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How does it work?
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Performance of LPP

5.2. LPP vs. LPL

We compare two LPL implementations included in

TinyOS 2.x with LPP by measuring the energy consumed

during a single passive or active probe. To do so, we

measure the duration and the current draw during each

operation by recording the voltage drop on a 10 Ω resistor

placed in series with a Tmote Sky mote. Figure 7 presents

one such experiment, while Table 1 summarizes the results

over all experiments. The time intervals included in that

table correspond to the total duration of each operation

including the time necessary to turn on the radio.

Due to the significant changes in the LPL implementa-

tions in TinyOS 2.x4, we tested not only the one included

in the current release (2.0.2) but also two versions from the

previous release (2.0.1). While LPL sampling is in theory

very fast (a CCA sample requires 128 µsec on the CC2420),
in practice implementations sample the medium multiple

times to increase robustness to random noise and transmis-

sion gaps. These gaps are generated because preambles in

the case of packet-based radios, such as the CC2420, are

generated by repeatedly transmitting the same packet. Fur-

thermore, XMAC [2] (which LPL 2.0.2 and LPL 2.0.1 Ack

in Table 1 are modeled after), introduces longer gaps be-

tween successive packet preambles, allowing the intended

receiver to transmit an acknowledgment. From the re-

ceiver’s perspective, the main difference between the three

versions, as Table 1 indicates, is the amount of time that the

radio’s CCA circuit is used in order to reliably detect the

presence of a sender’s preamble.

We note that in the case of LPL we exclude the cases in

which a 100 ms timeout was triggered. Such a timeout oc-

curs when the probe mistakenly claims that there is channel

activity but no packet arrives within 100 ms. During this

time the node keeps its radio on waiting for a packet trans-

mission. In our testbed these timeouts occurred in 14% of

all the LPL probe experiments we performed.

Even with this unfavorable comparison, LPP is on the

average only 32% more expensive than the current version

of LPL. This is to be expected since LPP transmits an actual

packet, while LPL only uses the radio’s CCA circuit. This

difference also underlies the larger variability of LPP oper-

ations compared to LPL. Nonetheless, the impact of LPP’s

higher cost can be managed by adjusting the probing inter-

val, as Figure 8 indicates.

5.3. Wake-up Performance

Several factors determine the time required to wake up

every node in the network: the size of the network, its topol-

ogy, and the probing frequency. We evaluate the impact

4A comprehensive description and evaluation of the major LPL ver-

sions implemented in TinyOS 2 can be found in [14].
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Figure 7. Current consumption during a LPL

(TinyOS 2.0.2) and a LPP operation.
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Figure 8. Node duty cycles for LPP and LPL

with varying probing intervals.

of the first two factors through linear topologies with vary-

ing number of nodes, while keeping the distance between

neighboring nodes constant at 10 feet. For the propagation

model and the noise trace we use, this distance means that

on average each node can communicate reliably with its two

closest neighbors, while rare transmissions from as far as

ten hops away will be successful. LPP probes are sent ev-

ery one second.

The upper line in Figure 9 represents the average amount

of time to wake up the whole network, while the lower line

represents the average amount of time a node waits once

awake for the whole network to wake up. Thereby, the dif-

ference between the two lines represents the average time

necessary to wake up a node. As expected, the wake-up

time increases linearly with the network’s diameter.

We also study the effect of increasing the probing inter-

Mechanism Time (ms) Energy (mW)

mean stdev increase mean stdev increase

LPP 20.82 2.71 +26% 8.73 1.488 +32%

LPL 2.0.2 16.46 0.10 6.58 0.016

LPL 2.0.1 Ack 10.81 0.07 -34% 3.75 0.003 -77%

LPL 2.0.1 NoAck 5.46 0.08 -66% 0.43 0.002 -97%

Table 1. Summary statistics for LPL and LPP.



LPP vs LPL

• Probing in LPP is takes in average 26% 
longer that LPL

but

• LPP is resilient against RF interference

and

• LPP generates less noise during wake-up.
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Drip



3. Neighborhood 
Discovery



Two steps

1. Each mote discover its 
neighbors.

2. The gateway retrieves the 
neighbor list from each mote 
using Flexible Control 
Protocol.





Requirements

• Bounded amount of traffic

• Independent of node density

• Fairness

Trickle Timer



Solution

• Send beacons using an exponential distribution

and

• Suppress the transmission if you receive 
another beacon before your timer expires.



Problem

• Generating an exponential distribution 
requires computing the logarithm

• ... which can be approximated using the first 
term from the Taylor expansion:

LPL Sender

LPL Receiver

LPP Sender

LPP Receiver
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Ack Tx
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Ack Rx
Packet Tx
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Listen

Figure 4. A simplified representation of LPL
for packet-based radios and LPP. Preamble

and packet durations are not drawn to scale.

Algorithm 1 Lower Power Probing

procedure SLEEP(interval)
loop

TURNRADIOOFF()

DEEPSLEEP(interval)
TURNRADIOONWITHACKDISABLED()

r ← SENDPROBE()

ifWASACKED(r) then
ENABLERADIOACKS()

return

with transmissions of short packets. In turn, this obviates

the need for long preambles thus reducing the level of

contention on the radio channel.

Algorithm 1 presents LPP in pseudo-code. Enabling and

disabling of acknowledgments is necessary to avoid false

positives when the probes of two or more nodes cause them

to wake each other up by mistake. When the SLEEP() pro-

cedure returns, the node keeps its radio on until the next

time the procedure is called. This procedure executes only

at the network’s motes. The wake up operation is initiated

by a gateway which enables its radio’s acknowledgements

and starts listening for probes from the network’s nodes.

4.2. Neighborhood Collection

While the gateway selects the routes in Koala, its deci-

sions are driven by information that the network’s motes

collect. Specifically, once awake, each node collects its

neighborhood by recording the identities of its neighbors

as well as the quality of its links from these neighbors, de-

fined as the Received Signal Strength (RSSI) of the received

packets. These RSSI values are collected from the wake

up probes (and the acknowledgments to these probes) re-

ceived by the node’s neighbors. Furthermore, to acceler-

ate the neighborhood collection process, nodes send peri-

odic beacons which are also acknowledged, generating bi-

directional link information2.

We require two properties from the beaconing scheme:

to generate a bounded amount of traffic overhead, inde-

2A node stops transmitting beacons once it participates in a download

operation.

Algorithm 2 Neighborhood Collection

procedure NEIGHBORHOODCOLLECTION(bs)
add ← INITQUEUE(bs)
while QUEUEEMPTY(add)= False do

node ←POPQUEUE(add)
path ←BUILDPATH(node, parent, bs)
r ←SENDNEIGHBORHOODREQ(node, path)
if r "= Empty then
for each (n, rssi) inR do

UPDATENEIGHBORHOOD(n, rssi)
if INQUEUE(n, add)= False then

parent[n] ← node
r ←APPENDQUEUE(n)

procedure BUILDPATH(n, p, s)
r ←INITLIST(s)

while n "= s do
r ←APPENDLIST(p[n])
n ← p[n]

return r

pendent of node density, and to be fair. To achieve these

properties, nodes select their beaconing intervals from an

exponential distribution and suppress their transmission if

they receive a beacon before their timer expires. The mem-

oryless property of the exponential distribution ensures fair-

ness, while suppression limits the total number of beacons.

Generating an exponential distribution from the uniform

distribution requires computing log(x) with x ∈ [0, 1]. In
practice, we found that approximating log(x) with the first
term of its Taylor series

log(x) = (x − 1) −
(x − 1)2

2
+

(x − 1)3

3
−

(x − 1)4

4
. . .

produced satisfactory results.

The gateway uses unreliable persistent FCP paths to

collect the nodes’ neighborhood information every time it

wakes up the network. It does so by following the procedure

outlined in Algorithm 2. In summary, the gateway uses the

neighbor information it collects directly, to download the

neighborhoods of its immediate neighbors. Using this infor-

mation, the gateway extends its network knowledge by an-

other hop. Then, for each two-hop neighbor x, the gateway

selects the link between x and its existing one-hop neigh-

bors which has the highest RSSI value (say y). The path to

x then is built by extending the path to y. The advantage of

this approach is that new paths are always constructed by

extending existing high-quality paths. The algorithm termi-

nates after the gateway retrieves neighborhood information

from all the nodes.

4.3. Routing Path Selection

Routing path selection is a two-step process that starts

once the gateway retrieves neighborhood information from

all the network’s nodes. The gateway first computes the

depth of each of the network’s nodes through a breadth-first

search (BFS) of the collected network topology, in which all



Flexible Control Protocol
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Centroute



FCP Characteristics

• Fixed header of 3 bytes.

• Source routing for establishing a path.

• Everything is soft-state.

• It’s easy to reply (mote) but more 
complicated to initiate a connection 
(usually the gateway).
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Data transfer
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Flexible Control Protocol
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4. Download



Download

Unreliable Persistent Path

or

Reliable Persistent Path



Unreliable Persistent Path

1. Pick a path.

2. Establish the connection.

3. Request for chunks of data until the 
desired interval of data is retrieved.



One more thing



Channel Switching
Flexible Control Protocol



Evaluation



What do we 
want to measure?

• Cost of LPP.

• Performance of the wake up procedure.

• Performance of the download.

• Impact of the channel switching.



Performance of the LPP
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TOSSIM
Algorithm 4 Data Download

procedure DOWNLOAD(path)
start ← GETTIME()

r ← SENDNEIGBORHOODREQ(p)
rtt ← GETTIME()−start
if r = Failed then
return

SENDDOWNLOADREQ(p, rtt/2)
repeat

r ← RECEIVEDATADOWNLOAD()

until r = Failed
W

LASTPACKET(r)

is suboptimal, transmitting slower than the optimal sending

rate especially over paths with long RTTs. As part of our

future work we plan to address this limitation by exploring

the benefits of using sophisticated rate control algorithms

such as the ones in [9, 16].

Once the gateway finishes downloading data from all the

intended nodes, it leaves the network or goes to sleep. The

rest of the network should also go to sleep when this hap-

pens. We achieve this behavior using the Drip dissemina-

tion protocol [12]. Specifically, the gateway periodically

(once every five seconds) disseminates monotonically in-

creasing values for key K . Each mote that receives an up-
dated K value resets its internal timer (set to 15 seconds).

If on the other hand, the mote does not receive a new value

before its timer expires, it goes to sleep.

5. Evaluation

5.1. Methodology

The metric we use to evaluate Koala’s performance is

the total time required to download a certain amount of data

from every network node. We chose this metric because

it represents the energy cost associated with Koala’s oper-

ation. To identify how this cost is distributed across the

different Koala phases described in Section 4, we further

divide the total time into the time necessary to wake up the

whole network and the time required to download data from

all of its nodes. Finally, we evaluate the efficiency of LPP

by comparing it with two versions of LPL included in the

TinyOS 2 distribution.

We evaluate Koala’s performance across different di-

mensions by varying the length of the LPP probing interval,

the size and the diameter of the network, and the amount of

data downloaded from each mote with and without channel

switching. This evaluation is based on a combination of re-

sults from simulation and a prototype implementation. We

use the TOSSIM simulator, which we enhance to simulate

all the components of the CC2420’s radio stack, other than

LPL. In this way, the simulation and the implementation use

identical FCP and Koala codebases.

TOSSIM requires the user to supply the gain of the links

used in the simulated topologies. We compute these gains
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Figure 5. Examples of random topologies

with ten and forty nodes.
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testbed and randomly generated topology.

using the Log Distance Path Loss model with a path expo-

nent of four, to approximate challenging signal propagation

environments. Furthermore, we model noise using the CPM

model recently added to TOSSIM [11]. All simulations use

the meyer-heavy.txt noise trace from [11].

We generate different simulation topologies using an it-

erative approach. First, we place the gateway in the mid-

dle of the field. We then incrementally add motes to the

topology by selecting an existing mote and generating a

new mote location according to a two-dimensional uniform

distribution, such that the new node is within communi-

cation range (RSSI > −80 dBm). This requirement en-
sures that the topology is connected, while still having some

lossy links. Moreover, to avoid clustering of multiple nodes

around the gateway, we impose a minimum distance cor-

responding to a RSSI of -60 dBm between any two nodes.

This second requirement reflects the reality that nodes will

not be placed very close to each other, to maximize spatial

coverage. Figure 5 depicts two sample topologies generated

through this procedure.

While simulations allow us to study different network

scales and system parameters, testbed experiments provide

full realism. For this reason, we use a testbed of 24 Tmote

Sky motes, deployed throughout a single floor of an of-

fice building. The testbed’s topology is approximately lin-

ear, matching the building’s layout. Figure 6 compares the

CDFs of the link RSSI values from the testbed and a 25-

node simulated topology.

Gains are computed using the Log Distance Path Loss model.
Noise is simulated by CPM using meyer-heavy.txt noise trace.



Testbed vs TOSSIM

Algorithm 4 Data Download

procedure DOWNLOAD(path)
start ← GETTIME()

r ← SENDNEIGBORHOODREQ(p)
rtt ← GETTIME()−start
if r = Failed then
return

SENDDOWNLOADREQ(p, rtt/2)
repeat

r ← RECEIVEDATADOWNLOAD()

until r = Failed
W

LASTPACKET(r)

is suboptimal, transmitting slower than the optimal sending

rate especially over paths with long RTTs. As part of our

future work we plan to address this limitation by exploring

the benefits of using sophisticated rate control algorithms

such as the ones in [9, 16].

Once the gateway finishes downloading data from all the

intended nodes, it leaves the network or goes to sleep. The

rest of the network should also go to sleep when this hap-

pens. We achieve this behavior using the Drip dissemina-

tion protocol [12]. Specifically, the gateway periodically

(once every five seconds) disseminates monotonically in-

creasing values for key K . Each mote that receives an up-
dated K value resets its internal timer (set to 15 seconds).

If on the other hand, the mote does not receive a new value

before its timer expires, it goes to sleep.

5. Evaluation

5.1. Methodology

The metric we use to evaluate Koala’s performance is

the total time required to download a certain amount of data

from every network node. We chose this metric because

it represents the energy cost associated with Koala’s oper-

ation. To identify how this cost is distributed across the

different Koala phases described in Section 4, we further

divide the total time into the time necessary to wake up the

whole network and the time required to download data from

all of its nodes. Finally, we evaluate the efficiency of LPP

by comparing it with two versions of LPL included in the

TinyOS 2 distribution.

We evaluate Koala’s performance across different di-

mensions by varying the length of the LPP probing interval,

the size and the diameter of the network, and the amount of

data downloaded from each mote with and without channel

switching. This evaluation is based on a combination of re-

sults from simulation and a prototype implementation. We

use the TOSSIM simulator, which we enhance to simulate

all the components of the CC2420’s radio stack, other than

LPL. In this way, the simulation and the implementation use

identical FCP and Koala codebases.

TOSSIM requires the user to supply the gain of the links

used in the simulated topologies. We compute these gains
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with ten and forty nodes.

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-100 -90 -80 -70 -60 -50 -40 -30

L
in

k
s

RSSI [dBm]

Testbed vs. simulated topologies

Testbed (24 nodes)
Simulation (25 nodes)

Figure 6. CDFs of link RSSIs for the 24-node

testbed and randomly generated topology.

using the Log Distance Path Loss model with a path expo-

nent of four, to approximate challenging signal propagation

environments. Furthermore, we model noise using the CPM

model recently added to TOSSIM [11]. All simulations use

the meyer-heavy.txt noise trace from [11].

We generate different simulation topologies using an it-

erative approach. First, we place the gateway in the mid-

dle of the field. We then incrementally add motes to the

topology by selecting an existing mote and generating a

new mote location according to a two-dimensional uniform

distribution, such that the new node is within communi-

cation range (RSSI > −80 dBm). This requirement en-
sures that the topology is connected, while still having some

lossy links. Moreover, to avoid clustering of multiple nodes

around the gateway, we impose a minimum distance cor-

responding to a RSSI of -60 dBm between any two nodes.

This second requirement reflects the reality that nodes will

not be placed very close to each other, to maximize spatial

coverage. Figure 5 depicts two sample topologies generated

through this procedure.

While simulations allow us to study different network

scales and system parameters, testbed experiments provide

full realism. For this reason, we use a testbed of 24 Tmote

Sky motes, deployed throughout a single floor of an of-

fice building. The testbed’s topology is approximately lin-

ear, matching the building’s layout. Figure 6 compares the

CDFs of the link RSSI values from the testbed and a 25-

node simulated topology.



Impact of channel switching
25-node network, LPP interval of 20 seconds
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linear regressions of the experimental data.
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val on network wake up time using the same linear topolo-

gies. As Figure 10 suggests, while increasing the probing

interval reduces a node’s duty cycle (cf. Fig.8) it also causes

network wake-up times in the order of minutes thereby neu-

tralizing or even negating the energy savings associated

with the smaller duty cycles.

Finally, we measure the time to wake up all the nodes

in our testbed. To do so, we randomize each node’s boot

time to ensure that they wake up at different times and use

one second probing intervals. Given these conditions, the

average network wake-up time was 29 seconds.

5.4. Data Download

Next, we investigate the amount of time necessary to

download data using Koala. We evaluate the potential ben-

efits of channel switching and investigate the effects that

download and network size have on download time. In all

experiments we use LPP probing interval of 20 sec, because
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Figure 11. Average active time, with and with-

out channel switching, for the gateway and

the members of a 25-node random topology

as a function of download size.

it provides duty cycle of 0.1% (see Fig.8).

First, we vary the amount of data retrieved during each

download operation for a random topology of 25 nodes. As

Figure 11 illustrates, the importance of channel switching

becomes evident for download sizes larger than 32 KB. For

these sizes, it pays off to switch the nodes to a different

channel before doing a download because the remaining

nodes can go to sleep while the download is in progress.

Moreover, channel switching happens fast. We measured

that on average it takes 96.34 ms to switch all the nodes on

a download path for simulated linear topologies of up to 100

nodes, and 230 ms on our testbed.

While channel switching is beneficial for individual net-

work nodes, it also increases the total time to download data

from the whole network. The reason is that the gateway

must wake up the remaining nodes and (re)collect neigh-

borhood information and establish routing paths, after it fin-

ishes a download operation. This additional time is repre-

sented in Figure 11 as the difference between the total time

the gateway is active when channel switching is used and

the time required when channel switching is disabled (in

which case the gateway as well as the motes keep their ra-

dio on for the same amount of time).

Next, we investigate the effect that network size has on

the time that node radios are active. Figure 12 presents the

per-node, as well as the gateway time for linear topologies

ranging from 10 to 100 nodes. Inter-packet delay varies in

these cases from 10.77 ms to 37.35 ms for the 100-node

topologies. While some packets were lost using these de-

lays, the average loss rate was very low (∼ 3 × 10−5). It
is evident that download time grows linearly with network

size. At the same time, downloads take longer in long linear

networks, requiring the gateway to be active for up to two

hours. In practice however, we do not envision that Koala

will be used in such long networks. Furthermore, multiple
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25-node random network, LPP interval of 20 seconds, with channel switching
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Can we do 
better?
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Future work

• Integration with Flush/RCRT.

• Full LPP compatibility with LPL.

• Improvements in path selection.



Status

• LPP is already in tinyos-2.x-contrib.

• FCP and Koala will follow soon.

• Testing in the field is in progress.



Thanks!



Thanks!



Questions?


