
Advanced Computer Aided Translation with a Web-Based Workbench
Vicent Alabau?, Ragnar Bonk†, Christian Buck‡, Michael Carl†, Francisco Casacuberta?

Mercedes Garcı́a-Martı́nez†, Jesús González?, Philipp Koehn‡, Luis Leiva?

Bartolomé Mesa-Lao†, Daniel Ortiz?, Herve Saint-Amand‡, Germán Sanchis?, and Chara Tsoukala‡

?Institut Tecnològic d’Informàtica, Universitat Politècnica de València, Spain
†Copenhagen Business School, Department of International Business Communication, Denmark

‡School of Informatics, University of Edinburgh, Scotland
valabau@iti.upv.es, ragnar.bonk@gmx.de, cbuck@lantis.de, mc.isv@cbs.dk, fcn@iti.upv.es

mgarcia@iti.upv.es, jegonzalez@dsic.upv.es, pkoehn@inf.ed.ac.uk, luileito@iti.upv.es

bm.ibc@cbs.dk, dortiz@iti.upv.es, hsamand@inf.ed.ac.uk, gsanchis@dsic.upv.es, x.tsoukala@gmail.com

Abstract

We describe a web-based workbench that
offers advanced computer aided transla-
tion (CAT) functionality: post-editing ma-
chine translation (MT), interactive transla-
tion prediction (ITP), visualization of word
alignment, extensive logging with replay
mode, integration with eye trackers and e-
pen. It is available open source and inte-
grates with multiple MT systems.

The goal of the CASMACAT project1 is to de-
velop an advanced computer aided translation
workbench. At the mid-point of the 3-year project,
we release this tool as open source software. It
already includes a wide range of novel advanced
types of assistance and other functionalities that
do not exist together in any other computer aided
translation tool.

The CASMACAT is working in close collabora-
tion with the MATECAT project2, which also has
the goal of developing a new open source web-
based computer aided translation tool, and focuses
mainly on post-editing machine translation, adap-
tation methods, and ease of use that make such a
tool suitable for professional users.

Through this combined effort, we hope to kick-
start broader research into computer aided transla-
tion methods, facilitating diverse translation pro-
cess studies, and reach volunteer and professional
translators without advanced technical skills.

The tool is developed as a web-based platform
using HTML5 and Javascript in the Browser and
PHP in the backend, supported by a CAT and MT
server that run as independent process (both im-
plemented in Python but integrating tools written
in various other programming languages).
1http://www.casmacat.eu/
2http://www.matecat.com/

1 Related Work

There is increasing evidence for productivity gains
of professional translators when they post-edit ma-
chine translation output.

For instance, Plitt and Masselot (2010) com-
pare post-editing machine translation against unas-
sisted translation in a web-based tool for a number
of language pairs, showing productivity gains of
up to 80%. Skadiņš et al. (2011) show a 30 per-
cent increase for English-Latvian translation with
a slight but acceptable degradation in quality. Fed-
erico et al. (2012) assess the benefit of offering ma-
chine translation output in addition to translation
memory matches (marked as such) in a realistic
work environment for translators working on legal
and information technology documents. They ob-
serve productivity gains of 20-50%, roughly inde-
pendent from the original translator speed and seg-
ment length, but with different results for different
language pairs and domains. Moreover, Pouliquen
et al. (2011) show that, aided by machine trans-
lation, non-professional post-editors may be able
to create high-quality translations, comparable to a
professional translation agency.

So far, usage of machine translation technology
has concentrated on human-computer interaction
involving the human translator as a post-editor,
but rarely involves the human translator influenc-
ing the decisions of the machine translation sys-
tem. Recent efforts on building interactive ma-
chine translation systems include work by Langlais
et al. (2000) and Barrachina et al. (2009). Both
studies develop research systems looking into a
tighter integration of human translators in MT pro-
cesses by developing a prediction model that inter-
actively suggests translations to the human transla-
tor as he or she types. Related work displays sev-
eral word and phrase translation choices to human
translators (Koehn, 2010).

Figure 1: View for uploading new documents

2 User Interface

The CASMACAT UI consists of views designated
for different tasks. The translate view is its cen-
tral view, where the user can translate a docu-
ment and post-editing assistance and logging takes
place. Other views offer a way to upload new
documents or to manage the documents that are
already in the system. Also, a replay mode has
been implemented. The different views will now
be shown and described in the sequence they are
typically used.

2.1 Upload
If the user opens the default URL without giving
any special parameters, he or she is taken to the
upload view. This is currently the entry point of
the application. See Figure 1 for a screenshot.
At this point, a user can specify one or several
documents to upload and to translate. The doc-
uments uploaded must be in XLIFF format. The
language pair can either be chosen manually or
auto-detected from the XLIFF file. If several doc-
uments are uploaded at once, they are bundled into
one job and are translated in a sequence. If the user
clicks on the Start Translating button he or she is
taken to the translate view and can start working.

2.2 Post-Editing
In the translate view, the user can now translate the
document (see Figure 2). The document is pre-
sented in segments, while the currently active seg-

ment is highlighted and assistance is provided for
this segment. If using the post-editing configura-
tion without ITP up to three MT or TM suggestions
are provided, from which the user can choose. The
user can use shortcuts, for instance, to go to the
next segment or to copy the source text to the tar-
get. The user can assign different status to a seg-
ment, for instance, translated for finished ones or
draft for segments, where he or she is not yet sure
about the translation and he or she wants to review
later. When finished, the Download Project button
may be used to download the translated document,
again in the XLIFF format.

When in the translate view, all the actions of the
user that are related to the translation task, e.g. typ-
ing, choosing a suggestion, closing a segment and
so on, are logged by the CASMACAT logging mod-
ule. In addition to traditional key and mouse log-
ging, we also provide text change logging based
on the HTML5 input element. This makes the log
of text activities much more robust, e.g. it allows
to log changes from paste or cut actions triggered
by the browser’s menu bar or the context menu of
the mouse. Mouse clicks are still logged to track
user interactions with UI elements. Key logging is
helpful for offline analysis.

2.3 Interactive Translation Prediction

In the following paragraphs we present a short de-
scription of the main advanced CAT features that
we implemented in the workbench. Such features

Figure 2: Translate view with post-editing configuration

are different in nature, but all of them aim at boost-
ing translator productivity.

Intelligent Autocompletion Interactive transla-
tion prediction takes place every time a keystroke
is detected by the system (Barrachina et al., 2009).
In such event, the system produces a prediction for
the rest of the sentence according to the text that
the user has already entered. This prediction is
placed at the right of the text cursor.

Confidence Measures Confidence mea-
sures (CMs) have two main applications in
MT (González-Rubio et al., 2010). Firstly, CMs
allow the user to spot wrong translations (for
instance, by painting in red those translations with
very low confidence). Secondly, CMs can also
inform the user about the translated words that
are possibly incorrect, but still have a chance of
being correct (for instance, painted in orange).
In our workbench, both applications are handled
by means of two thresholds, one that favors
precision and another that favors recall of changes
to highlighted words.

We use confidence measures to inform the user
about translation reliability under two different cri-
teria. On the one hand, we highlight in red color
those translated words that are likely to be incor-
rect. We use a threshold that favors precision in

Figure 3: Visualization of Confidence Measures

Figure 4: Interactive Translation Prediction

detecting incorrect words. On the other hand, we
highlight in orange color those translated words
that are dubious for the system. In this case, we
use a threshold that favors recall. See Figure 3 for a
screenshot of the text highlighting in the edit area.

Prediction Length Providing the user with a
new prediction whenever a key is pressed has been
proved to be cognitively demanding (Alabau et al.,
2012). Therefore, we decided to limit the number
of predicted words that are shown to the user by
only predicting up to the first erroneous word ac-
cording to the CMs.

In our implementation, pressing the Tab key al-
lows the user to ask the system for the next set of
predicted words. See Figure 4 for a screenshot.

Search and Replace Most of the computer-
assisted translation tools provide the user with in-
telligent search and replace functions for fast text

. .

Figure 5: Visualization of Word Alignment

revision. Our workbench features a straightfor-
ward function to run search and replacement rules
on the fly. Whenever a new replacement rule is
created, it is automatically populated to the forth-
coming predictions made by the system, so that the
user only needs to specify them once.

Word Alignment Information Alignment of
source and target words is an important part of the
translation process (Brown et al., 1993). In order
to display the correspondences between both the
source and target words, this feature was imple-
mented in a way that every time the user places the
mouse (yellow) or the text cursor (cyan) on a word,
the alignments made by the system are highlighted.
See Figure 5 for a screenshot.

Prediction Rejection With the purpose of eas-
ing user interaction, our workbench also supports
a one-click rejection feature (Sanchis-Trilles et al.,
2008). This invalidates the current prediction for
the sentence that is being translated, and provides
the user with an alternate one, in which the first
new word is different from the previous one.

2.4 Replay
The workbench implements detailed logging of
user activity, which enables both automatic anal-
ysis of translator behavior by aggregating statistics
and enabling replay of a user session. This capabil-
ity is explained in detail in Section 4. Replay takes
place in the translate view of the UI, it shows the
screen at any time exactly the way the user encoun-
tered it when he or she interacted with the tool.

2.5 List Documents
Another view details a list of documents submitted
to the tool. From there a user can start a replay,
download the logged data or continue a translation
session.

3 Server

The overall design of the CASMACAT workbench
is very modular. There are three independent com-

GUI web
server

CAT
server

MT
server

Javascript PHP

 Python

 Python

web socket
HTTP

HTTP

Figure 6: Modular design of the workbench: Web-
based components (GUI and web server), CAT
server and MT server are independent and can be
swapped out

ponents (see also Figure 6): the GUI/web server,
the CAT server and the MT server.

We separate these components by clearly speci-
fied API calls, so that alternative implementations
can be used as well. We expect that the CASMACAT

workbench may be use partially, for instance in the
following fashion:

• As part of a larger localization workflow with
existing editing facilities, only the capabili-
ties of the CASMACAT CAT server and CAS-
MACAT MT server are used. A legacy edit-
ing tool is extended to make calls to the CAT
server and thus benefit from additional func-
tionality.

• If an existing customized MT translation so-
lution is already in place, then the CASMACAT

front-end and CAT server can connect to it.

Already, the currently implemented CASMACAT

workbench supports two different MT server com-
ponents, Moses (Koehn et al., 2007) and Thot
(Ortiz-Martı́nez et al., 2005).

3.1 CAT Server

The CAT server is implemented in Python with the
Tornadio library. It uses socket.io to keep a web
socket connection with the Javascript GUI. Keep in
mind that especially interactive translation predic-
tion requires very quick responses from the server.
Establishing an HTTP connection through an Ajax
call every time the user presses a key would cause
significant overhead.

Figure 7: Replay view

A typical session with interactive translation
prediction takes place as follows:

• The user moves to a new segment in the GUI.
• The GUI sends a startSession request to the

CAT tool, passing along the input sentence.
• The GUI and CAT server establish a web

socket connection.
• The CAT server requests and receives from

the MT server the sentence translation and the
search graph.

• The CAT server sends back the translation to
the GUI and keeps the search graph in mem-
ory.

• The user starts typing (approving some of the
translation or making corrections).

• At each key stroke, the GUI sends a request to
the CAT server, for instance requesting a new
sentence completion prediction (setPrefix).

• The CAT server uses the stored search graph
to compute a new prediction and passed it
back to the GUI (setPrefixResult).

• The GUI displays the new prediction to the
user.

• Eventually, the user leaves the segment.
• The GUI sends a endSession request to the

CAT tool.

• The CAT server discards all temporary data
structures.

• The GUI and CAT server disconnect the web
socket connection.

The interaction between the GUI and the CAT
server follows a well-defined API.

3.2 MT Server
For many of the CAT server’s functions, informa-
tion from the Machine Translation (MT) server is
required. This includes not only the translation
of the input sentence, but also n-best lists, search
graphs, word alignments, etc.

The main call to the server is a request for a
translation. The request includes the source sen-
tence, source and target language, and optionally
a key identifying the user. The server responds to
requests with an JSON object, for instance:
{"data":
{"translations":
[{"sourceText": "test",
"translatedText": "testo",
"tokenization": {"src": [[0, 3]],

"tgt": [[0, 4]]}
}]

}
}

Note that this is based on the API of Google
Translate. Our server implementation extends this
API in various ways.

Figure 8: Sketch of a document fragment

4 Replay Mode for User Activity Data

The replay view (see Figure 7) loads the translate
view into an iframe and remote-controls it with the
data from the log file. The session appears in the
web browser exactly the same way as it appeared
to the user interacting with the tool. The current
implementation is robust to user actions, for in-
stance it allows for changes of the replaying win-
dow geometry (like resizing).

The log data is fetched in small chunks when re-
playing. Upon start-up, only the first chunk of the
log data is loaded and the replay starts. When the
next chunk is needed, the replay is paused and the
next chunk is fetched. This minimizes the initial
loading time when starting the replay.

The replay engine uses precise internal clock-
ing. Each event is replayed on its on. This makes
the engine precise and robust and allows for arbi-
trary jumps between events.

Many events are included in the logging (such
as all events around interactive translation pre-
diction). The functionality is currently being ex-
tended to allow for arbitrary seeking in the replay
(e.g. by time or segment). Additionally, the replay
mode will soon allow to re-compute or re-map par-

ticular data, like gaze-to-char mapping.
Latest tests have confirmed that the current strat-

egy of visualizing the eye tracking data via the
browser’s DOM is too slow. The new idea is to let
the eye tracking plugin take over this task by cre-
ating a new native but invisible system window on
which the eye tracking data is drawn. This still has
to be implemented and tested but promises a high
performance visualization of eye tracking data.

5 E-pen Interaction

E-pen interaction should be regarded as a comple-
mentary input rather than a complete replacement
of the keyboard. In a first approach, we have ex-
tended the CASMACAT UI with the minimum com-
ponents necessary to enable e-pen gestures and
handwriting in a comfortable way.

5.1 E-pen UI

When the e-pen UI is enabled, a new button is dis-
played in the button area (). This button tog-
gles the e-pen view. When activated, the display of
the current segment is changed so that the source
segment is shown above the target segment. This
way, the drawing area is maximized horizontally,
which facilitates handwriting particularly in tablet

devices.
Next, an HTML canvas element is added over

the target segment. This drawing area is high-
lighted with a dashed border. In addition, a clear
button () is added to refresh the drawing area. A
screenshot of such display can be seen in Figure 8.

The user can interact with the system by writing
on the canvas. Although in principle it would be
interesting to allow the user to introduce arbitrary
strings and gestures, in this approach we have de-
cided to focus on usability. We believe that a fast
response and a good accuracy are critical for user
acceptance.

Thus, we decided to use MINGESTURES (Leiva
et al., 2013), a highly accurate, high-performance
gestures for interactive text editing. The gestures
in MINGESTURES are defined by 8 straight lines
that can be configured to be direction dependent
and be aware of the context where they gestures
takes place. In addition, they can be easily dif-
ferentiated from handwritten text with line fitting
algorithms. Gestures are recognized in the client
side so the response is almost immediate.

Conversely, when handwritten text is detected,
the pen strokes are sent to the server. At this mo-
ment, only single words can be written. How-
ever, in future releases also substrings and multiple
words will be allowed. The set of gestures used in
the workbench are summarized in Figure 9.

5.2 HTR server
The hand-written text recognition (HTR) server is
responsible for decoding the user handwriting into
digital text. The technology is based very much on
the ITP server technology. An HTR server must
implement the following API:

startSession This function instructs the server to
initialize a new HTR session with the appro-
priate contextual information. A session con-
sists of one or more strokes that constitute one
user interaction. The input parameters are the
source string, the current translation and the
last position validated by the user. At this
stage, the server does not return a value.

addStroke When a user finishes writing a stroke,
the points are encoded into an array of points
that are defined by the x and y coordinates
along with the timestamp when they were ac-
quired. The HTR server processes this infor-

mation and, optionally, returns a partial de-
coding.

endSession When the user stops writing for a spe-
cific amount of time (400ms in our set-up),
the users session finishes. The final decoding
is then returned to the UI, possibly with a list
of n-best solutions.

The HTR server is based on iAtros, an open
source HMM decoder. The current version does
not leverage contextual information, but it is pre-
pared to support that in future releases.

6 Eye-Tracking

One of the core goals of the CASMACAT project is
the study of translator behavior. To better observe
the activities of translators, we use eye tracking.
This allows us to detect and record the exact screen
position of the current focus of attention. Along-
side the other logged information such as key log-
ging, enables translation process study., i.e., the
analysis of the behavior of the translator, opposed
to just translation product study, i.e., the analysis
of the final translation.

Eye tracking is integrated into the CASMACAT

workbench using a special plugin for the browser.
With this plugin, the eye tracking information is
accessible to the Javascript GUI and can be send
to the web server to be stored for later analysis.
The eye tracking information is also visualized in
the replay mode.

Analyzing the eye tracking data requires a tool
for aligning and correcting erroneous fixations, to
manually map them on the words that are likely
to be fixated. The tool is instrumental in creating
a corpus of high-quality gaze-to-word mappings,
and is used as a training set of automatic gaze-
to-word mappings algorithms. A first version of
the manual alignment tool was implemented and
we also implemented two algorithms for automatic
gaze-to-word alignment.

One way to visualize the eye tracking data is by
plotting translation sessions in the form of transla-
tion progression graphs. However, translation pro-
gression graphs only visualize a small fraction of
the information.

7 Outlook

We are currently conducting a field trial to exten-
sively test the workbench in a real-world environ-

ACTION RESULT ACTION RESULTLABEL LABEL

Substitute

<help event>

Reject

Merge

Delete

Insert

Split

Validate

Undo

Redo

Help

Lorem IpsanLorem Ipsum

Lorem ...Lorem Ipsum

Lorem Ipsum LoremIpsum

Lorem Ipsum Lorem

Lorem et IpsumLorem Ipsum

Lorem Lor em

Lorem Ipsum Lorem Ipsum

Lorem Lorem Ipsum

Lorem Ipsum Lorem

Lorem Ipsum

Figure 9: Set of gestures

ment of professional translators. We will collect
extensive logging information that will allow anal-
ysis of translator behavior and inform the future
development of the various technologies.

We hope that by releasing the CASMACAT work-
bench open source, the broader research commu-
nity can carry out similar studies.

References
Alabau, V., Leiva, L. A., Ortiz-Martı́nez, D., and Casacuberta,

F. (2012). User evaluation of interactive machine transla-
tion systems. In Proc. EAMT, pages 20–23.

Barrachina, S., Bender, O., Casacuberta, F., Civera, J., Cubel,
E., Khadivi, S., Lagarda, A., Ney, H., Tomás, J., Vi-
dal, E., and Vilar, J.-M. (2009). Statistical approaches to
computer-assisted translation. Computational Linguistics,
35(1):3–28.

Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., and Mercer,
R. L. (1993). The mathematics of statistical machine trans-
lation: Parameter estimation. Computational linguistics,
19(2):263–311.

Federico, M., Cattelan, A., and Trombetti, M. (2012). Mea-
suring user productivity in machine translation enhanced
computer assisted translation. In Proceedings of the Tenth
Conference of the Association for Machine Translation in
the Americas (AMTA).

González-Rubio, J., Ortiz-Martı́nez, D., and Casacuberta, F.
(2010). On the use of confidence measures within an
interactive-predictive machine translation system. In Proc.
EAMT.

Koehn, P. (2010). Enabling monolingual translators: post-
editing vs. options. In Proc. NAACL, pages 537–545.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Fed-
erico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C.,
Zens, R., Dyer, C. J., Bojar, O., Constantin, A., and Herbst,
E. (2007). Moses: Open source toolkit for statistical ma-
chine translation. In Proceedings of the 45th Annual Meet-
ing of the Association for Computational Linguistics Com-
panion Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. Associa-
tion for Computational Linguistics.

Langlais, P., Foster, G., and Lapalme, G. (2000). TransType:
a computer-aided translation typing system. In NAACL
Workshop: EmbedMT, pages 46–51.

Leiva, L. A., Alabau, V., and Vidal, E. (2013). Error-proof,
high-performance, and context-aware gestures for interac-
tive text edition. In Proceedings of the 2013 annual con-
ference extended abstracts on Human factors in computing
systems (CHI EA), pages 1227–1232.

Ortiz-Martı́nez, D., Garcı́a-Varea, I., and Casacuberta, F.
(2005). Thot: a toolkit to train phrase-based statistical
translation models. In Proceedings of the Tenth Machine
Translation Summit (MT Summit X), Phuket, Thailand.

Plitt, M. and Masselot, F. (2010). A productivity test of statis-
tical machine translation post-editing in a typical localisa-
tion context. Prague Bulletin of Mathematical Linguistics,
93:7–16.

Pouliquen, B., Mazenc, C., and Iorio, A. (2011). Tapta: A
user-driven translation system for patent documents based
on domain-aware statistical machine translation. In For-
cada, M. L., Depraetere, H., and Vandeghinste, V., editors,
Proceedings of th 15th International Conference of the
European Association for Machine Translation (EAMT),
pages 5–12.

Sanchis-Trilles, G., Ortiz-Martı́nez, D., Civera, J., Casacu-
berta, F., Vidal, E., and Hoang, H. (2008). Improving in-
teractive machine translation via mouse actions. In Proc.
EMNLP.

Skadiņš, R., Puriņš, M., Skadiņa, I., and Vasiļjevs, A. (2011).
Evaluation of SMT in localization to under-resourced in-
flected language. In Forcada, M. L., Depraetere, H., and
Vandeghinste, V., editors, Proceedings of the 15th Inter-
national Conference of the European Association for Ma-
chine Translation (EAMT), pages 35–40.

