
Typhoon: A Reliable Data Dissemination

Protocol for Wireless Sensor Networks

Chieh-Jan Mike Liang Răzvan Musăloiu-E. Andreas Terzis
{cliang4, razvanm, terzis}@cs.jhu.edu

Computer Science Department
Johns Hopkins University

Abstract. We present Typhoon, a protocol designed to reliably deliver
large objects to all the nodes of a wireless sensor network (WSN). Ty-
phoon uses a combination of spatially-tuned timers, prompt retransmis-
sions, and frequency diversity to reduce contention and promote spatial
re-use. We evaluate the performance benefits these techniques provide
through extensive simulations and experiments in an indoor testbed.
Our results show that Typhoon is able to reduce dissemination time and
energy consumption by up to three times compared to Deluge. These
improvements are most prominent in sparse and lossy networks that
represent real-life WSN deployments.

1 Introduction

One of the main end-user requirements for WSNs is the ability to reprogram
the network after it has been deployed. In turn, the requirement to reprogram
the network generates the need to reliably disseminate large objects (∼ 50-
100 KB) to every node in the network. This combination of large object sizes,
100% reliability, and network-wide distribution is not addressed by other WSN
protocols and thus requires a custom protocol. This need has been identified by
numerous researchers in the past (e.g., [3–5, 13, 16] among others).

In this paper we present Typhoon, a reliable data dissemination protocol
that represents a different set of choices in the design space. Our choices are
motivated by the observation that idle listening is the major consumer of energy
during dissemination. Thereby, all protocol decisions should be geared towards
minimizing the time that nodes are not transmitting or receiving data packets
(i.e. competing to request or waiting for the retransmission of a lost packet).

Unlike previous protocols, Typhoon sends data packets via unicast. This ap-
proach allows receivers to acknowledge the receipt of individual packets and
thereby quickly recover lost packets. While data packets are sent via unicast,
interested nodes can still receive them by snooping on the wireless medium.
Through the combination of unicast transfers and snooping, Typhoon achieves
the best of both worlds—prompt retransmissions and data delivery to all the
nodes in a broadcast domain through a single transmission. Dissemination la-
tency is also reduced by exploiting spatial reuse, through which nodes in different

parts of the network can be transmitting at the same time. We enhance spatial
reuse through the combination of two techniques: setting timers in a way that
encourages nodes further from the origin to propagate the object and the use
of channel switching. Specifically, it has been shown that the minimum node
distance necessary to avoid interference among concurrent transmissions is three
hops [2]. On the other hand, if nodes switch frequency channels1 during data
transfer it is possible to reduce the distance to two hops in many cases. Typhoon
leverages this observation to reduce object dissemination time.

We evaluate the performance of Typhoon through a combination of simula-
tions and experiments on a testbed deployed in an office building. Performance
is measured in terms of the time required and the energy expended to deliver an
object to the whole network. We vary the size, diameter, and density of the net-
work and test Typhoon using different object sizes and loss rates to understand
the effects of these factors on the protocol’s behavior. Moreover, we compare
Typhoon’s performance to that of Deluge—the de facto standard for data dis-
semination in TinyOS [3]. Our results show that Typhoon can be up to three
times faster than Deluge in sparse and lossy networks.

This paper has five sections. We summarize related work in the section that
follows and provide a detailed description of the Typhoon protocol in Section 3.
We evaluate the protocol’s performance and compare it with previous protocols
proposed in the literature in Section 4. Finally, Section 5 outlines future research
directions.

2 Related Work

The problem of designing protocols for reliably disseminating large data objects
has received considerable attention in the past. One can divide existing proto-
cols in two broad categories: randomized protocols in which nodes compete to
acquire and subsequently transmit parts of the object, and protocols that avoid
contention by scheduling node transmissions.

The genealogy of the first protocol family starts with PSFQ [18], a transport
protocol for reliable delivery of objects from a sink to all the nodes in a wireless
sensor network. PSFQ uses TTL-scoped broadcast to propagate messages from
the sink and hop-by-hop retransmissions to recover from lost messages. Unlike
PSFQ, Typhoon uses unicast messages to propagate objects, while leveraging
overhearing to deliver packets to multiple receivers within the same broadcast
domain. Moreover, PSFQ uses negative acknowledgments, whereas Typhoon uses
postive acknowledgments and multiple frequency channels to increase spatial
reuse. MOAP [16] transfers the complete object one hop at a time. After re-
ceiving the whole object a node can become a secondary source, delivering it
to nodes further away from the origin. The design of MOAP is driven by the
desire to trade latency for reliability and simplicity. Unlike MOAP, Typhoon
uses pipelining in which nodes offer to further deliver pages) (i.e., subsets of

1 Current 802.15.4 radios can switch between 16 non-overlapping channels.

the object) as soon as they receive them. This approach dramatically reduces
the network completion time, defined as the time by which all nodes receive the
full image, thereby reducing energy consumption due to idle listening. MNP [5]
reduces download time by using pipelining and reduces contention in dense net-
works through the use of a sender selection algorithm. Reliability is achieved
through retransmissions, initiated by query messages sent by the packet source
to nodes receiving the transmissions. Unlike MNP, Typhoon implements oppor-
tunistic overhearing for traffic of common interest. Moreover, Typhoon uses fast
acknowledgments transmitted after each packet rather at the end of a page.
Finally, Typhoon uses channel switching to reduce contention in the broadcast
medium, amplifying the benefits of spatial reuse.

Deluge [3] is the de facto standard for data dissemination in TinyOS. It uses
an epidemic protocol that eventually propagates the object to all the nodes in the
network. Deluge relies on randomized Trickle timers [10] to reduce contention
among transmission requests. Objects are transmitted as sequences of fixed-size
pages via broadcast to leverage the broadcast nature of the wireless medium.
NACKs trigger the retransmission of lost messages after a full page has been
transmitted. NACKs also use Trickle timers to minimize the probability that
multiple retransmission requests will collide. While beneficial in reducing the
number of collisions, random timers can prolong the time required to propagate
the image throughout the network. Typhoon also delivers data to multiple re-
ceivers whenever possible. On the other hand, receivers send acknowledgments
after each data message instead of NACKs after each block transmission. This
design choice enables nodes to start offering data to downstream destinations
sooner, thereby minimizing completion time and thus energy costs. This is es-
pecially important in lossy networks in which the number of retransmissions is
expected to be high. Moreover, Typhoon uses channel switching to reduce con-
tention and to allow multiple concurrent transmissions over the same broadcast
domain.

Protocols of the second family initially distribute the object to a subset of
the network’s nodes using a fixed schedule that avoids overlapping transmissions.
The object is then broadcasted to the rest of the network. In order to minimize
completion time, the initial set of nodes should be the minimum connected domi-
nating set (MCDS) of the graph induced by the wireless network [13]. Calculating
that set however is an NP-hard problem even for the unit graph connectivity
model [1] and therefore approximation algorithms are necessary. Sprinkler uses
a distributed approximation algorithm that computes a connected dominated
set that is a multiplicative factor larger than the MCDS [13]. Infuse [4] follows
a similar dissemination strategy and combines it with implicit acknowledgments
for reliability. Furthermore, Infuse turns off the radios of nodes not participating
actively in the dissemination thus reducing energy consumption due to idle lis-
tening. GARUDA [14] is a recent protocol that uses an efficient mechanism for
constructing an approximate MCDS during the first packet transfer. Moreover,
GARUDA nodes publish bitmaps indicating the packets they have received cor-
rectly. Downstream nodes use these bitmaps to send (re)transmission requests.

Unlike protocols that rely on node coordination to prevent contention, Typhoon
minimizes contention through the use of channel switching and implicit synchro-
nization. This approach does not have the overhead of building the MCDS, is
robust to node failures, and simplifies data dissemination to new nodes in the
network.

3 Protocol Description

Typhoon is designed to reliably deliver large objects, such as code binaries, to
all the nodes in a WSN. In this context, large objects are defined as objects
that do not fit in the mote’s main memory and can be as large as 50-100 KB.
Typhoon divides an object to fixed-size pages (1 KB) which are further divided
to fixed-size packets (28 bytes in our implementation) that can be atomically
transmitted over the radio.

Even though protocols like Typhoon are unlikely to be invoked frequently,
their inherent flooding nature and the need for 100% reliability, irrespective of
loss conditions suggest that each invocation of the protocol could be resource
intensive and thus its cost should be minimized. As has been argued before,
idle listening is one of the largest energy consumers [19]. Therefore, the protocol
should make every effort to “push” the object’s pages through the network as
fast as possible. In turn this means that the protocol should attempt to lever-
age spatial re-use, transmitting pages from multiple non-overlapping nodes and
minimize contention that leads to node back-offs and thereby added latency.

We note that an alternative approach would be to use duty cycling, turning
radios off when not in use. In this case network completion time is not as crucial,
because energy consumption due to idle listening is minimized. However, we
argue that duty cycling is not appropriate for reliable dissemination protocols.
First, users want to reduce network downtime due to reprogramming. Second,
duty cycling introduces complexity which should be minimized in protocols that
serve a critical role to network operations.

3.1 Metadata dissemination

We assume that the object to be disseminated is injected through an out-of-band
mechanism to a single node from which it must propagate to the network. In this
regard, the first necessary step is to notify the network about the existence of
this new object. Typhoon uses separate mechanisms to disseminate data objects
and metadata about these objects. By metadata, we mean information about
the existence of a new object, codified into an object ID, size and version. Nodes
decide whether they should attempt to download an advertised object by com-
paring the new object ID and version with those of previously retrieved objects.
If a node decides to download the new object, the number of pages is determined
by dividing the object’s size by the page size.

The reason for using separate mechanisms stems from the difficulty of design-
ing a single protocol that can efficiently serve both purposes. For example, since

Fig. 1. State transition diagram for Typhoon. State transitions are marked using the
condition/action notation in which a transition occurs when a condition is met and
results in an action (or no action in case of ’-’).

new nodes may join the network at any time, the metadata dissemination pro-
tocol must be always active. This means that, while it should quickly propagate
updates to the whole network, it must minimize overhead during steady state.
On the other hand, for reasons outlined above, the data dissemination protocol
should disseminate the object as fast as possible and then terminate. Typhoon
uses Trickle [10] to disseminate metadata.

For the remainder of the section we describe what happens once nodes be-
come aware of the existence of a new object and attempt to retrieve it.

3.2 Data Request Handshake

Figure 1 represents Typhoon’s state transition diagram. Nodes start in the AC-
TIVE state and return to this state while they have more pages to download.
While in this state, a node will periodically broadcast PageReq requests that
contain the object’s ID and the number of the requested page. Nodes request
pages sequentially. By doing so, nodes within the same broadcast domain are
more likely to be in the same state, which increases the probability of overhearing
traffic of common interest.

The broadcast period is uniformly chosen from [ta, tb] to avoid collisions
among multiple interested receivers2. Nodes that have copies of the requested
page and receive a PageReq message, each respond with a unicast PageOffer

message after waiting for a random time uniformly selected from [tc, td]. The
PageOffer message includes the object’s ID as well as the number of the page
offered. The random waiting period is used to prevent collisions among multi-
ple potential offerers. They then transition to the WAIT state and wait for a
StreamReq message. If no StreamReq arrives within Ts seconds the offerers return
to the ACTIVE state3. Otherwise, upon receiving a unicast StreamReq message,
one of the offerers will transition to the PUB state and start the data transfer.
That offerer returns to the ACTIVE state after the page has been successfully
downloaded or after a number (five) of unsuccessful data packet transfers. These

2 We use, [ta, tb] = [400, 500] msec.
3 Ts = 20 msec in our implementation.

Fig. 2. Pipelining pages through the network.

failures are detected because the receiver acknowledges the receipt of individual
data packets (see Section 3.3).

Conversely, a node that receives a PageOffer message matching its request,
transitions to the RCVR state and signals the source of the PageOffer message
to initiate the data download by transmitting a unicast StreamReq message.
The receiver stays in that state while more packets from the requested page
need to be retrieved and returns to the ACTIVE state either when the whole
page has been successfully downloaded or when a timeout occurs. The second
case protects the receiver against failures of the transmitting node.

Nodes that overhear a PageOffer message for a page they are missing, will
transition to the SNOOP state in which they will attempt to receive the data
packets from the offered page. While PageOffer messages are sent via unicast,
interested nodes can still receive them. For example, the CC2420 radio provides
the ability to disable address filtering enabling a node to receive all packets
irrespective of their destination address. Similar to the RCVR state, the node
leaves the SNOOP state when the page transfer has completed or when a timeout
occurs. If a node does not successfully overhear all the packets from a page, it
discards the page.

In addition to the base scheme described above, Typhoon optimizes its use of
timers to enable the pipelining of pages through the network. We describe this
optimization using the example presented in Figure 2. In this scenario, node A
has finished transmitting page n to node B. In response, node B will transition
to the ACTIVE state and transmit a PageReq for page n + 1. Node A receives
this message and starts its timer to transmit the PageOffer message. However,
node C also receives the request and deduces that node B already has page n
(because pages are downloaded sequentially). C then sends its own PageReq for
page n to B. From the perspective of pipelining, C’s request has priority over
B’s original request, since it pushes pages further downstream. To encourage this
behavior, Typhoon sets the timer at B to fire before A’s timer4. Once B’s timer
expires, it transmits a PageOffer for page n. A overhears that offer and cancels
its own PageOffer, implicitly deferring to B’s data transmission.

4 In our implementation, [tc, td] = [15, 25] msec for a node that has just finished
transmitted a page and [0, 10] msec otherwise.

(a) (b)

Fig. 3. (a) Propagation of consecutive pages on a linear topology when only one fre-
quency channel is used. Notice that node A has to wait until time period 4 to transmit
the second page in order to avoid colliding at B with node C’s transmission of the first
page. (b) When nodes can use different frequency channels to transmit data packets
(indicated by different colors in the figure) the wait time is reduced by one time period.

3.3 Data Transfer

Typhoon achieves reliable transfer in the face of packet loss, through the use of
retransmissions. However, unlike previous protocols that use negative acknowl-
edgments after all packets in page have been transmitted, Typhoon acknowledges
the receipt of individual data packets. If the sender does not receive an acknowl-
edgment, it retransmits the last data packet thus implementing a stop-and-wait
ARQ protocol.

A node can generate these acknowledgments in two different ways. First,
modern radios offer the ability to automatically generate hardware acknowledg-
ments [17]. The benefit of this approach is reduced latency because the ACK is
generated as soon as the radio hardware correctly receives the packet. On the
other hand, it is possible for an acknowledged packet to be dropped before it
reaches the application. In this case, the hardware acknowledgment results in a
false positive. Fortunately, TinyOS2 [8], on which Typhoon is developed, imple-
ments a mechanism called software ACK that can trigger this acknowledgment
at the system level. It is thus possible to disable the hardware from automatically
generating hardware ACKs and achieve equivalent functionality using software
ACKs.

An additional benefit of disabling hardware ACKs is that it enables over-
hearing of unicast packets. This is because enabling hardware ACKs in the
commonly-used CC2420 radio also enables destination address filtering, in which
case the radio automatically discards all unicast frames not destined to the cur-
rent node. With address filtering disabled, nodes in the SNOOP state can still
receive data packets sent to the unicast address of the node that transmitted
the StreamReq message, while the explicit receiver will generate ACKs for those
data packets.

3.4 Channel Switching

As we already argued, data dissemination protocols should leverage spatial re-
use to accelerate the propagation of pages through the network. Spatial re-use is

achieved by having nodes retransmit pages as soon as they arrive. However, as
Figure 3(a) demonstrates, in order to avoid collisions due to the hidden terminal
problem a node must wait for two additional periods (a period is defined as the
amount of time necessary to transmit a page) before it can transmit the next
page. On the other hand, as Figure 3(b) shows, this bound can be further re-
duced if nodes have the ability to transmit at different frequency channels. Chan-
nel switching provides another benefit in addition to accelerating the pipelining
process. Because nodes exchange PageReq and PageOffer messages on the de-
fault common channel, having data transfers on different frequencies eliminates
the danger of ongoing data transfers colliding with these control messages.

Considering the advantages of channel switching, Typhoon incorporates it
to the data request handshake described above. Rather than using an explicit
agreement protocol in which nodes are assigned specific frequencies, Typhoon
employs a randomized scheme to select transmission frequencies. Specifically, the
publisher suggests a frequency channel in its PageOffer message by randomly
selecting from one of the possible channels (e.g. 15 in the case of 802.15.4, since
one channel is reserved for broadcast messages). If the receiver accepts the offer
it replies with an acknowledgment (similar to the ACK used for data packets)
and switches to the suggested frequency channel. After receiving the acknowledg-
ment the publisher also tunes to the new channel and the data transfer starts.
Note that the receiver transmits a StreamReq message after switching to the
channel indicated in the PageOffer message. Although the channel is randomly
chosen, it is still possible to have multiple publishers willing to serve the same
receiver on the same channel. Therefore, the StreamReq message serves as an
explicit indication of the receiver’s decision. Although nodes randomly select
data transfer channels, it is possible that more than one ongoing data transfers
with overlapping radio coverage take place on the same channel. In this case,
interference can cause higher packet loss and thus retransmissions and possibly
failure to transmit the page due to the loss of multiple acknowledgments. In the
second case, the sender and/or the receiver will timeout, return to the ACTIVE
state, and retry downloading the original page.

While channel switching provides clear performance benefits, it also intro-
duces new complications. For example, Typhoon uses Trickle for metadata dis-
semination, and both Typhoon and Trickle can be active at the same time. Since
Trickle is not aware of the channel changes it will transmit over the channel se-
lected by Typhoon. This means that if a node is transferring data on a channel
other than the default one, the node’s neighbors will not be able to receive any
metadata sent via Trickle. Realizing this conflict, we implement two schemes
to minimize its effects. First, upon receiving the initial notification via Trickle,
nodes wait for a random period before they start Typhoon5. This delay allows
Trickle to propagate the metadata downstream. Second, nodes switch to the de-
fault channel immediately after each page transfer, thus allowing the continued
dissemination of metadata.

5 Set to [400, 500] msec in our implementation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

Pa
ck

et
 re

ce
pt

io
n

ra
te

Distance (ft)

Fig. 4. Packet reception rate as a function of distance from a packet source. The path-
loss exponent is 4.

4 Evaluation

4.1 Evaluation metrics and methodology

We evaluate the performance of Typhoon using simulations and experiments
performed on a testbed deployed in an office building. The results we report
are based on an implementation of Typhoon built on top of TinyOS 2 (T2) [8].
Moreover, we use the standard CSMA MAC protocol used in T2.

We use Deluge, the de facto standard for reliable bulk transfer in TinyOS,
as the baseline for our comparisons. Since Deluge provides no guidelines for
setting its parameters under different network conditions we use the default
parameters provided with Deluge under all cases. All simulations were carried
out in TOSSIM, a discrete event based simulator for TinyOS [9]. We lever-
age two of TOSSIM’s features to improve the fidelity of our simulations. First,
TOSSIM allows defining signal attenuation levels on a per link basis. We cal-
culate these attenuations using the log distance path loss model [15]. In this
model the path loss at distance d from the source, measured in dB, is, PL(d) =
PL(d0) + 10n log(d/d0), where n is the path-loss exponent and PL(d0) is an
experimentally measured path loss at reference distance d0. Path loss exponent
n = 2 corresponds to free space propagation, while n = 3, 4 model environments
with reflections and refractions [15]. We use n = 4 for all our simulations. Fig-
ure 4 shows the packet reception rate at various distances from a source node.
Second, we utilize TOSSIM’s ability to emulate bursty noise due to interference.

We quantify the performance of Typhoon through two metrics: (1) Com-
pletion time, which captures the time necessary to disseminate an object. We
measure both the time necessary for individual nodes as well as the network
completion time, defined as the longest node completion time. (2) Power con-
sumption. While completion time quantifies the level of disruption from exe-
cuting the object dissemination protocol (assuming the network’s operation is
disrupted during the download), power consumption quantifies the impact of
data dissemination on the network’s lifetime.

Due to the lack of a direct mechanism for measuring power consumption
in TOSSIM, we use the indirect approach of measuring the amount of time
the nodes spend transmitting, in idle listening mode, as well as the number of

 0

 20

 40

 60

 80

 100

 120

 0 0.005 0.01 0.015 0.02 0.025 0.03
 0

 20

 40

 60

 80

 100

 120

Co
m

pl
et

io
n

tim
e

(s
ec

)

Av
g

no
de

 d
eg

re
e

Nodes per square foot

Deluge
Typhoon

Avg node degree
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.005 0.01 0.015 0.02 0.025 0.03

Po
we

r c
on

su
m

pt
io

n
(m

Ah
)

Nodes per square foot

Deluge
Typhoon

(a) Completion Time. (b) Average power consumption.

Fig. 5. Average network completion time and average node power consumption for a
20 KB object, as a function of network density. Network nodes are placed on a grid
over a 180 × 180-foot field.

packets it receives. Because the Tmote Sky data sheet [12] publishes only the
current drawn in transmit mode (17.4 mA), and in idle listening mode (19.7
mA), we experimentally measured using a Tmote Sky mote [11] the average
current drawn while receiving one packet to be 21.7 mA. Note that our energy
estimates do not include the costs of reading and writing to flash. The reason
is that they represent a fixed cost which is orthogonal to the operation of the
data dissemination protocol and therefore it provides no insight into the impact
of different protocol design decisions.

We run each experiment five times and use the two evaluation metrics to
reason about the impact of different factors on the performance of Typhoon.
Specifically, we investigate the impact that network density and size, object size,
and loss rate have on data dissemination. Moreover, we evaluate the incremental
benefits of overhearing and channel switching in Typhoon. Finally we present
the behavior of Typhoon in practice through results from a small testbed.

4.2 Effect of Network Density and Size

Network density is a critical performance factor since it affects the level of con-
tention when requesting and downloading pages. We first discuss the impact of
network density on completion time. Figure 5(a) shows the effect of increasing
the number of nodes per square foot by increasing the size of an N × N node
grid, deployed on a fixed 180 × 180-foot field. Also shown in the same figure is
the average node degree, defined as the set of nodes with PRR > 0, as network
density increases. One can make two observations from this figure. First, the
performance margin between Typhoon and Deluge increases in sparse networks.
This is because Deluge uses timer values that reduce the number of messages sent
and increase the probability of overhearing. However, in sparse networks, these
timer values increase the idle listening time and thus completion time. Second,
Typhoon is consistently faster throughout the density range despite its more
aggressive timers. This indicates that channel switching is effective in relieving
channel contention.

 35
 40
 45
 50
 55
 60
 65
 70
 75

 0 5 10 15 20 25 30
 0

 5

 10

 15

 20

 25

 30

 65
 70
 75
 80
 85
 90
 95
 100

 0 5 10 15 20 25 30
 0

 5

 10

 15

 20

 25

 30

(a) Typhoon (b) Deluge

Fig. 6. Node completion time for Typhoon and Deluge on a 180 × 180-foot field. The
field had 302 nodes uniformly distributed with a density of 0.028 nodes per square foot.
A 20 KB object was initially injected at the bottom left corner of the field.

Both Typhoon and Deluge require nodes to keep their radios on for the dura-
tion of the data dissemination. Considering that the radio consumes considerable
energy in idle listening state, completion time will influence energy consumption.
Figure 5(b) verifies this intuition as it shows that energy consumption follows
closely completion time. We found that for both protocols nodes spend less than
7% of their time transmitting further indicating that energy cost is dominated
by idle listening time. With this result in mind, we present only completion times
for the remainder of the evaluation.

Figure 6 illustrates the propagation time for individual nodes in a dense grid.
As reported in [3], Deluge propagates the data object faster around the edges
than in the middle of the network. The main reason is that nodes in the middle
of the network have more neighbors and thus higher probability of collisions. On
the other hand, Typhoon generates a uniform wavefront pattern from corner to
corner. Although nodes in the middle have more neighbors, the only messages
broadcasted on the default channel are the first two handshake messages. The
probability of collision is thus lower than Deluge.

Unlike the grid topology in which a node might receive data from different
neighbors, the linear topology limits the propagation to only one direction. It
is therefore easier to study the effects of network size on completion time using
linear topologies.

A number of interesting observations can be made from Figure 7(a) that plots
completion time as a function of network diameter in a linear topology. First,
both Typhoon and Deluge benefit from pipelining, and the completion time does
not increase at the same rate as the number of nodes. Second, Deluge exhibits
faster increase compared to Typhoon. As the network diameter increases, the
number of neighboring nodes for some nodes also increases, and thus the prob-
ability of contention increases. This has a larger influence on Deluge, because
Typhoon sends packets on the common channel only during the page request
phase. Figure 7(b), which shows the average time to request and download a

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

Co
m

pl
et

io
n

tim
e

(s
ec

)

Network diameter (nodes)

Deluge
Typhoon

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60

Pa
ge

 re
qu

es
t a

nd
 tr

an
sf

er
 ti

m
e

(s
ec

)

Network diameter (nodes)

Deluge
Typhoon

(a) (b)

Fig. 7. (a). Network completion time of a 20 KB object, as a function of the diam-
eter changes in 1 × n linear topology. (b). Page acquisition time, including the page
request phase and subsequent data transfer. The vertical lines represent the 5th and
95th quartiles.

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

Co
m

pl
et

io
n

tim
e

(s
ec

)

Data object size (KB)

Deluge
Typhoon

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

Co
m

pl
et

io
n

tim
e

(s
ec

)

Data object size (KB)

Deluge
Typhoon

(a) (b)

Fig. 8. Completion time as the object size varies in (a) 1 × 50 sparse linear topology
where nodes can reach only their immediate neighbors, and (b) 20 × 20 grid topology
with 10-feet node spacing.

single page as the network’s diameter increases, verifies this conjecture. From
the similarity between the two graphs, it is easy to see that page acquisition
time dictates completion time. Furthermore, Typhoon has approximately con-
stant page transfer time in all cases, which suggests that the shorter page request
phase underlies the difference in completion time. Finally, Deluge exhibits larger
variability in page acquisition time, due to the varying levels of contention that
different nodes experience.

4.3 Effect of Object Size

Unlike metadata dissemination protocols for which network diameter dominates
completion time, the size of the object transferred affects the completion time of
bulk data dissemination protocols. Figure 8 shows the impact of object size on
completion time in two cases: a sparse linear topology in which nodes can reach
only their immediate neighbors, and a 20 × 20 grid topology with 10-feet node
spacing. In both cases, the completion time grows linearly with the object size
with Deluge yielding a steeper slope.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

Co
m

pl
et

io
n

tim
e

(s
ec

)

Data object size (KB)

Modeled
Simulation

Fig. 9. Modeled and simulated completion time of Typhoon in 1 × 50 sparse linear
topology.

To understand the root cause for this behavior, we briefly present a model
for data dissemination in sparse linear topologies. We assume ideal conditions in
which pages are transferred in perfect synchrony with no collisions. In this case,
the expected completion time for Typhoon is T̂t = 2(n − 1)Pt + d · Pt, where
n is the number of object pages, d is the network diameter, and Pt is the time
to request and receive a page (see Figure 3). Given the description of Typhoon
from Section 4, we can estimate Pt and thus T̂t. A page transfer is preceded by
the data request handshake. According to TOSSIM, each handshake exchange
of a 21-byte message followed by the ACK requires 1.68 msec to complete. Since
the handshake consists of three messages and two back-off timers with maxi-
mum length of 25 msec each, it should take 55.04 msec. Moreover, according to
TOSSIM, a page transfer requires approximately 428 msec and thus Pt = 483.04
msec. Figure 9 shows the modeled and simulated completion time for Typhoon
with different object sizes. Since the modeled completion time is based on ideal
conditions, it represents the lower bound on Typhoon’s performance. At the
same time, it explains that the lower completion time that Typhoon exhibits is
due to the speedup that channel switching offers.

4.4 Impact of Packet Loss

Since reliability is a requirement for bulk data dissemination protocols com-
pletion time depends on how fast lost packets are recovered. We perform two
experiments to estimate the effect of packet loss on completion time.

First, we increase the spacing between neighboring nodes in a 20 × 20 grid
topology. This increase raises the path loss on the link and therefore decreases the
packet reception rate (PRR). Figure 10 illustrates the completion time for this
experiment. It is easy to see that Deluge performance deteriorates with distance
while Typhoon is able to maintain consistent performance. Specifically, Deluge’s
completion time increases by over twofold when nodes are 35 feet apart from each
other. This is due to the fact that the PRR of the links between neighboring
nodes at this distance falls in the so-called gray region (PRR =∼ 95%, as Fig. 4
indicates). Extending the inter-node distance even further leads to a precipitous
decrease in PRR (∼ 30% at 40 feet), leading to an even worse performance
differential.

 0

 40

 80

 120

 160

 200

 0 5 10 15 20 25 30 35 40

Co
m

pl
et

io
n

tim
e

(s
ec

)

Node distance (ft)

Deluge
Typhoon

Fig. 10. Completion time as the inter-node
distance varies in a 20× 20-node grid topol-
ogy.

Quiet Bursty loss
Typhoon 54.30 73.37
Deluge 80.79 241.43

Table 1. Completion time under
different loss environments for a
20×20-node grid topology with 10-
feet node distance.

Second, we simulate the effect of bursty losses due to interference. To do
so, we use TOSSIM noise traces collected from environments with heavy 802.11
use [6]. As Table 1 shows, Typhoon’s performance degrades by 48% while the
completion time for Deluge increases threefold. Two main reasons underlie this
trend. First, Typhoon requires all data packets to be individually acknowledged,
and it bases the retransmission decision on this acknowledgment instead of a
timer. This allows lost packets to be recovered quickly. Second, compared to
Deluge, Typhoon is more aggressive in sending packets, so the transfer moves at
a faster pace.

4.5 Benefits of Overhearing and Channel Switching

In order to better understand the performance benefits that channel switching
and overhearing offer, we selectively disable them in an experiment on a 5 × 5
grid topology.

Table 2 presents the results of this experiment. Disabling channel switching
creates a larger performance deterioration compared to disabling overhearing.
This degradation while large is expected because Typhoon assumes that data
transfers take place on a channel that is free from interference caused by other
data transfers and request handshakes. As a result, being aggressive hurts per-
formance in this case. On the other hand, overhearing provides only modest
improvement. The reason is that Typhoon performs opportunistic overhearing,
in which nodes can snoop on a page transfer only when they overheard the pre-
ceding PageOffer message. In other words, if a node misses that message, it

Completion time (sec)
Channel-switching and overhearing 6.24
Channel-switching only 8.79
Overhearing only 945.80
None 1016.43

Table 2. Completion time as channel-switching and overhearing are disabled in a
5 × 5-node grid topology with 20-feet node spacing for s 3 KB object.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Number of requests

Typhoon
Deluge

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 500 1000 1500 2000

Fr
eq

ue
nc

y

Number of data packets

Typhoon
Deluge

(a) (b)

Fig. 11. Probability distribution of (a) Typhoon request messages and Deluge adver-
tisements (b) Typhoon and Deluge data messages. The topology is a 10×10 node grid,
with 10-feet node distance, and the object size is 20KB. The vertical lines show the
average.

loses the opportunity to overhear since the transfer happens at another channel.
Moreover, if a node in the SNOOP misses one or more packets from a page due
to interference it discards the whole page. At the same time, when overhearing is
combined with channel switching, it offers ∼ 30% reduction in completion time.

4.6 Protocol Overhead

The major design goal of Typhoon is to minimize completion time. It achieves
this goal by being aggressive in requesting and transmitting object pages. Fig-
ure 11 illustrates the results of this aggressive behavior by comparing the per-
node packet distributions for disseminating the same object using Typhoon and
Deluge.

We focus on request and data transfer messages because they constitute the
majority of traffic. Typhoon generates approximately three times more traffic
than Deluge for both message types. The reason is that, unlike Deluge, Typhoon
does not have a request suppression mechanism, so nodes broadcast requests
more aggressively. Moreover, we found that 47% of the overhearing attempts
failed (i.e. node had to discard the partially overheard pages). While one can
suggest based on this result that nodes should sleep instead of performing op-
portunistic overhearing, sleep scheduling introduces complexity and overhead
to the protocol. Furthermore, as Section 4.5 shows, overhearing when used in
conjunction with channel switching, leads to ∼ 30% reduction in completion
time.

4.7 Testbed evaluation

We complement the simulation results presented above, with experimental re-
sults from testing Typhoon and Deluge on a small testbed. While simulations
are meant to explore the behavior of the protocols under various conditions, the
testbed is used to compare their performance in a realistic environment. Given

Fig. 12. The testbed floor plan shows the locations of Tmote Connect boxes, which
can have either one or two motes attached.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 56 58 60 62 64 66 68

F
re

q
u
e
n
cy

Node completion time (sec)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 90 100 110 120 130 140

F
re

q
u
e
n
cy

Node completion time (sec)

(a) (b)

Fig. 13. PDF of node completion time on the testbed for (a) Typhoon and (b) Deluge.
The green line shows the network average in each case.

the two different goals, we do not compare results across simulations and the
testbed. Rather, it is the relative performance of Typhoon and Deluge under the
same testing scenarios that is of interest.

We test Typhoon on a testbed that consists of 22 motes deployed in an office
building according to the topology shown in Figure 12. Due to the shape of the
building, the testbed physically resembles a linear topology. Moreover, the center
of the testbed around location 119 tends to have relatively bad connectivity to
the rest of the network. Dissemination starts by injecting a 20 KB object from
location 118 on the right side of the testbed.

The average network completion time was 75.15 seconds using Typhoon and
145.57 seconds with Deluge. To understand how the object propagates through
the network, Figure 13 shows the distribution of node completion times. For
both protocols, the node completion time is divided into two groups, with one
group taking longer to receive the entire object. Analysis of the experiment log
shows that the group of slow nodes is located on the left side of the testbed.
This is due to the the poor link connectivity in the center of the testbed. For
example, in the case of Typhoon, most nodes on the left side of the testbed
download pages from location 112. However, since the link connectivity between
location 112 and nodes on the right side of the testbed was poor, location 112
becomes the bottleneck.

As explained above, Typhoon uses the Dissemination service to publish meta-
data and T2 components for reading/writing to the Flash. The combined code
footprint of all three components is 14752 bytes of ROM and 413 bytes of RAM.
At the same time, the incremental overhead of adding Typhoon to an application

that uses Dissemination and the Flash is 3806 bytes of ROM and 112 bytes of
RAM.

5 Looking Forward

We have shown how Typhoon leverages frequency diversity to reduce network
contention and system-level ACKs to expedite recovery from lost data pack-
ets. The combination of these two techniques provides significant performance
benefits across a wide range of network sizes and conditions.

As we move forward, we plan to explore the benefits that dynamic packet size
adjustment provides. Preliminary results from our testbed show that changing
packet size can affect the packet reception rate by as much as 28%. The intuition
is that the probability of bit errors and thereby corruption accumulates as the
packet size increases. One should then transmit smaller packets in noisy envi-
ronments to reduce the number of retransmissions and larger packets in ’quiet’
environments to reduce packet overhead. However, the noise level is not known
in advance and changes over time. While algorithms exist for dynamically ad-
justing the packet size to maximize throughput, they are unsuitable for WSNs
due to their complexity [7]. We are currently developing algorithms for estimat-
ing the underlying bit error rates and dynamically adjusting the packet size that
can be implemented on current generation motes.

Acknowledgments

We extend our gratitude to Prabal Dutta and the anonymous reviewers for their
insightful comments and their help in improving this paper.

This research was supported in part by NSF grant CNS-0546648 and by
the U.S. Department of Homeland Security (Grant Number N00014-D6-1-0991)
through a grant awarded to the Center for Study of Preparedness and Critical
Event Response (PACER) at the Johns Hopkins University. Any opinions, find-
ing, conclusions or recommendations expressed in this publication are those of
the author(s) and do not represent the policy or position of the Department of
Homeland Security and the National Science Foundation.

References

1. B. Clark, C. Colbourn, and D. Johnson. Unit disk graphs. Discrete Mathematics,
86:165–177, 1990.

2. D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A High-Throughput
Path Metric for Multi-Hop Wireless Routing. In Proceedings of the 9th ACM
International Conference on Mobile Computing and Networking (MobiCom 2003),
Sept. 2003.

3. J. W. Hui and D. Culler. The dynamic behavior of a data dissemination protocol
for network programming at scale. In Proceedings of the Second ACM Conference
on Embedded Networked Sensor Systems (SenSys 2004), Nov. 2004.

4. S. S. Kulkarni and M. Arumugam. Infuse: A TDMA Based Data Dissemination
Protocol For Sensor Networks. Technical Report MSU-CSE-04-46, Michigan State
University - Computer Science and Engineering, November 2004.

5. S. S. Kulkarni and L. Wang. MNP: Multihop network reprogramming service for
sensor networks. In Proceedings of the 25th IEEE international Conference on
Distributed Computing Systems (ICSCS), June 2005.

6. H. Lee, A. Cerpa, and P. Levis. Improving Wireless Simulation Through Noise
Modeling. In Proceedings of the Sixth International Conference on Information
Processing in Wireless Sensor Networks (IPSN’07), 2007.

7. P. Lettieri and M. B. Srivastava. Adaptive frame length control for improving
wireless link throughput, range, and energy efficiency. In Proceedings of IEEE
INFOCOM 1998, 1998.

8. P. Levis, D. Gay, V. Handziski, J.-H. Hauer, B. Greenstein, M. Turon, J. Hui,
K. Klues, R. S. Cory Sharp, J. Polastre, P. Buonadonna, L. Nachman, G. Tolle,
D. Culler, and A. Wolisz. T2: A Second Generation OS For Embedded Sensor
Networks. Technical Report TKN-05-007, Telecommunication Networks Group,
Technische Universitat Berlin, 2005.

9. P. Levis, N. Lee, A. Woo, M. Welsh, and D. Culler. TOSSIM: Accurate and
scalable simulation of entire TinyOS Applications. In Proceedings of Sensys 2003,
Nov. 2003.

10. P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A Self-regulating Algo-
rithm for Code Propagation and Maintenance in Wireless Sensor Networks. In
Proceedings of NSDI 2004, Mar. 2004.

11. Moteiv Corporation. Tmote Sky. Available at http://www.moteiv.com/products/
tmotesky.php.

12. Moteiv Corporation. Tmote Sky Datasheet. http://www.moteiv.com/products/

docs/tmote-sky-datasheet.pdf.
13. V. Nail, A. Arora, and P. Sinha. Sprinkler: A Reliable and Energy Efficient Data

Dissemination Service for Wireless Embedded Devices. In Proceedings of the 26th

International Real-Time Systems Symposium (RTSS’05), 2005.
14. S.-J. Park, R. Vedantham, R. Sivakumar, and I. F. Akyildiz. GARUDA: Achieving

Effective Reliability for Downstream Communication in Wireless Sensor Networks.
To Apper in the IEEE Transactions on Mobile Computing, 2007.

15. T. S. Rappaport. Wireless Communications: Principles & Practices. Prentice Hall,
1996.

16. T. Stathopoulos, J. Heidemann, and D. Estrin. A remote code update mecha-
nism for wireless sensor networks. Technical Report CENS-TR-30, University of
California, Los Angeles, Center for Embedded Networked Computing, November
2003.

17. Texas Instruments. 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver. Avail-
able at http://www.chipcon.com/files/CC2420 Data Sheet 1 3.pdf, 2006.

18. C. Wan, A. Campbell, and L. Krishnahmurthy. PSFQ: A Reliable Transport Mech-
anism for Wireless Sensor Networks. In Proceedings of the ACM International
Workshop on Wireless Sensor Networks and Applications, Sept. 2002.

19. W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient MAC Protocol for
Wireless Sensor Networks. In Proceedings of IEEE INFOCOM 2002, 2002.

