AM[am] send(addr, msg, len)
TinyOS.Sensor[n] read()
TinyOS.Block[vol ] getSize(), erase(), crc(addr, len)

read(addr, len), write(addr, obj)
TinyOS.Log[vol ] append(obj), seek(cookie), read()
TinyOS.Time now()
TinyOS.Thread create(function[, description])

sleep(interval)
TinyOS.Collection send(), receive(), setRoot()
TinyOS.Random get16(), get32()

Table 1: The objects available in Latte through the TinyOS object. The parameters
in square brackets are optional.

to functions are inferred rather than explicitly declared. Such type inference is possible
because the prototypes of all external functions are known at compile time.

The equivalent of C structures can be defined in Latte by calling a built-in function we
wrote called Struct. The only parameter to this function is an associative array whose keys
contain the names of the fields in the structure. If a structure’s element’s type must be
precisely defined (e.g., when defining a packet structure to be sent over the serial link or the
radio), predefined values (uint16_t, uint32_t, etc.) can be used in dummy assignments to
indicate the desired type. To declare a field without setting its type, the undefined type
can be used.

Because Latte is directly translated to C, we’ve removed all JavaScript features related
to run-time compilation.1 Due to limited usefulness in this application domain we also chose
not to implement some built-in JavaScript objects like Date and Number.

4 Latte Emulator

Because Latte is a subset of JavaScript, Latte programs are also valid JavaScript programs.
This makes it possible to turn any JavaScript enabled browser into a development tool

1A similar thing is done in ECMAScript Compact Profile, a JavaScript standard designed for resource-
constrained devices.
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capable of emulating code runnable on a mote. To make this possible we implemented
TinyOS.js, a JavaScript library implementing all of the objects listed in Table 1.

To implement this emulator we had to overcome two hurdles: the fact that JavaScript
does not support multi-threading, and the limitation of only being able to emulate a single
mote. We make it possible to support non-preemptive multithreading through the use of a
combination of a special JavaScript keyword2, yield, and the setTimeout() function. We
enabled the emulation of multiple motes by adding a special sim function to Latte which
contains calls that instruct the emulator how to respond to send and receive commands. In
the example given in Appendix A the sim function indicates that a Request packet with
AM ID 0 will be received 1000 ms after calling the receive function (line 28). This example
presents a complete environmental monitoring application written in Latte. It demonstrates
many of the Latte’s feature including the use of the TinyOS object, structures, arrays and
blocking calls.

Experience has shown us that compiling a Latte application into code based on the
TOSThreads API is much easier than compiling it for use in standard TinyOS.

We previously implemented a version of Latte that compiled code runnable in standard
TinyOS, but it made the language much harder to use and much less elegant. Additionally,
when compiling this version of Latte for dynamic linking and loading, the callbacks associated
with making TinyOS split-phase calls increased the number of entry points that the loader
need to handle as well as complicated the unloading process significantly. Latte’s ability to
compile down to standard C for easy integration with TOSThreads and its TinyLD loader
has implications beyond Latte itself; it opens the door for the development of other high-level
languages providing similar features.

2Only available as of JavaScript 1.7.
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A Environmental Application in Latte
1 SENSOR_NUM = 3;

2 SAMPLE_PERIOD = 2048;

3 DATA_SIZE = 90;

4

5 RadioData = TinyOS.Radio.AM[0];

6 LogData = TinyOS.Log[0];

7

8 readings = new Array(SENSOR_NUM + 2);

9

10 Request = Struct({’offset’: uint32_t,

11 ’len’: uint32_t,

12 ’delay’: uint16_t});

13

14 Packet = Struct({’offset’: uint32_t,

15 ’nextOffset’: uint32_t,

16 ’data’: new Array(DATA_SIZE)});

17 packet = new Packet();

18 busy = false;

19

20 function main()

21 {

22 var len;

23 request = new Request();

24 TinyOS.Thread.create(sample, "sample");

25 yield TinyOS.Radio.start();

26

27 while (1) {

28 request = yield RadioData.receive();

29 yield LogData.seek(request.offset);

30 for (len = 0; request.len; request.len -= len) {

31 len = min(DATA_SIZE, request.len);

32 packet.data = yield LogData.read(packet.data,

33 request.size);

34 yield RadioData.send(0xFFFF, packet, len);

35 yield TinyOS.Thread.sleep(request.delay);

36 }

37 }

38 }

39

40 function sample()

41 {

42 var i;

43 while (1) {

44 for (i = 0; i < SENSOR_NUM; i++) {

45 readings[i] = yield TinyOS.Sensor[i].read();

46 }

47

48 yield LogData.append(readings);

49 yield TinyOS.Thread.sleep(SAMPLE_PERIOD);

50 }

51 }

52

53 function sim()

54 {

55 TinyOS.Sim.addMessage(0, 1000,

56 new Request(0, 5*DATA_SIZE, 10));

57 }
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