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Abstract. Recent advances in statistical machine translation haseé approximate beam
search for NP-complete inference within probabilistimsiation models. We present an al-
ternative approach of sampling from the posterior distidsudefined by a translation model.
We define a novel Gibbs sampler for sampling translationsrgavsource sentence and show
that it effectively explores this posterior distributidn.doing so we overcome the limitations
of heuristic beam search and obtain theoretically soungtisok to inference problems such
as finding the maximum probability translation and minimusk training and decoding.
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1. Introduction

Statistical machine translation (SMT) poses the probleiverga foreign
sentencef, find the translatiore* that maximises the posterior probability
p(e/f). Translation models, such as the phrase-based transtatide! that
we focus on in this paper (Koehn et al., 2003), define multgeevations
for each translation, making the probability of a translkatthe sum over
all of its derivations. Unfortunately, finding the maximurmopability trans-
lation is NP-hard for this model (Casacuberta and Higue®@0P making
approximations necessary. The most common of these appatrns is the
Viterbi approximation, which can be computed in polynoniede via dy-
namic programming (DP). While fast and effective for mangippems, it has
two serious drawbacks for probabilistic inference. Fitst, error incurred by
the Viterbi maximum with respect to the true model maximumribounded.
Second, the DP solution requires substantial pruning astdats the use of
non-local features. The latter problem persists even indniational approx-
imations of Li et al. (2009), who attempt to solve the former.

T This paper extends work presented in Arun et al. (2009).
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2 Arun et al

We address these problems with Monte Carlo techniques. @utian
is a Gibbs sampler that draws samples from the posteriontgigbn of a
phrase-based translation model (Section 2). Experimewnésaf that our sam-
pler effectively explores the posterior distribution (8&e 3) and enables
maximum probability and minimum risk decoding (Section We present
new results on three datasets showing that these techriguesompetitive
results with respect to the standard phrase-based MT pi€dection 5).

2. A Gibbs Sampler for Phrase based Statistical Machine Trandation

A phrase-based translation model (Koehn et al., 2003) setgmeput sen-
tence f of lengthm into phrases, which are sequences of adjacent words.
Each phrase is translated into a target phrase, produciogtpnt sentence
and an alignmenrd representing the mapping from source to target positions.
Phrases are also reordered during translation.

We use a log-linear model on featutesparametrised by weights

expl[0-h(ea, f)]

P(ea
( 5 @, OXpB- (@@ T

f;0) =

(1)

A parameter\ limits the number of source language words that intervene
between adjacent target phrases. In our experimantse.

Gibbs Sampling We use Markov chain Monte Carlo (MCMC) sampling for
inference in this model. MCMC probabilistically generatssmple deriva-
tions from the complete search space. The probability okegeimg each
sample is conditioned on the previous sample, forming a Mackain. Even-
tually, this chain converges to the desired distributiore Wige Gibbs sam-
pling (Geman and Geman, 1984) which obtains samples fronjothedis-
tribution of a set of random variables = {Xy,..., Xy} by sampling each
variable at a time from its conditional distribution.

We require our Gibbs sampler to produce a sequence of sam@les
{(e,&)},, that are drawn from the distributioR(e, a| f). We can use the
samples to estimate the expectation of a functi@a, f) as follows:

.1 X
Ep(aefh] = im S _Zlh(ai,&, f) (2
i=

Takingh to be an indicator functioh = &(a, 4)(e, €) provides an estimate of
P(4,é|f), and usindh = d(e, &) marginalises over all derivatiors, yielding
an estimate oP(é|f).
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(a) c’est © un © résultat o remarquable
|

Initial it is some result remarkable

(b) c’est ® un ® résultat e remarquable
\

\ I
RETRANS 1,4 | some result remarkable

(c) c’est © un e résultat e remarquable
/ /

MERGE it is a result remarkable

(d) c’est ® un e résultat e remarquable

REORDER it is a remarkable result

Figure 1. Example evolution of an initial hypothesis via applicatiohseveral operators.
Variables that stay constant during each sampling stemdresited by shading.

2.1. SAMPLER DESCRIPTION

The sampler consists of simple operators that when coreig@enable it to
efficiently explore the distribution. Each operator praggma small change to
the existing translation; the likelihood of accepting thawge is proportional
to its conditional probability with respect to the unchashgemainder of the
translation. Given an initial sample, an iteration of thenpéer consists of
applying each operator at each possible point in the semté&nnew sample
is then collected.

Our sampler consists of three operatorsTRANSvaries the translation of
a single source phrase. Segmentation, alignment, anchalt target phrases
are held constant. FRGESPLIT varies the source segmentation at a single
word boundary. If the boundary is a split point in the currbgpothesis,
the adjoining phrases can be merged, provided that thespomeing target
phrases are adjacent and the phrase table contains atianskthe merged
phrase. If the boundary is not a split point, the coveringaprmay be spilit,
provided that the phrase table contains a translation di beiv phrases.
Remaining segmentation points, phrase alignment and talngases are held
constant. RORDERVvaries the target phrase order for a pair of source phrases,
provided that the new alignment does not violate reorddimij A. Segmen-
tation, phrase translations, and all other alignmentse@dedonstant. Figure 1
illustrates sampling using the operators in our model.

The log-linear model of Equation 1 is effectively defined obee features
of the phrase-pairs and alignments involved in the traiosiathile the Re-
TRANS and REORDERoOperators keep the number of phrase-pairs/alignments
used in a translation constant, theeRIGE-SPLIT operator can vary this num-
ber. However, Gibbs sampling is suitable only for a distidu on a fixed
number of variables. If the dimensionality is variable rnthee must use alter-
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4 Arun et al

nate methods such as reversible-jump Monte Carlo (Gredg)190 show
that we are actually computing a distribution on a fixed nundbeariables,
we will use an alternate representation. We must first fdgnaefine some
variables.

e Letiandj be inter-word source indices whergl < j <m.

e Let i, j] denote a source span. The left frontier of the span denotes
positioni and its right frontier refers to position

e A source span igctiveif [i, j] is a current segmentation in source sen-
tencef and isinactiveotherwise.

e Let fj; be the source phrase spannirtg j in sentencef.

e Let E represent a target side phrase andhe set of all target side
phrases.

e Then,Tj ;g is an indicator variable defined as follows.

T oo— 1 if f;; translates to E in the translation sequefice (e,a)
[..El =) 0 otherwise

In other words T;; ; ] denotes a phrase-pair wift) as its source and E
as its target.

e LetT consist of allTj; j g variables.

e LetS;; be anindicator variable defined as follows.

1 if a span with right frontiejj is translated immediately before
Sii = a span with left frontier in the translatiorf — (e,d)
0 otherwise

Let Sconsist of all§; ; variables.

The T j g variables represent phrase pairs involved in a translatiuh
the §; ;) variables capture the alignment sequence of these phrase \pe
denote an indicator variable with value equal to laa$ive and inactive
otherwise.

We cannot freely assign any set of values to our variablesreTare sev-
eral constraints. Firstly, there can only be one active sgair variable per
active source span

Z Tije = 1,Vi,j:[i,]] is an active source span (3)
Ecz

Second, only one alignment variable may be active for ths frgntier of
a span; likewise for the left frontier.

Z Sji1 = 1,V]:rightfrontier of an active source span (4)
I/
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Figure 2. The left hand side diagram shows a monotone translationr&ign the right shows
a translation with source side reordering. Source phrasearmotated with their spans. Each
translation step is annotated with its associated activagehpair and alignment variables.
For example, translating source words spanrjing to target phras& is captured by the
phrase-pair variabl&; j g and the alignment variab8y_ ;;, whereXe is the end position of
the source span of the target phrase translated immedizédyeE.

Z Sji) = 1,Vi:left frontier of an active source span (5)
J/

Given valid configurations of andS we can easily reconstru¢e, a).
Figure 2 gives an example of two translation hypothesestatetwith active
phrase-pair and alignment variables.

Featured(e a, f) in Equation 1 can be decomposed into simpler functions
depending on mostly local information. Assume a phrasedasodel with
4 such features:

1. Atranslation model feature with weight and scorér (E, fjj).

2. A word penalty feature with weigly and scoréh (E).

3. Alinear distortion feature with weiglfiy and scorép(j,i).

4. A language model (LM) feature with weighBt. The LM contribution
of phrase-paifTj; ; g}, given the alignments in the translation, is rep-
resented as the triple, (E,5") &3y wheree®" encodes the LM
pre-context ofTj ; g ande’®! its LM post-context.

The model in Equation 1 can now be factorised as:
P(e,alf;6) = P(T,§f:6)
O exp[0-h(ea, )]

= exp GT Z [T[i,j,E]hT(E> fij)] -expGW Z [T[i,j,E]hW(E)] .
Tijg €T Tije €T

expbp > [Sjiho(i,i)]-

Sji €S

expb. Y [T[i7j7E]hL(E,eESi,j]7e[+si.j})] (6)
Tijg el
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c'est un resultat remarquable
1 1 2 2 4

T
[0,1, E5]
but s \

7-

T, g,

:

v

( some ) remarkable result )
it is

Figure 3. Example of a RTRANsstep for blocKTjg 1) = {Tjo,1.£,]» Tjo,1,E, } WhereEy = “but”
andEg = ‘it is". The variablesTjg 1 g,; andTjg 1 g, correspond to the phrase-pdfc’est”,
“but") and (“c’est", “it is") respectively. Source phrases are annotated with theiissfjdme
shaded box covers all variables that stay constant duriagampling step. All alignment
variables stay fixed.

Since the model is defined over fixed-lengtlandS, we can apply Gibbs
sampling to it. In basic Gibbs sampling we would determioidly scan
the variables left-to-right, resampling each in turn. Heere due to the de-
terministic constraints between variables, we uddogked samplingtrat-
egy whereby mutually constrained variables are samplestheg To do this
we define blocks of variables that allow us to vary their assignts while
respecting the constraints in Equations 3, 4 and 5 reségctiv

e LetT;; be the set of all phrase-pair variables spaniing.

e LetS; ;={Sj i’ =]} be the setof all alignment variables such that
j is the right frontier of a source phrase translated immedidtefore
another phrase.

e LetS_j={Sjli' =i} be the set of all alignment variables such that
is the left frontier of a source phrase translated immeljiatiéer another
phrase.

We are now in a position to formally describe the operators.

3. Sampler Operators

3.1. RETRANS

Given a source spali, j|, RETRANS chooses a new target phrase from the
blockTj; ;. Assuming we want to sample from 5 = {Tj 5,1, Ti g, Tiaga }-
The conditional probability of samplingj ;g (1 < e <n) is given by:

P(TiaE T, S
PUTnaed inay, 9= St P(TMiae) TS
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Monte Carlo techniques for phrase-based translation 7

whereTj j\ = [Ty gl ' #iandj’ # j] is a vector consisting of phrase-
pair variables that do not spéinj].

This implies that we would compute the score of entire tratiehs, which
is clearly expensive. However, we can factorise the joistriiution (Equa-
tion 6) as a product of variables resampled yTRANS (T ;g,) and con-
stant variables. The constant terms cancel so that thetwmals reduce to
the form:

exp[eT hr(Ee, fi3) + LNy (Ee, €'Y &3 4 eWhW(Ee)}

YiLiexp [eThT(Eh fig) + eLhL(Ei,e[fl’J],e[fl’J]) + e\NhW(Ei)]
(7

RETRANS proposals are thus proportional to the scores of the phiaghe
block, which can be computed efficiently.

P(Tyaey | Ty, S =

Example Figure 3 shows an example of th&e RRANS operator. We want to
sample fromTjg 1) = {Tjo 1, To,1,E5 } Wherefoy = “c’est’,Ey = “but’ and
Es = “itis". Denote the start of sentence marker wigh and set all feature

weights to 1.
Then,
explht (“but”,“c’est”) + h, (“but”, {s),“some”) + hy (“but”
P(Torey | TroyS) = [ ( ( : (s ) + hw (*but”)]
explhr (“itis” ,“c’est”) + h  (“itis” , (s), “some”) + hy (“it is”)
P(To1ky | TS = i ) Z 9 ) ]
whereZ = exp[ht(“but”,“c’est”) + h (“but”, (s),“some”) + hy (“but”)]

+ explhr(“itis”,“c’est”) + h,(“itis”, (s),“some”) + hw(“it is”) ]

RETRANSthen resamples a target phr&&om this conditional distribution.

3.2. REORDER

This operator takes a pair of source spang and[k,|] and samples new val-
ues for the alignment variables from the blo&s;, S_ g, §j-; andS; _j,
such that reordering limit constraints are respected. &lhee two possible
outcomes to each BEORDER operation: maintain the current alignments or
swap the alignments.

Assume current active alignmerg, i, S x,), Sx; k. andS, x, and pro-
posed swapped alignmers, i, S x,]; Sx ki andS; x,;- The required condi-
tional probabilities are:

P(%Xl,i]v%j,&]’%ks,k]a%l.m] |S\7T) = (P(qxl.i]7%j,&]’%X’s.k]a%l.ﬂ]’s\v-r))/z
P(Siei» Sl Sixa. ks Sl | S\ T) = (P(Sig,ifs Sl Sixa k5 Site)s S\, T)) /2
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c'est un result remarquable
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Figure 4. Example of a RORDERStep for source spans [2,3] and [3,4]. The operator consid-
ers a monotone alignment (activatiﬁgﬁZ] and 8[373]) and a reordered alignment (activating
S23 and §y7)). Source phrases are annotated with their spans. Shaded lwoxer all
variables that stay constant during the sampling step. xtge-pair variables stay fixed.

where

S\ = {S[j’,i’]|(j/’i/)/€/{(xlvi)’(X37i)’(jvx2)v(j’x4)7(X37k)7(Xl’k)’(l’x4)v(|7X2)} and
Z = P(Sxil» Sl Sk Sty S\ T) + PSSl Soakd» S, S\ T)

As with RETRANS, we can factor out constant terms. These are word
penalty and translation model scores for all phrase paidsdistiortion and
language model scores for all alignment blocks that are betgtant. For
each of the two alignment possibilities, the conditionalbabilities reduce
to calculating 4 distortion scores and 2 language modekscdiote however
that if the alignments are adjacent on both source and taidetand trans-
lated monotonically with respect to each other, then onlysBdion scores
need to be computed.

Example We illustrate this operator using the example in Figure 4 cky
the sampler considers reordering the alignments at sopaes{, 3] and
[3,4]. There are 2 possible outcomes to each reorder operatigma(atain
the current alignment or (b) swap the alignment (since dsimgloes not
violate reordering constraints).

The blocks being sampled from a& 3, S_3, S3_; and S _). The
monotone alignment is represented®y,, S35 (duplicated as the phrases
are adjacent on the target side) &84l Where (\s) denotes the end of
sentence marker . By definitid®, ) has a score of 0 so we eliminate the
term from our calculations. Also, we remove the duplicatgrathent variable
leaving us withS; 5 andS3 3
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The swapped alignment is representedxys), Sz23, S3,(\s] and a2
Removing the duplicate variable and the variable involvig leaves us
with %4’2] and%2’3].

Assuming

S\ = {%J’I’H [J/all]/@/{[l 2] ) [27 3] ) [37 3] ) [47 2]}}

The conditional probabilities for sampling are:

P(S22,S33,S\,T)
P(S22,S33,S\,T) +P(S42:523,S\, T)
explhp(2,2) + hp(3,3) + hy (“result remarkable™a", (\s))]
4
P(S4,2,S23,S\,T)
P(S22:S33:S\,T) + P(S42:523.5\:T)
explhp(4,2) +hp(2,3) + h.(“remarkable result*a", (\s))]

Z
L(“result remarkable™a", (\s))])

(
(“remarkable result*a”, (\s))])

P(S22,S33IS\,T) =

P(S42,S23IS\,T) =

~—

whereZ = (exp[hp(2,2)+hp(3,3) +
2,3

h
+ (explhp(4,2)+hp(2,3)+h

L

3.3. MERGESPLIT

The first 2 operators considered so far keep the number otsa@ide seg-
ments and therefore the number of active phrase-painsfagts in the model
constant. The MRGESPLIT operator, on the other hand, looks to increase
this number (by performing a split operation) or decrease riamber (by
merging) or keep it constant.

MERGE Given a positionj such thatfi, j] and[j,k] are active spans, the
MERGE operator samples from all the possible ways of translatirgspan
[i,k], either by maintaining the current segmentations or by ngrthe seg-
mentations in to one span. Reordering is not allowed dutting gampling
operation.

The operator first considers all the possibilities of tratisg [i,k| using
the variables in the blockg; ;; andTj; . Additionally, if existing spang, j]
and|j,k] are currently being translated monotonically with resgectach
other and if their translations are adjacent on the targi, sie.§; j; = 1,
then the operator also considers variables from the blggk The operator
then samples a new configuration for the variables.

If the operator chooses to merge the segmentations, it has to

e activate the new segmentatidink| by activating one variable from the
T[i,k] block.
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resultat remarquable
3 4

remarkable result >

Figure 5. Example of a MERGE involving source spans [0,1], [0,2] and [1,2]. The operator
considers translating the source span [0,2] using one @ipais or by maintaining the current
segmentations. Herg; =“but”, E; =“a", E3 = “itis", E4 ="“some" andEs = “itis a". Merging
span [0,2] by activatingg > g, requires setting off the alignment variat8g ;). The shaded
box covers variables that stay constant during the samptem

¢ inactivate the segmentatiofisj] and[j, k] by turning off all variables in
T[Lj] andT[Lk] and by Settingim] to 0.

The case where the operator chooses to maintain the cuegmestations
is equivalent to performing theERRANS operator on each of the blocKs j,
andTU,k}.

Figure 5 illustrates theiERGE operator. The span [0,2] can be either trans-
lated by sampling from the blocKqy = {Tjg2,} Or by maintaining the
current segmentations and sampling from blo€ks; = {Tjo 1), To,1.65
andTjy o = {Tj1.26,), T1,26, }- In the latter case, the operator considers the set
of variables formed by a cartesian product over the two otk total, the
operator considers 5 possible phrase-pair variable asgignconfigurations.

SpLIT: The split operator is the converse of theeRGE operator. Given
a positionj (i < j < k) such that the blocKj; i has an active phrase-pair
variable, the split operator samples from the phrase-gatkb Tj; j;, Tj; g
andT; . Reordering is not allowed during this sampling operation.

If the operator decides to split the current segmentattoem tt has to:

e activate one variable from each of tfi¢;; andTj; g blocks and turn off
all variables in thefj; ,, block.
o set the value of the alignment variale j to 1.

In case the operator decides against splitting, it samphesvgphrase-pair
assignment from the block;  (this is equivalent to a RTRANS operation).
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The MERGE-SPLIT operator can therefore be seen as trying to translate
a source spafi, k] either with one phrase-pair or with two source adjacent
phrase-pairs while leaving distortions constant. Cooddl probabilities are
derived in a manner similar to those foERRANS.

3.4. ALGORITHMIC COMPLEXITY

Since both the RTRANS and MERGE-SPLIT operators are applied by iterat-
ing over source side word positions, their complexity i®éininn, the size
of the input. The RORDER operator iterates over the positions in the input
and for the source phrase found at that position considesp@ny its target
phrase with that of every other source phrgseyidedthat the reordering
limit is not violated. This means that it can only considerap® within a
fixed-length window, so complexity is linear in sentenceglén

The complexity of the RTRANS and MERGE-SPLIT operators also de-
pends on the number of target phrases that have to be caeitiareach
source phrase. Typically, only the most probable such target phrases are
retained in the model. The complexity of th& RRANS operator is therefore
O(np) and, since it operates over pairs of source spansR®AESPLIT'S
complexity isO(np?) . In the experiments in this work, we seto 20.

3.5. EXPERIMENTAL VERIFICATION

To verify that our sampler was behaving as expected, we ctadpghe KL
divergence between its inferred distributigfe|T) and the true distribution
over a single sentence (Figure 6). We computed the true norststri-
bution p(e|f) under an Arabic-English phrase-based translation modéal wi
parameters trained to maximise expeaedu (Section 5), summing out the
derivations for identical translations and computing thetifon termZ(f).
As the number of iterations increases, the KL divergenceréen the distri-
butions approaches zero, indicating that the sampler & tabhpproximate
the true distribution effectively.

4. Decoding

Decoding requires a search for the translat@nthat maximises or min-
imises some criterion given a source sentefic&Ve consider three com-
mon approaches to decoding, maximum translation (MaxJranaximum
derivation (MaxDeriv), and minimum Bayes risk decoding (RIB

argmaxea) p(e,a|f) (MaxDeriv)
e = ¢ argmaxp(ef) (MaxTrans) (8)
argmin.y o fe (€)p(€| f) (MBR)
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—=— KL Divergence

0.1
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0.001
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Figure 6. The KL divergence of the true posterior distribution and thistribution esti-
mated by the Gibbs sampler at different numbers of iteratfonthe Arabic source sentence
rtys wzrA’” mAlyzyA yzwr Alflbyrfin English, The prime minister of Malaysia visits the
Philippines.

As noted in section 2, the Gibbs sampler can be used to pravidstimate
of the probability distributiorP(a, e| f ) and therefore determine the maximum
of this distribution, in other words the most likely derivat. Furthermore, we
can marginalise over alignments to estimfate| f ) and obtain the most likely
translation. Our sampler can therefore be used as a de@thar running
in MaxTrans or MaxDeriv mode. Using it in this way makes meaaslation
decoding tractable, and so will help determine whether maxslation offers
any benefit over the usual max-derivation. It also allowsougetify that it is
producing valid samples from the desired distribution.

Additionally the sampler can be used for MBR decoding, a ensss
decoding algorithm introduced by (Kumar and Byrne, 2004)thieir work,
as an approximation of the model probability distributitime expected loss
of the decoder is calculated by summing ovemdpest list. With the Gibbs
sampler, however, we should be able to obtain a much moreaecuew
of the model probability distribution. In the MBR decodés(e) is any real-
valued loss (error) function that computes the error of oyothesise with
respect to some referenek Our loss is a sentence-level approximation of
(1— BLEU) whereby the BLEU n-gram precision counts are smoothed by
adding 0.01 for n> 1.

Experimental setup We conducted experiments with the French-English and
German-English corpora from the WMTQ9 shared translagsi {Callison-
Burch et al., 2009), and 300k parallel Arabic-English seoés from the
NIST MT evaluation training data. The Arabic-English tiam data consists

of the eTIRR corpus (LDC2004E72), the Arabic news corpus@kD04T17),
the Ummah corpus (LDC2004T18), and the sentences with cordet >
0.995 in the ISI automatically extracted web parallel cordlBG2006T02).
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For all language pairs, we constructed a phrase-baseddtiansmodel as
described in Koehn et al. (2003), limiting the phrase lerigtb. The target
side of the parallel corpus was used to train a 3-gram largoasdel. For the
German and French systems, tiiev2006 set was used for model tuning and
the TEST2007 (in-domain) ancdkews-DEV200B (out-of-domain) sets for
testing. For the Arabic system, tiver02 set (10 reference translations) was
used for tuning andhTO3 (4 reference translations) was used for evaluation.
To reduce the size of the phrase table, we used the assoesatioe technique
suggested by Johnson et al. (2007a). Translation qualitgderted using
case-insensitive LEU (Papineni et al., 2002).

We used Moses (Koehn and Hoang, 2007) as our baseline pheasd-
beam-search decoder. Both the sampler and Moses used tbéesdare sets:
forward and backward phrase translation log-probahsliierward and back-
ward lexical translation log-probabilities, phrase pgn#énguage model log-
probability, word penalty and a linear distortion penalty.

For the experiments reported here, we used feature weigtited with
minimum error rate training (MERT) (Och, 2003). Since MERjhares the
denominator in Equation 1, it is invariant with respect te #tale of the
weight vectorf — the Moses implementation simply normalises the weight
vector it finds by its/1-norm. However, when we use these weights in a true
probabilistic model, the scaling factor affects the bebawof the model since
it determines how peaked or flat the distribution is. If thalisg factor is
too small, then the distribution is too flat and the samplensis too much
time exploring unimportant probability regions. If it isadarge, then the
distribution is too peaked and the sampler may concentratev@ry narrow
probability region. We optimised the scaling factor witlspect to resulting
BLEU scores when decoding a 200-sentence portion of thaguset, finding
that a coefficient of 10 worked best for fr-en and a coefficairé for de-en.

The first experiment shows the effect of different initiatisns and num-
bers of sampler iterations on max-derivation decodingqgoerance of the
sampler. We used Moses to generate the starting hypotleébist in full DP
max-derivation mode, or alternatively with restrictions the features and
reordering, or with zero weights to simulate a random ihd#ion, and the
number of iterations varied from 100 to 200,000, with a 1@@ation burn-in
in each case. For each of the test sets, we track the model sttre most
frequent derivation for each input sentence and report gmacross all the
sentences. Figure 7 shows the variation of the mean mode it sampler
iteration, for the different starting points, and for baéinguage pairs.

We see that the initialization had little effect on the mosebre of the
best derivation, except with low numbers of iterations. sTimdicates that
the sampler has good mobility around the distribution. Wentbthat around
50,000 sampling iterations were required for fr-en and Q00 for de-en for
the sampler to give equivalent model scores to Moses, even e model is
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Figure 7. Mean maximum model score, as a function of iteration numhbdrstarting point.

The starting point can either be the full max-derivatiomslation ¢ull), the monotone trans-
lation (mono), the monotone translation with no language modelrf) or the monotone
translation with all weights set to zereef 0).

initialized with Moses run in full DP max-derivation modehi§ suggests that
the mobility of the sampler is such that, initially, it can meker off towards
other modes of the distribution.

We are mostly interested in using the sampler to performesittime,
more accurate MBR decoding and, at training time, betterimum risk
training. Both objective functions involve computing egtsions over the
distribution, therefore, the ability of the sampler to expl the distribution is
a desirable property. If the intent is to use the sampler fak-alerivation
decoding, then methods such simulated annealingan be employed to
accelerate convergence towards the mode of the distributio

Speed Running the sampler for the 100,000 iterations needed tomMobses
mean model scores took on average 1670 seconds per sentefcench-
English and 1552 seconds per sentence on German-Engligise Thmes
are prohibitively high. However, we found during the suhsag decoding
experiments in this paper that running the sampler for asae®0000 itera-
tions gave comparable BLEU scores and that for training 4@00ples were
enough to provide a good estimate of the gradient of the tgefunction.

Nevertheless, we do intend in future work to look at ways @esjing up
the sampler. Currently, we usesaquential scasampling procedure whereby
a left to right scan of the input is made, applying each operat every
possible source position. To reduce correlations betweetessive samples,
a sample is only collected at the end of the scan. This proeadwasteful
since it discards a large number of intermediate samples.

A possible way of speeding up sampling is to usaralom scamprocedure
in which we first sample an operator and a source positionmpkaat before
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Table I. Comparison of thBLEU score of the Moses decoder
with the sampler running in differing decoding modes. The
test sets argEsT2007 (in) andNEWS-DEV200% (out)
fr-en de-en

in [ out | in | out
Moses Max Derivation| 32.7 | 19.1| 27.4| 15.9
Gibbs Max Derivation | 32.6 | 19.1| 27.0| 15.5
Gibbs Max Translation 32.6| 19.1| 27.4| 16.0
Gibbs MBR 32.6| 19.2| 27.3| 16.0

generating the sample. Since the operator and sourceguoaite chosen at
random, the correlation between successive samples iemhereduced. To
further minimize correlation, we can choose to retain ongrgs-th sample.
By settings to a value lower than the average lag between sample colfecti
in sequential scanning, sampling can be speeded up by a factar.

Decoding algorithms In order to compare max-translation, max-derivation
and MBR decoding with the Gibbs sampler and the Moses baselia ran
experiments on both European language pairs using bothnith-oat-of-
domain test sets. The sampler was initialized with the dutpioses with
the feature weights set to zero and restricted to monotartke;um for 10,000
iterations with a 100 iteration burn-in. The scale factoesenset to the same
values as in the previous experiment. Relative translaticaity (measured
according tBLEU) is shown in Table I.

These results show very little difference between the degoohethods,
indicating that the Gibbs sampling decoder can perform disase standard
DP based max-derivation decoder with these models, andihbed is no
gain from doing max-translation or MBR decoding. Howeveshbuld be
noted that the model used for these experiments was optnigeMERT,
for max-derivation decoding, and so the experiments do ulgt out the
possibility that max-translation and MBR decoding will @ffan advantage
on an appropriately optimised model.

5. Minimum risk training

In the previous section, we described how our sampler carsée to search
for the best translation under a variety of decoding catémax derivation,
translation, and minimum risk). However, there appearedetdittle benefit
to marginalizing over the latent derivations. This is alinosrtainly a side
effect of the MERT training approach that was used to consthe models
S0 as to maximise the performance of the model on its singledeivation,
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without regard to the shape of the rest of the distributiofuiBom et al.,
2008). In this section we describe a further applicatiorhefGibbs sampler:
to dounbiasedminimum risk training.

While there have been at least two previous attempts to dammuaim
risk training for MT, both approaches relied on biagedest approximations
(Smith and Eisner, 2006; Zens et al., 2007). Since we sampte the whole
distribution, we will have a more accurate risk assessment.

The risk, or expected loss, of a probabilistic translatiardel on a corpus
D, defined with respect to a particular loss functite), where€’is the
reference translation areds a hypothesis translation, is given by:

L= S Y ©)
(

8flen €

This value can be approximated using equation (2). In thutise we are
concerned with finding the paramet&that minimise (9). Fortunately, with
the log-linear parameterization pfe|f), £ is differentiable with respect to
’ 0L f h h
% > 2 P )le(€) (hk — Egeir)[hu]) (10)
(&f)en €

We have now shown how to compute our objective (9), the erpdoiss,
and a gradient with respect to the model parameters we wamptimise,
(10), so we can use any standard first-order optimizatiohnigoe. Since
the sampler introduces stochasticity into the gradient@jdctive, we use
stochastic gradient descent methods which are more robusbise than
more sophisticated quasi-Newton methods like L-BFGS (lrid Alocedal,
1989). For the experiments below, we updated the learntegfter each step
proportionally to difference in successive gradients (8cgtolph, 1999).

For the experiments reported in this section, we used sasipés of
4000 and estimated the gradient on sets of 120 sentences daaaomly
(with replacement) from the development corpus. For a losstfon, we use
the same sentence level BLEU approximation as used for MBiRdieg
(Section 4). By examining performance on held-out data, ne thhe model
converges typically in fewer than 50 iterations.

5.1. TRAINING EXPERIMENTS

Table Il compares the performance of translation systemsctwvith MERT
(maximizing corpus BLEU) with systems tuned to maximiseeztpd sentence-
level BLEU. For Arabic to English, we trained both system#wiITO2 and
tested on MTO05, using MTO03 as held-out set for the Min Risknirgy. For
German and French to English, we trained on DEV 2006 and ateduper-
formance on the first 1000 sentences of WMTO08 using WMTO7 &b dnet
set. For all experiments, we used the same eight featuresSestion 4. For
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Table Il. Decoding with minimum risk trained systems, conegawith decoding with MERT—
trained systems on Arabic to English MT05, German to Engh#1T 08 and French to English
WMT 08 data. BLEU brevity penalties are indicated in parests. U Moses refers to Moses
with phrase tables of max phrase lengths 7 and with no as&wtiscore filtering. All other
phrase tables have a max phrase length of 5 and are pruneglassiaciation score filtering.
Best results for each language pair are indicated in bold.

Training | Decoder AR-EN FR-EN DE-EN
MERT U Moses Max Derivation 48.3 (0.995)| 32.9 (1.000)| 27.9(0.998)
U Moses MBR 48.4(0.996) | 32.8 (1.040)| 27.8 (1.000)
MERT Moses Max Derivation | 44.3 (0.973)| 33.2 (0.996)| 27.8 (1.000)
Moses MBR 44.4 (0.989)| 33.4(1.000)| 27.7 (1.000)
Gibbs Max Derivation | 43.4(0.979)| 32.4 (0.976)| 26.7 (0.937)
MinRisk | Gibbs MaxTrans 43.4(0.981)| 32.7 (0.979)| 26.9(0.937)
Gibbs MBR 43.6 (0.981)| 32.8(0.979)| 27.0(0.941)

Moses MBR experiments, we used n-best lists of 1000 distlecivations
to compute the expected loss. For all Gibbs based decodperieents, we
used 10000 samples. We also run experiments where we extrpbtrase
tables using the Moses default setting of max phrase lengthatiier than 5
in our other experiments) and with no association-scoreipgu

Table Il confirms that on Europarl data, as shown in Johnsah &007a),
translating with pruned phrase tables gives similar ancesiones better trans-
lation results than with unpruned phrased tables. Howav&rabic-English,
where the training set consisting of only 300K sentencespaismall to begin
with, association score pruning hurts performance subalign(-4 BLEU).
For the minimum risk trained systems, we note that the pesiiffect of
marginalizing over derivations as well as of using minimusk decoding.
Compared to MERT tuned systems, the minimum risk ones pedystem-
atically shorter output, thus getting heavily hit by BLEUWsevity penalty.
We believe that this is a result of optimizing sentence 18LdtU rather than
corpus BLEU as done by MERT. As future work, we intend to lobkvays
of directly optimizing corpus BLEU.

6. Sampler Defect

As we have shown, when the sampler is trained to optimise proppate
objective function, translation performance is compagabl state of the art
phrase-based systems. This competitive performance isvachin spite of
a defect of the sampler that we discovered subsequent toreuvops work
(Arun et al., 2009). Recall that the operators are desigoexkplore proba-
bility distribution in its entirety. However, suppose tlathree-word phrase
has a translation in our phrase table, neither of the twadvgource phrases
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contained within it have translations, and all single wdndse translations.
There is no sequence of our operators that can move betwednrée-word
source segment and the single-word segments. Situatiars asuthis can
arise from phrase extraction heuristics and possibleifiljeof the phrase-
table prior to decoding. A scan of our phrase tables showtsattiew such
cases exist. In future work, we intend to address this proble

7. Related Work

Our sampler is similar to the decoder of (Germann et al., 2&Mner and
Tromble, 2006; Langlais et al., 2007), which start with apragimate solu-
tion and then incrementally improve it via operators sucfRBSRANS and
MERGESPLIT. Itis also similar to the estimator of Marcu and Wong (2002),
who employ the same operators to search the alignment spee@theuristic
initialisation. These previous efforts employed their @pers in a greedy
hill-climbing search. In contrast, our operators are aggplprobabilistically,
making them theoretically well-founded for a variety oférénce problems.

Our use of Gibbs sampling follows from its increasing use ay&sian
inference problems in NLP (Finkel et al., 2006). Most clgsalated is the
work of DeNero et al. (2008), who derive a Gibbs sampler faaph-based
alignment, using it to infer phrase translation probaesit

To our knowledge, we are the first to apply Monte Carlo methodsax-
imum translation and minimum risk translation. Approacheshe former
(Blunsom et al., 2008) rely on dynamic programming techesqwhich do
not scale well without heuristic approximations, while eggehes to the latter
(Smith and Eisner, 2006; Zens et al., 2007) use biadsekt approximations.

8. Conclusion

Although the training approach presented in Section 5 has@er of the-
oretical advantages, its performance is in general infesioen compared
with a system trained to optimise corpus level BLEU. In faturork, we will
explore possibilities for directly optimising BLEU.

Using sampling for model training has two further advansateat we
intend to explore. First, although MERT performs quite vegllmodels with
small numbers of features (such as those we consideredsrpéer), in
general the algorithm severely limits the number of featuhat can be used
since it does not use gradient-based updates during optionz instead up-
dating one feature at a time. Our training method (Sectioddgs not have
this limitation, so it can use many more features.

Finally, for the DP-based max-derivation approximatiorb&computa-
tionally efficient, the features characterizing the stepthe derivation must
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be either computable independently of each other or witl timlited local
context (as in the case of the language model or distorti@gtskorT his has
led to a situation where entire classes of potentially udfefatures are not
considered because they would be impractical to integrated DP based
translation system. With the sampler this restriction iggated: any function
of h(e, f,a) may participate in the translation model subject only taiis
computability.
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