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Abstract. Recent advances in statistical machine translation have used approximate beam
search for NP-complete inference within probabilistic translation models. We present an al-
ternative approach of sampling from the posterior distribution defined by a translation model.
We define a novel Gibbs sampler for sampling translations given a source sentence and show
that it effectively explores this posterior distribution.In doing so we overcome the limitations
of heuristic beam search and obtain theoretically sound solutions to inference problems such
as finding the maximum probability translation and minimum risk training and decoding.
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1. Introduction

Statistical machine translation (SMT) poses the problem: given a foreign
sentencef , find the translatione∗ that maximises the posterior probability
p(e| f ). Translation models, such as the phrase-based translationmodel that
we focus on in this paper (Koehn et al., 2003), define multiplederivations
for each translation, making the probability of a translation the sum over
all of its derivations. Unfortunately, finding the maximum probability trans-
lation is NP-hard for this model (Casacuberta and Higuera, 2000), making
approximations necessary. The most common of these approximations is the
Viterbi approximation, which can be computed in polynomialtime via dy-
namic programming (DP). While fast and effective for many problems, it has
two serious drawbacks for probabilistic inference. First,the error incurred by
the Viterbi maximum with respect to the true model maximum isunbounded.
Second, the DP solution requires substantial pruning and restricts the use of
non-local features. The latter problem persists even in thevariational approx-
imations of Li et al. (2009), who attempt to solve the former.

† This paper extends work presented in Arun et al. (2009).
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2 Arun et al

We address these problems with Monte Carlo techniques. Our solution
is a Gibbs sampler that draws samples from the posterior distribution of a
phrase-based translation model (Section 2). Experiments reveal that our sam-
pler effectively explores the posterior distribution (Section 3) and enables
maximum probability and minimum risk decoding (Section 4).We present
new results on three datasets showing that these techniquesgive competitive
results with respect to the standard phrase-based MT pipeline (Section 5).

2. A Gibbs Sampler for Phrase based Statistical Machine Translation

A phrase-based translation model (Koehn et al., 2003) segments input sen-
tence f of length m into phrases, which are sequences of adjacent words.
Each phrase is translated into a target phrase, producing anoutput sentencee
and an alignmenta representing the mapping from source to target positions.
Phrases are also reordered during translation.

We use a log-linear model on featuresh, parametrised by weightsθ.

P(e,a| f ;θ) =
exp[θ ·h(e,a, f )]

∑〈e′,a′〉exp[θ ·h(e′,a′, f )]
(1)

A parameterΛ limits the number of source language words that intervene
between adjacent target phrases. In our experiments,Λ = 6.

Gibbs Sampling We use Markov chain Monte Carlo (MCMC) sampling for
inference in this model. MCMC probabilistically generatessample deriva-
tions from the complete search space. The probability of generating each
sample is conditioned on the previous sample, forming a Markov chain. Even-
tually, this chain converges to the desired distribution. We use Gibbs sam-
pling (Geman and Geman, 1984) which obtains samples from thejoint dis-
tribution of a set of random variablesX = {X1, . . . ,Xn} by sampling each
variable at a time from its conditional distribution.

We require our Gibbs sampler to produce a sequence of samples, S N
1 =

{(ei ,ai)}
N
i=1, that are drawn from the distributionP(e,a| f ). We can use the

samples to estimate the expectation of a functionh(e,a, f ) as follows:

EP(a,e| f )[h] = lim
N→∞

1
N

N

∑
i=1

h(ai ,ei , f ) (2)

Takingh to be an indicator functionh= δ(a, â)δ(e, ê) provides an estimate of
P(â, ê| f ), and usingh = δ(e, ê) marginalises over all derivationsa′, yielding
an estimate ofP(ê| f ).
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c’est un résultat remarquable

it is some result remarkable

(a)

Initial

c’est un résultat remarquable

but some result remarkable

c’est un résultat remarquable

but some result remarkable

(b)

Retrans

c’est un résultat remarquable

it is a result remarkable

c’est un résultat remarquable

it is a result remarkable

(c)

Merge

c’est un résultat remarquable

it is a remarkable result

c’est un résultat remarquable

it is a remarkable result

(d)

Reorder

Figure 1. Example evolution of an initial hypothesis via applicationof several operators.
Variables that stay constant during each sampling step are indicated by shading.

2.1. SAMPLER DESCRIPTION

The sampler consists of simple operators that when concatenated enable it to
efficiently explore the distribution. Each operator proposes a small change to
the existing translation; the likelihood of accepting the change is proportional
to its conditional probability with respect to the unchanged remainder of the
translation. Given an initial sample, an iteration of the sampler consists of
applying each operator at each possible point in the sentence. A new sample
is then collected.

Our sampler consists of three operators. RETRANSvaries the translation of
a single source phrase. Segmentation, alignment, and all other target phrases
are held constant. MERGE-SPLIT varies the source segmentation at a single
word boundary. If the boundary is a split point in the currenthypothesis,
the adjoining phrases can be merged, provided that the corresponding target
phrases are adjacent and the phrase table contains a translation of the merged
phrase. If the boundary is not a split point, the covering phrase may be split,
provided that the phrase table contains a translation of both new phrases.
Remaining segmentation points, phrase alignment and target phrases are held
constant. REORDERvaries the target phrase order for a pair of source phrases,
provided that the new alignment does not violate reorderinglimit Λ. Segmen-
tation, phrase translations, and all other alignments are held constant. Figure 1
illustrates sampling using the operators in our model.

The log-linear model of Equation 1 is effectively defined over the features
of the phrase-pairs and alignments involved in the translation. While the RE-
TRANS and REORDERoperators keep the number of phrase-pairs/alignments
used in a translation constant, the MERGE-SPLIT operator can vary this num-
ber. However, Gibbs sampling is suitable only for a distribution on a fixed
number of variables. If the dimensionality is variable, then we must use alter-
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4 Arun et al

nate methods such as reversible-jump Monte Carlo (Green, 1995). To show
that we are actually computing a distribution on a fixed number of variables,
we will use an alternate representation. We must first formally define some
variables.

• Let i and j be inter-word source indices where0≤ i ≤ j ≤ m.
• Let [i, j] denote a source span. The left frontier of the span denotes

positioni and its right frontier refers to positionj.
• A source span isactive if [i, j] is a current segmentation in source sen-

tence f and isinactiveotherwise.
• Let fi j be the source phrase spanningi to j in sentencef .
• Let E represent a target side phrase andE the set of all target side

phrases.
• Then,T[i, j,E] is an indicator variable defined as follows.

T[i, j,E] =

{

1 if fi j translates to E in the translation sequencef → (e,a)
0 otherwise

In other words,T[i, j,E] denotes a phrase-pair withfi j as its source and E
as its target.

• Let T consist of allT[i, j,E] variables.
• Let S[ j,i] be an indicator variable defined as follows.

S[ j,i] =







1 if a span with right frontierj is translated immediately before
a span with left frontieri in the translationf → (e,d)

0 otherwise

• Let Sconsist of allS[ j,i] variables.

The T[i, j,E] variables represent phrase pairs involved in a translationand
theS[ j,i] variables capture the alignment sequence of these phrase pairs. We
denote an indicator variable with value equal to 1 asactive and inactive
otherwise.

We cannot freely assign any set of values to our variables. There are sev-
eral constraints. Firstly, there can only be one active phrase-pair variable per
active source span.

∑
E∈E

T[i, j,E] = 1, ∀i, j : [i, j] is an active source span (3)

Second, only one alignment variable may be active for the right frontier of
a span; likewise for the left frontier.

∑
i′

S[ j,i′] = 1, ∀ j : right frontier of an active source span (4)
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Figure 2. The left hand side diagram shows a monotone translation. Figure on the right shows
a translation with source side reordering. Source phrases are annotated with their spans. Each
translation step is annotated with its associated active phrase-pair and alignment variables.
For example, translating source words spanning[i, j ] to target phraseE is captured by the
phrase-pair variableT[i, j,E] and the alignment variableS[Xe,i], whereXe is the end position of
the source span of the target phrase translated immediatelybeforeE.

∑
j ′

S[ j ′,i] = 1, ∀i : left frontier of an active source span (5)

Given valid configurations ofT and S, we can easily reconstruct(e,a).
Figure 2 gives an example of two translation hypotheses annotated with active
phrase-pair and alignment variables.

Featuresh(e,a, f ) in Equation 1 can be decomposed into simpler functions
depending on mostly local information. Assume a phrase-based model with
4 such features:

1. A translation model feature with weightθT and scorehT(E, fi j ).

2. A word penalty feature with weightθW and scorehW(E).

3. A linear distortion feature with weightθD and scorehD( j, i).

4. A language model (LM) feature with weightθL. The LM contribution
of phrase-pairT[i, j,E], given the alignmentsS in the translation, is rep-

resented as the triplehL(E,e[S,i, j]
− ,e[S,i, j]

+ ) wheree[S,i, j]
− encodes the LM

pre-context ofT[i, j,E] ande[S,i, j]
+ its LM post-context.

The model in Equation 1 can now be factorised as:

P(e,a| f ;θ) = P(T,S| f ;θ)

∝ exp[θ ·h(e,a, f )]

= exp θT ∑
T[i, j,E]∈T

[

T[i, j,E]hT(E, fi j )
]

·exp θW ∑
T[i, j,E]∈T

[

T[i, j,E]hW(E)
]

·

exp θD ∑
S[ j,i]∈S

[

S[ j,i]hD( j, i)
]

·

exp θL ∑
T[i, j,E]∈T

[

T[i, j,E]hL(E,e[S,i, j]
− ,e[S,i, j]

+ )
]

(6)
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c'est un resultat remarquable

remarkable resultsome

it is

but

T [0,1, E
1
]
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3
]
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Figure 3. Example of a RETRANSstep for blockT[0,1] = {T[0,1,E1],T[0,1,E3]} whereE1 = “but"
and E3 = “it is". The variablesT[0,1,E1] and T[0,1,E3] correspond to the phrase-pair〈“c’est",
“but"〉 and〈“c’est", “it is" 〉 respectively. Source phrases are annotated with their spans. The
shaded box covers all variables that stay constant during the sampling step. All alignment
variables stay fixed.

Since the model is defined over fixed-lengthT andS, we can apply Gibbs
sampling to it. In basic Gibbs sampling we would deterministically scan
the variables left-to-right, resampling each in turn. However, due to the de-
terministic constraints between variables, we use ablocked samplingstrat-
egy whereby mutually constrained variables are sampled together. To do this
we define blocks of variables that allow us to vary their assignments while
respecting the constraints in Equations 3, 4 and 5 respectively:

• Let T[i, j] be the set of all phrase-pair variables spanning[i, j].
• Let S[ j,−] = {S[ j ′,i′]| j

′ = j} be the set of all alignment variables such that
j is the right frontier of a source phrase translated immediately before
another phrase.

• Let S[−,i] = {S[ j ′,i′]|i
′ = i} be the set of all alignment variables such thati

is the left frontier of a source phrase translated immediately after another
phrase.

We are now in a position to formally describe the operators.

3. Sampler Operators

3.1. RETRANS

Given a source span[i, j], RETRANS chooses a new target phrase from the
blockT[i, j]. Assuming we want to sample fromT[I ,J] = {T[I ,J,E1],T[I ,J,E2] · · ·T[I ,J,En]}.
The conditional probability of samplingT[I ,J,Ee] (1≤ e≤ n) is given by:

P(T[I ,J,Ee] | T[I\,J\],S) =
P(T[I ,J,Ee],T[I\,J\],S)

∑n
i=1 P(T[I ,J,Ei ],T[I\,J\],S)
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whereT[i\, j\] =
[

T[i′, j ′,E]| i′ 6= i and j ′ 6= j
]

is a vector consisting of phrase-
pair variables that do not span[i, j].

This implies that we would compute the score of entire translations, which
is clearly expensive. However, we can factorise the joint distribution (Equa-
tion 6) as a product of variables resampled by RETRANS (T[I ,J,Ee]) and con-
stant variables. The constant terms cancel so that the conditionals reduce to
the form:

P(T[I ,J,Ee] | T[I\,J\],S)=
exp

[

θThT(Ee, fIJ)+ θLhL(Ee,e
[S,I ,J]
− ,e[S,I ,J]

+ )+ θWhW(Ee)
]

∑n
i=1exp

[

θThT(Ei , fIJ)+ θLhL(Ei,e
[S,I ,J]
− ,e[S,I ,J]

+ )+ θWhW(Ei)
]

(7)
RETRANS proposals are thus proportional to the scores of the phrasesin the
block, which can be computed efficiently.

Example Figure 3 shows an example of the RETRANS operator. We want to
sample fromT[0,1] = {T[0,1,E1],T[0,1,E3]} where f0,1 = “c’est” ,E1 = “but" and
E3 = “ it is". Denote the start of sentence marker with〈s〉 and set all feature
weights to 1.
Then,

P(T[0,1,E1] | T[I\,J\],S) =
exp[hT(“but” , “c’est”) + hL(“but” ,〈s〉, “some”)+ hW(“but” )]

Z

P(T[0,1,E3] | T[I\,J\],S) =
exp[hT(“it is” , “c’est”)+ hL(“it is” ,〈s〉, “some”)+ hW(“it is”) ]

Z
whereZ = exp[hT(“but” , “c’est”) + hL(“but” ,〈s〉, “some”)+ hW(“but” )]

+ exp[hT(“it is” , “c’est”)+ hL(“it is” ,〈s〉, “some”)+ hW(“it is”) ]

RETRANS then resamples a target phraseE from this conditional distribution.

3.2. REORDER

This operator takes a pair of source spans[i, j] and[k, l ] and samples new val-
ues for the alignment variables from the blocksS[−,i], S[−,k], S[ j,−] andS[l ,−],
such that reordering limit constraints are respected. There are two possible
outcomes to each REORDER operation: maintain the current alignments or
swap the alignments.

Assume current active alignmentsS[x1,i], S[ j,x2], S[x3,k], andS[l ,x4] and pro-
posed swapped alignmentsS[x3,i],S[ j,x4],S[x1,k] andS[l ,x2]. The required condi-
tional probabilities are:

P(S[x1,i],S[ j,x2],S[x3,k],S[l ,x4] | S\,T) = (P(S[x1,i],S[ j,x2],S[x3,k],S[l ,x4],S\,T))/Z

P(S[x3,i],S[ j,x4],S[x1,k],S[l ,x2] | S\,T) = (P(S[x3,i],S[ j,x4],S[x1,k],S[l ,x2],S\,T))/Z
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c'est un

ait is
result remarkable

result remarquable

remarkable result

0 1 1 2 2 3 3 4

S[2,2]
S[3,3]

S[2,3] S[4,2]

Figure 4. Example of a REORDERstep for source spans [2,3] and [3,4]. The operator consid-
ers a monotone alignment (activatingS[2,2] andS[3,3]) and a reordered alignment (activating
S[2,3] and S[4,2]). Source phrases are annotated with their spans. Shaded boxes cover all
variables that stay constant during the sampling step. All phrase-pair variables stay fixed.

where

S\ = {S[ j ′,i′]|( j ′, i′)�∈{(x1, i),(x3, i),( j,x2),( j,x4),(x3,k),(x1,k),(l ,x4),(l ,x2)} and

Z = P(S[x1,i],S[ j,x2],S[x3,k],S[l ,x4],S\,T)+P(S[x3,i],S[ j,x4],S[x1,k],S[l ,x2],S\,T)

As with RETRANS, we can factor out constant terms. These are word
penalty and translation model scores for all phrase pairs and distortion and
language model scores for all alignment blocks that are heldconstant. For
each of the two alignment possibilities, the conditional probabilities reduce
to calculating 4 distortion scores and 2 language model scores. Note however
that if the alignments are adjacent on both source and targetside and trans-
lated monotonically with respect to each other, then only 3 distortion scores
need to be computed.

Example We illustrate this operator using the example in Figure 4 in which
the sampler considers reordering the alignments at source spans[2,3] and
[3,4]. There are 2 possible outcomes to each reorder operation : (a) maintain
the current alignment or (b) swap the alignment (since doingso does not
violate reordering constraints).

The blocks being sampled from areS[−,2], S[−,3], S[3,−] and S[4,−]. The
monotone alignment is represented byS[2,2], S[3,3] (duplicated as the phrases
are adjacent on the target side) andS[4,〈\s〉] where〈\s〉 denotes the end of
sentence marker . By definitionS4,〈\s〉 has a score of 0 so we eliminate the
term from our calculations. Also, we remove the duplicate alignment variable
leaving us withS[2,2] andS[3,3]
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The swapped alignment is represented byS[4,2], S[2,3], S[3,〈\s〉] andS[4,2].
Removing the duplicate variable and the variable involving〈\s〉 leaves us
with S[4,2] andS[2,3].

Assuming

S\ = {S[ j ′,i′]|
[

j ′, i′
]

�∈{[2,2] , [2,3] , [3,3] , [4,2]}}

The conditional probabilities for sampling are:

P(S[2,2],S[3,3]|S\,T) =
P(S[2,2],S[3,3],S\,T)

P(S[2,2],S[3,3],S\,T)+P(S[4,2],S[2,3],S\,T)

=
exp[hD(2,2)+ hD(3,3)+ hL(“result remarkable", “a",〈\s〉)]

Z

P(S[4,2],S[2,3]|S\,T) =
P(S[4,2],S[2,3],S\,T)

P(S[2,2],S[3,3],S\,T)+P(S[4,2],S[2,3],S\,T)

=
exp[hD(4,2)+ hD(2,3)+ hL(“remarkable result", “a",〈\s〉)]

Z
whereZ = (exp[hD(2,2)+ hD(3,3)+ hL(“result remarkable", “a",〈\s〉)])

+ (exp[hD(4,2)+ hD(2,3)+ hL(“remarkable result", “a",〈\s〉)])

3.3. MERGE-SPLIT

The first 2 operators considered so far keep the number of source side seg-
ments and therefore the number of active phrase-pairs/alignments in the model
constant. The MERGE-SPLIT operator, on the other hand, looks to increase
this number (by performing a split operation) or decrease this number (by
merging) or keep it constant.

MERGE: Given a positionj such that[i, j] and [ j,k] are active spans, the
MERGE operator samples from all the possible ways of translating the span
[i,k], either by maintaining the current segmentations or by merging the seg-
mentations in to one span. Reordering is not allowed during this sampling
operation.

The operator first considers all the possibilities of translating [i,k] using
the variables in the blocksT[i, j] andT[ j,k]. Additionally, if existing spans[i, j]
and [ j,k] are currently being translated monotonically with respectto each
other and if their translations are adjacent on the target side, i.e.S[ j, j] = 1,
then the operator also considers variables from the blockT[i,k]. The operator
then samples a new configuration for the variables.

If the operator chooses to merge the segmentations, it has to:

• activate the new segmentation[i,k] by activating one variable from the
T[i,k] block.
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Figure 5. Example of a MERGE involving source spans [0,1], [0,2] and [1,2]. The operator
considers translating the source span [0,2] using one phrase-pair or by maintaining the current
segmentations. Here,E1 = “but", E2 = “a", E3 = “it is", E4 = “some" andE5 = “it is a". Merging
span [0,2] by activatingT[0,2,E5] requires setting off the alignment variableS[1,1]. The shaded
box covers variables that stay constant during the samplingstep.

• inactivate the segmentations[i, j] and[ j,k] by turning off all variables in
T[i, j] andT[ j,k] and by settingS[ j, j] to 0.

The case where the operator chooses to maintain the current segmentations
is equivalent to performing the RETRANS operator on each of the blocksT[i, j]
andT[ j,k].

Figure 5 illustrates theMERGEoperator. The span [0,2] can be either trans-
lated by sampling from the blockT[0,2] = {T[0,2,E5]} or by maintaining the
current segmentations and sampling from blocksT[0,1] = {T[0,1,E1],T[0,1,E3]}
andT[1,2] = {T[1,2,E2],T[1,2,E4]}. In the latter case, the operator considers the set
of variables formed by a cartesian product over the two blocks. In total, the
operator considers 5 possible phrase-pair variable assignment configurations.

SPLIT: The split operator is the converse of theMERGE operator. Given
a position j ( i < j < k) such that the blockT[i,k] has an active phrase-pair
variable, the split operator samples from the phrase-pair blocks T[i, j], T[ j,k]
andT[i,k]. Reordering is not allowed during this sampling operation.

If the operator decides to split the current segmentation, then it has to:

• activate one variable from each of theT[i, j] andT[ j,k] blocks and turn off
all variables in theT[i,k] block.

• set the value of the alignment variableS[ j, j] to 1.

In case the operator decides against splitting, it samples anew phrase-pair
assignment from the blockT[i,k] (this is equivalent to a RETRANS operation).
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Monte Carlo techniques for phrase-based translation 11

The MERGE-SPLIT operator can therefore be seen as trying to translate
a source span[i,k] either with one phrase-pair or with two source adjacent
phrase-pairs while leaving distortions constant. Conditional probabilities are
derived in a manner similar to those for RETRANS.

3.4. ALGORITHMIC COMPLEXITY

Since both the RETRANS and MERGE-SPLIT operators are applied by iterat-
ing over source side word positions, their complexity is linear inn, the size
of the input. The REORDER operator iterates over the positions in the input
and for the source phrase found at that position considers swapping its target
phrase with that of every other source phrase,provided that the reordering
limit is not violated. This means that it can only consider swaps within a
fixed-length window, so complexity is linear in sentence length.

The complexity of the RETRANS and MERGE-SPLIT operators also de-
pends on the number of target phrases that have to be considered for each
source phrase. Typically, only thep most probable such target phrases are
retained in the model. The complexity of the RETRANS operator is therefore
O(np) and, since it operates over pairs of source spans, MERGE-SPLIT’s
complexity isO(np2) . In the experiments in this work, we setp to 20.

3.5. EXPERIMENTAL VERIFICATION

To verify that our sampler was behaving as expected, we computed the KL
divergence between its inferred distribution ˆq(e| f ) and the true distribution
over a single sentence (Figure 6). We computed the true posterior distri-
bution p(e| f ) under an Arabic-English phrase-based translation model with
parameters trained to maximise expectedBLEU (Section 5), summing out the
derivations for identical translations and computing the partition termZ( f ).
As the number of iterations increases, the KL divergence between the distri-
butions approaches zero, indicating that the sampler is able to approximate
the true distribution effectively.

4. Decoding

Decoding requires a search for the translatione∗ that maximises or min-
imises some criterion given a source sentencef . We consider three com-
mon approaches to decoding, maximum translation (MaxTrans), maximum
derivation (MaxDeriv), and minimum Bayes risk decoding (MBR):

e∗ =







argmax(e,a) p(e,a| f ) (MaxDeriv)
argmaxe p(e| f ) (MaxTrans)
argmine∑e′ ℓe′(e)p(e′| f ) (MBR)

(8)
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Figure 6. The KL divergence of the true posterior distribution and thedistribution esti-
mated by the Gibbs sampler at different numbers of iterations for the Arabic source sentence
r}ys wzrA’ mAlyzyA yzwr Alflbyn(in English, The prime minister of Malaysia visits the
Philippines).

As noted in section 2, the Gibbs sampler can be used to providean estimate
of the probability distributionP(a,e| f ) and therefore determine the maximum
of this distribution, in other words the most likely derivation. Furthermore, we
can marginalise over alignments to estimateP(e| f ) and obtain the most likely
translation. Our sampler can therefore be used as a decoder,either running
in MaxTrans or MaxDeriv mode. Using it in this way makes max-translation
decoding tractable, and so will help determine whether max-translation offers
any benefit over the usual max-derivation. It also allows us to verify that it is
producing valid samples from the desired distribution.

Additionally the sampler can be used for MBR decoding, a consensus
decoding algorithm introduced by (Kumar and Byrne, 2004). In their work,
as an approximation of the model probability distribution,the expected loss
of the decoder is calculated by summing over ann-best list. With the Gibbs
sampler, however, we should be able to obtain a much more accurate view
of the model probability distribution. In the MBR decoder,ℓe′(e) is any real-
valued loss (error) function that computes the error of one hypothesise with
respect to some referencee′. Our loss is a sentence-level approximation of
(1−BLEU) whereby the BLEU n-gram precision counts are smoothed by
adding 0.01 for n> 1.

Experimental setup We conducted experiments with the French-English and
German-English corpora from the WMT09 shared translation task (Callison-
Burch et al., 2009), and 300k parallel Arabic-English sentences from the
NIST MT evaluation training data. The Arabic-English training data consists
of the eTIRR corpus (LDC2004E72), the Arabic news corpus (LDC2004T17),
the Ummah corpus (LDC2004T18), and the sentences with confidencec >
0.995 in the ISI automatically extracted web parallel corpus (LDC2006T02).
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For all language pairs, we constructed a phrase-based translation model as
described in Koehn et al. (2003), limiting the phrase lengthto 5. The target
side of the parallel corpus was used to train a 3-gram language model. For the
German and French systems, theDEV2006 set was used for model tuning and
the TEST2007 (in-domain) andNEWS-DEV2009B (out-of-domain) sets for
testing. For the Arabic system, theMT02 set (10 reference translations) was
used for tuning andMT03 (4 reference translations) was used for evaluation.
To reduce the size of the phrase table, we used the association-score technique
suggested by Johnson et al. (2007a). Translation quality isreported using
case-insensitiveBLEU (Papineni et al., 2002).

We used Moses (Koehn and Hoang, 2007) as our baseline phrase-based
beam-search decoder. Both the sampler and Moses used the same feature sets:
forward and backward phrase translation log-probabilities, forward and back-
ward lexical translation log-probabilities, phrase penalty, language model log-
probability, word penalty and a linear distortion penalty.

For the experiments reported here, we used feature weights trained with
minimum error rate training (MERT) (Och, 2003). Since MERT ignores the
denominator in Equation 1, it is invariant with respect to the scale of the
weight vectorθ – the Moses implementation simply normalises the weight
vector it finds by itsℓ1-norm. However, when we use these weights in a true
probabilistic model, the scaling factor affects the behaviour of the model since
it determines how peaked or flat the distribution is. If the scaling factor is
too small, then the distribution is too flat and the sampler spends too much
time exploring unimportant probability regions. If it is too large, then the
distribution is too peaked and the sampler may concentrate on a very narrow
probability region. We optimised the scaling factor with respect to resulting
BLEU scores when decoding a 200-sentence portion of the tuning set, finding
that a coefficient of 10 worked best for fr-en and a coefficientof 6 for de-en.

The first experiment shows the effect of different initialisations and num-
bers of sampler iterations on max-derivation decoding performance of the
sampler. We used Moses to generate the starting hypothesis,either in full DP
max-derivation mode, or alternatively with restrictions on the features and
reordering, or with zero weights to simulate a random initialisation, and the
number of iterations varied from 100 to 200,000, with a 100 iteration burn-in
in each case. For each of the test sets, we track the model score of the most
frequent derivation for each input sentence and report the mean across all the
sentences. Figure 7 shows the variation of the mean model score with sampler
iteration, for the different starting points, and for both language pairs.

We see that the initialization had little effect on the modelscore of the
best derivation, except with low numbers of iterations. This indicates that
the sampler has good mobility around the distribution. We found that around
50,000 sampling iterations were required for fr-en and 100,000 for de-en for
the sampler to give equivalent model scores to Moses, even when the model is
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Figure 7. Mean maximum model score, as a function of iteration number and starting point.
The starting point can either be the full max-derivation translation (full), the monotone trans-
lation (mono), the monotone translation with no language model (nolm) or the monotone
translation with all weights set to zero (zero).

initialized with Moses run in full DP max-derivation mode. This suggests that
the mobility of the sampler is such that, initially, it can wander off towards
other modes of the distribution.

We are mostly interested in using the sampler to perform, at test time,
more accurate MBR decoding and, at training time, better minimum risk
training. Both objective functions involve computing expectations over the
distribution, therefore, the ability of the sampler to explore the distribution is
a desirable property. If the intent is to use the sampler for max-derivation
decoding, then methods such assimulated annealingcan be employed to
accelerate convergence towards the mode of the distribution.

Speed Running the sampler for the 100,000 iterations needed to match Moses
mean model scores took on average 1670 seconds per sentence on French-
English and 1552 seconds per sentence on German-English. These times
are prohibitively high. However, we found during the subsequent decoding
experiments in this paper that running the sampler for as fewas 10000 itera-
tions gave comparable BLEU scores and that for training 4000samples were
enough to provide a good estimate of the gradient of the objective function.

Nevertheless, we do intend in future work to look at ways of speeding up
the sampler. Currently, we use asequential scansampling procedure whereby
a left to right scan of the input is made, applying each operator at every
possible source position. To reduce correlations between successive samples,
a sample is only collected at the end of the scan. This procedure is wasteful
since it discards a large number of intermediate samples.

A possible way of speeding up sampling is to use arandom scanprocedure
in which we first sample an operator and a source position to sample at before
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Table I. Comparison of theBLEU score of the Moses decoder
with the sampler running in differing decoding modes. The
test sets areTEST2007 (in) andNEWS-DEV2009B (out)

fr-en de-en
in out in out

Moses Max Derivation 32.7 19.1 27.4 15.9
Gibbs Max Derivation 32.6 19.1 27.0 15.5
Gibbs Max Translation 32.6 19.1 27.4 16.0
Gibbs MBR 32.6 19.2 27.3 16.0

generating the sample. Since the operator and source position are chosen at
random, the correlation between successive samples is inherently reduced. To
further minimize correlation, we can choose to retain only everys-th sample.
By settings to a value lower than the average lag between sample collection
in sequential scanning, sampling can be speeded up by a linear factor.

Decoding algorithms In order to compare max-translation, max-derivation
and MBR decoding with the Gibbs sampler and the Moses baseline, we ran
experiments on both European language pairs using both in- and out-of-
domain test sets. The sampler was initialized with the output of Moses with
the feature weights set to zero and restricted to monotone, and run for 10,000
iterations with a 100 iteration burn-in. The scale factors were set to the same
values as in the previous experiment. Relative translationquality (measured
according toBLEU) is shown in Table I.

These results show very little difference between the decoding methods,
indicating that the Gibbs sampling decoder can perform as well as a standard
DP based max-derivation decoder with these models, and thatthere is no
gain from doing max-translation or MBR decoding. However itshould be
noted that the model used for these experiments was optimised by MERT,
for max-derivation decoding, and so the experiments do not rule out the
possibility that max-translation and MBR decoding will offer an advantage
on an appropriately optimised model.

5. Minimum risk training

In the previous section, we described how our sampler can be used to search
for the best translation under a variety of decoding criteria (max derivation,
translation, and minimum risk). However, there appeared tobe little benefit
to marginalizing over the latent derivations. This is almost certainly a side
effect of the MERT training approach that was used to construct the models
so as to maximise the performance of the model on its single best derivation,
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without regard to the shape of the rest of the distribution (Blunsom et al.,
2008). In this section we describe a further application of the Gibbs sampler:
to dounbiasedminimum risk training.

While there have been at least two previous attempts to do minimum
risk training for MT, both approaches relied on biasedk-best approximations
(Smith and Eisner, 2006; Zens et al., 2007). Since we sample from the whole
distribution, we will have a more accurate risk assessment.

The risk, or expected loss, of a probabilistic translation model on a corpus
D , defined with respect to a particular loss functionℓê(e), where ê is the
reference translation ande is a hypothesis translation, is given by:

L = ∑
〈ê, f 〉∈D

∑
e

p(e| f )ℓê(e) (9)

This value can be approximated using equation (2). In this section, we are
concerned with finding the parametersθ that minimise (9). Fortunately, with
the log-linear parameterization ofp(e| f ), L is differentiable with respect to
θ:

∂L
∂θk

= ∑
〈ê, f 〉∈D

∑
e

p(e| f )ℓê(e)
(

hk−Ep(e| f )[hk]
)

(10)

We have now shown how to compute our objective (9), the expected loss,
and a gradient with respect to the model parameters we want tooptimise,
(10), so we can use any standard first-order optimization technique. Since
the sampler introduces stochasticity into the gradient andobjective, we use
stochastic gradient descent methods which are more robust to noise than
more sophisticated quasi-Newton methods like L-BFGS (Liu and Nocedal,
1989). For the experiments below, we updated the learning rate after each step
proportionally to difference in successive gradients (Schraudolph, 1999).

For the experiments reported in this section, we used samplesizes of
4000 and estimated the gradient on sets of 120 sentences drawn randomly
(with replacement) from the development corpus. For a loss function, we use
the same sentence level BLEU approximation as used for MBR decoding
(Section 4). By examining performance on held-out data, we find the model
converges typically in fewer than 50 iterations.

5.1. TRAINING EXPERIMENTS

Table II compares the performance of translation systems tuned with MERT
(maximizing corpus BLEU) with systems tuned to maximise expected sentence-
level BLEU. For Arabic to English, we trained both systems with MT02 and
tested on MT05, using MT03 as held-out set for the Min Risk training. For
German and French to English, we trained on DEV 2006 and evaluated per-
formance on the first 1000 sentences of WMT08 using WMT07 as held-out
set. For all experiments, we used the same eight features as in Section 4. For
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Table II. Decoding with minimum risk trained systems, compared with decoding with MERT–
trained systems on Arabic to English MT05, German to EnglishWMT 08 and French to English
WMT 08 data. BLEU brevity penalties are indicated in parentheses. U Moses refers to Moses
with phrase tables of max phrase lengths 7 and with no association score filtering. All other
phrase tables have a max phrase length of 5 and are pruned using association score filtering.
Best results for each language pair are indicated in bold.

Training Decoder AR-EN FR-EN DE-EN
MERT U Moses Max Derivation 48.3 (0.995) 32.9 (1.000) 27.9 (0.998)

U Moses MBR 48.4 (0.996) 32.8 (1.040) 27.8 (1.000)
MERT Moses Max Derivation 44.3 (0.973) 33.2 (0.996) 27.8 (1.000)

Moses MBR 44.4 (0.989) 33.4 (1.000) 27.7 (1.000)
Gibbs Max Derivation 43.4 (0.979) 32.4 (0.976) 26.7 (0.937)

MinRisk Gibbs MaxTrans 43.4 (0.981) 32.7 (0.979) 26.9 (0.937)
Gibbs MBR 43.6 (0.981) 32.8 (0.979) 27.0 (0.941)

Moses MBR experiments, we used n-best lists of 1000 distinctderivations
to compute the expected loss. For all Gibbs based decoding experiments, we
used 10000 samples. We also run experiments where we extracted phrase
tables using the Moses default setting of max phrase length 7(rather than 5
in our other experiments) and with no association-score pruning.

Table II confirms that on Europarl data, as shown in Johnson etal. (2007a),
translating with pruned phrase tables gives similar and sometimes better trans-
lation results than with unpruned phrased tables. However,in Arabic-English,
where the training set consisting of only 300K sentence pairs is small to begin
with, association score pruning hurts performance substantially (-4 BLEU).
For the minimum risk trained systems, we note that the positive effect of
marginalizing over derivations as well as of using minimum risk decoding.
Compared to MERT tuned systems, the minimum risk ones produce system-
atically shorter output, thus getting heavily hit by BLEU’sbrevity penalty.
We believe that this is a result of optimizing sentence levelBLEU rather than
corpus BLEU as done by MERT. As future work, we intend to look at ways
of directly optimizing corpus BLEU.

6. Sampler Defect

As we have shown, when the sampler is trained to optimise an appropriate
objective function, translation performance is comparable to state of the art
phrase-based systems. This competitive performance is achieved in spite of
a defect of the sampler that we discovered subsequent to our previous work
(Arun et al., 2009). Recall that the operators are designed to explore proba-
bility distribution in its entirety. However, suppose thata three-word phrase
has a translation in our phrase table, neither of the two-word source phrases
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contained within it have translations, and all single wordshave translations.
There is no sequence of our operators that can move between the three-word
source segment and the single-word segments. Situations such as this can
arise from phrase extraction heuristics and possible filtering of the phrase-
table prior to decoding. A scan of our phrase tables shows that a few such
cases exist. In future work, we intend to address this problem.

7. Related Work

Our sampler is similar to the decoder of (Germann et al., 2001; Eisner and
Tromble, 2006; Langlais et al., 2007), which start with an approximate solu-
tion and then incrementally improve it via operators such asRETRANS and
MERGE-SPLIT. It is also similar to the estimator of Marcu and Wong (2002),
who employ the same operators to search the alignment space from a heuristic
initialisation. These previous efforts employed their operators in a greedy
hill-climbing search. In contrast, our operators are applied probabilistically,
making them theoretically well-founded for a variety of inference problems.

Our use of Gibbs sampling follows from its increasing use in Bayesian
inference problems in NLP (Finkel et al., 2006). Most closely related is the
work of DeNero et al. (2008), who derive a Gibbs sampler for phrase-based
alignment, using it to infer phrase translation probabilities.

To our knowledge, we are the first to apply Monte Carlo methodsto max-
imum translation and minimum risk translation. Approachesto the former
(Blunsom et al., 2008) rely on dynamic programming techniques which do
not scale well without heuristic approximations, while approaches to the latter
(Smith and Eisner, 2006; Zens et al., 2007) use biasedk-best approximations.

8. Conclusion

Although the training approach presented in Section 5 has a number of the-
oretical advantages, its performance is in general inferior when compared
with a system trained to optimise corpus level BLEU. In future work, we will
explore possibilities for directly optimising BLEU.

Using sampling for model training has two further advantages that we
intend to explore. First, although MERT performs quite wellon models with
small numbers of features (such as those we considered in this paper), in
general the algorithm severely limits the number of features that can be used
since it does not use gradient-based updates during optimization, instead up-
dating one feature at a time. Our training method (Section 5)does not have
this limitation, so it can use many more features.

Finally, for the DP-based max-derivation approximation tobe computa-
tionally efficient, the features characterizing the steps in the derivation must
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be either computable independently of each other or with only limited local
context (as in the case of the language model or distortion costs). This has
led to a situation where entire classes of potentially useful features are not
considered because they would be impractical to integrate into a DP based
translation system. With the sampler this restriction is mitigated: any function
of h(e, f ,a) may participate in the translation model subject only to itsown
computability.
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