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PHRASE TO PHRASE JOINT PROBABILITY 
MODEL FOR STATISTICAL MACHINE 

TRANSLATION 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims priority to US. Provisional Appli 
cation Ser. No. 60/368,450, ?led on Mar. 27, 2002, the dis 
closure of which is incorporated by reference. 

ORIGIN OF INVENTION 

The research and development described in this application 
were supported by DARPA-ITO under grant number 
N66001-00-1-9814 and by NSF-STTR grant 0128379. The 
US. Government may have certain rights in the claimed 
inventions. 

BACKGROUND 

Most of the noisy-channel-based models used in statistical 
machine translation (MT) are conditional probability models. 
In the noisy-channel framework, each source sentence “e” in 
a parallel corpus is assumed to “generate” a target sentence 
“f” by means of a stochastic process, whose parameters are 
estimated using traditional Expectation Maximum (EM) 
techniques. The generative model explains how source words 
are mapped into target words and how target words are re 
ordered to yield well-formed target sentences. A variety of 
methods are used to account for the re-ordering of target 
words, including methods using word-based, template based, 
and syntax-based models (to name just a few).Although these 
models use different generative processes to explain how 
translated words are re-ordered in a target language, at the 
lexical level these models all assume that source words are 
individually translated into target words. 

SUMMARY 

A machine translation (MT) system may develop probabi 
listic phrase-to-phrase translation lexicons using one or more 
bilingual corpora. For example, translation lexicons may be 
developed using a joint probability method, a word-to-word 
conditional method, or other method. 

The MT system may translate one or more sentences (or 
sentence fragments) using translation lexicons. For example, 
the MT system may use a greedy method, a method using a 
beam stack decoder, or other method to decode sentences. 

In implementations in which translation lexicons are devel 
oped using a phrase-based j oint probability model, source and 
target language sentences may be generated simultaneously. 
The system may utiliZe the joint probability model for both 
source-to-target and target-to-source translation applications. 

In embodiments using a word-to-word conditional 
method, the model may learn phrase-to-phrase alignments 
from word-to-word alignments generated by a word-to-word 
statistical MT system. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram of a machine translation (MT) 
system including a phrase-based joint probability translation 
model. 

FIG. 2 shows alignments and probability distributions gen 
erated by the phrase-based joint probability model. 
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2 
FIG. 3 is a ?owchart describing a training algorithm for the 

phrase-based joint probability model. 
FIG. 4 is shows an example of phrase-based greedy decod 

1ng. 
FIG. 5 is a ?owchart describing a phrase-based decoding 

algorithm according to an embodiment. 
FIG. 6 shows pseudo code describing the phrase-based 

decoding algorithm. 
FIG. 7 is a diagram showing generation of an arc between 

hypotheses. 
FIG. 8 is a graph showing the effect of phrase length on 

performance. 
FIG. 9 shows an example estimation of a lexical weight. 
FIG. 10 is a graph showing the effect of lexical weighting 

on performance. 
FIG. 11 is a graph comparing the performance of different 

heuristics. 

DETAILED DESCRIPTION 

Systems and techniques of the current disclosure may be 
used to provide more ef?cient and accurate machine transla 
tion (MT). In some implementations, the MT system may 
develop phrase-to-phrase probabilistic translation lexicons. 
The probabilistic translation lexicons may be automatically 
learned from bilingual corpora using, for example, joint prob 
ability models or word-to-word conditional models. 

These translation lexicons may then be used to translate 
new sentences. That is, the translation lexicons may be used to 
translate sentences not included in the corpora used to train 
the MT system. Systems and techniques for translation 
include a greedy method, a method using a beam stack 
decoder, or other methods. 

FIG. 1 shows a machine translation (MT) system 100 
including a translation model 105 and a decoder 110. Trans 
lation model 1 05 may include translation lexicons that may be 
learned from bilingual corpora. Translation model 105 may 
assume that lexical correspondences can be established at the 
word level and the phrase level as well. Decoder 110 may use 
the translation lexicons to provide a translated sentence based 
on an input sentence. 

Phrase-to-Phrase Translation Lexicon Development 
According to some embodiments, model 105 may be 

trained according to a joint probability model. That is, model 
105 may develop a translation lexicon automatically using a 
parallel corpus 115 including parallel source and target lan 
guage strings. Model 105 does not try to capture how source 
sentences can be mapped into target sentences, but rather 
generates source and target sentences simultaneously. In 
other words, the translation model is a j oint probability model 
that can be easily marginaliZed in order to yield conditional 
probability models for both source-to-target and target-to 
source machine translation applications. 

In an embodiment, model 105 may generate sentence pairs 
using the following stochastic process: 

1. Generate a bag of concepts C. 
a 

2. For each concept cl- 6 C, generate a pair of phrases ( e i, 
a a a a a 

f 1.), according to the distribution t( e i, f i), where e iand f I. 
each contain at least one word. 

3. Order the phrases generated in each language so as to 
create two linear sequences of phrases; sequences correspond 
to the sentence pairs in a bilingual corpus. 

For simplicity, it is assumed that the bag of concepts and 
the ordering of the generated phrases are modeled by uniform 

a a 

distributions. It is also assumed that ci:( e i, f 1). Under these 
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assumptions, it follows that the probability of generating a 
sentence pair (E, F) using concepts cl- 6 C is given by the 
product of all phrase-to-phrase translation probabilities, 

n (2.7;) 

that yield bags of phrases that can be ordered linearly so as to 
obtain the sentences E and F. 

FIG. 2 illustrates an example. The sentence pair “a b c -- x 

y” can be generated using tWo concepts, (“a b”: “y”) and (“c”: 
“x”), or one concept, (“a b c”: “x y”), because in both cases the 
phrases in each language can be arranged in a sequence that 
Would yield the original sentence pair. HoWever, the same 
sentence pair cannot be generated using the concepts (“a b”: 
“y”) and (“c”: “y”) because the sequence “x y” cannot be 
recreated from the tWo phrases “y” and “y”. Similarly, the pair 
can be generated using concepts (“a c”: “x”) and (“b”: “y”) 
because the sequence “a b c” cannot be created by concat 
enating the phrases “a c” and “b”. 

The set of concepts C can be linearized into a sentence pair 

(E, E) if E and F can be obtained by permuting the phrases Z. 

and fi that characterize all concepts cl- 6 C. We denote this 
property using the predicate L(E, F, C). Under this model, the 
probability of a given sentence pair (E, F) can then be 
obtained by summing up over all possible Ways of generating 
bags of concepts cl- 6 C that can be linearized to (E, F). 

The model described above (“Model I’’) has been found to 
produce fairly good alignments. HoWever, this model may be 
unsuited for translating unseen sentences, as it imposes no 
constraints on the ordering of the phrases associated With a 
given concept. In order to account for this, a modi?ed model 
(“Model 2”) Was developed to account for distortions. The 
generative story of the model is this: 

1. Generate a bag of concepts C. 

2. Initialize E and F to empty sequences c. 

3. Randomly take a concept cl- 6 C and generate a pair of 
% % ~ ~ ~ ~ % % 

phrases (e i, f i), accord1ng to the d1stnbut1on t( e i, f i), 
a a 

Where e l. and f I. each contain at least one Word. Remove then 

cl- from C. 

4. Append phrase f l. at the end of P. Let k be the start 

position of T: in F. 

5. Insert phrase —e>l. at position 1 in E provided that no other 

phrase occupies any ofthe positions 1 and l+|?i|, where G) 

gives the length of the phrase Z. The system hence create the 

alignment betWeen the tWo phrases Z. and fi With probabil 
ity 
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Where d(i, j) is a position-based distortion distribution. 
6. Repeat steps 3 to 5 until C is empty. 
In this model, the probability to generate a sentence pair (E, 

F) is given by the folloWing formula: 

CECIUEEC) cieC 

Where pos(—f>ik) denotes the position of Word k of phrase 
l 

in sentence F and poscm(?l-A) denotes the position in sentence 
E of the center of mass of phrase ei. 

Training the models described above may be computation 
ally challenging. Since there is an exponential number of 
alignments that can generate a sentence pair (E, F), the Expec 
tation Maximum (EM) training algorithm cannot be applied 
exhaustively. FIG. 3 is a ?owchart describing a training algo 
rithm 300 for the phrase-based joint probability model Which 
takes this problem into account. 

The system determines high-frequency n-grams in E and F 
(block 305). If one assumes from the outset that any phrases 
a a 

e ie E* and f l- e F* can be generated from a concept ci, one 
Would need a supercomputer in order to store in the memory 

a table that models the “a, fi) distribution. Since the sys 
tem doesn’t have access to computers With unlimited 
memory, the system initially learns t distribution entries only 
for the phrases that occur often in the corpus and for uni 
grams. Then, through smoothing, the system learns t distri 
bution entries for the phrases that occur rarely as Well. In 
order to be considered in the next step of the algorithm, a 
phrase has to occur at least ?ve times in the corpus. 

The next step is to initialize the t-distribution table (block 
310). Before the EM training procedure starts, one has no idea 
What Word/phrase pairs are likely to share the same meaning. 
In other Words, all alignments that can generate a sentence 
pair (E, F) can be assumed to have the same probability. 
Under these conditions, the evidence that a sentence pair (E, 

F) contributes to the fact that (2, fl) are generated by the 
same concept cl- is given by the number of alignments that can 
be built betWeen (E, F) that have a concept cl. that is linked to 

phrase Z. sentence E and phrase —f>l- in sentence F divided by 
the total number of alignments that can be built betWeen the 
tWo sentences. Both these numbers can be easily approxi 
mated. 

Given a sentence E of 1 Words, there are S(l, k) Ways in 
Which the 1 Words can be partitioned into k non-empty sets/ 
concepts, Where S(l, k) is the Stirling number of second kind. 
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There are also S(m, k) Ways in Which the m Words of a 
sentence F can be partitioned into k non-empty sets. Given 
that any Words in E can be mapped to any Words in F, it 
follows that there are 

alignments that can be built betWeen tWo sentences (E, F) of 
lengths l and m, respectively. When a concept ci generates 

tWo phrases (2, fl) of length a and b, respectively, there are 
only l-a and m-b Words left to link. Hence, in the absence of 

any other information, the probability that phrases Z. and fl. 
are generated by the same concept cl- is given by the folloWing 
formula: 

Note that the fractional counts returned by the formula are 
only an approximation of the t distribution the system are 
interested in because the Stirling numbers of the second kind 
do not impose any on the Words that are associated With a 
given concept be consecutive. HoWever, since the formula 
overestimates the numerator and denominator equally, the 
approximation Works Well in practice. 

In the second step of the algorithm, the system applies the 
formula to collect fractional counts for all unigram and high 
frequency n-gram pairs in the Cartesian product de?ned over 
the phrases in each sentence pair (E, F) in a corpus. The 
system sums over all these t-counts and normalizes to obtain 
an initial joint distribution t. This step amounts to running the 
EM algorithm for one step over all possible alignments in the 
corpus. 

In the third step of the algorithm, the system performs EM 
training on Viterbi alignments (block 315). Given a non 
uniform t distribution, phrase-to-phrase alignments have dif 
ferent Weights and there are no other tricks one can apply to 
collect fractional counts over all possible alignments in poly 
nomial time. Starting With block 315 of the algorithm in FIG. 
3, for each sentence pair in a corpus, the system greedily 
produce an initial alignment by linking together phrases so as 
to create concepts that have hight probabilities. The system 
then hillclimbs toWards the Viterbi alignment of highest prob 
ability by breaking and merging concepts, sWapping Words 
betWeen concepts, and moving Words across concepts. The 
system computes the probabilities associated With all the 
alignments the system generated during the hillclimbing pro 
cess and collects t counts over all concepts in these align 
ments. 

The system applies this Viterbi-based EM training proce 
dure for a feW iterations. The ?rst iterations estimate the 
alignment probabilities using Model 1. The rest of the itera 
tions estimate the alignment probabilities using Model 2. 

During training, the system applies smoothing so the sys 
tem can associate non-Zero values to phrase-pairs that do not 
occur often in the corpus. 
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6 
At the end of the training procedure, the system takes 

marginals on the joint probability distributions t and d (block 

320). This yields conditional probability distributions mi, 

fl) and d(posF|posE), Which the system uses for decoding. 
When the system run the training procedure in FIG. 3 on 

the corpus in FIG. 2, after four Model 1 iterations the system 
obtain the alignments 205 and the joint and conditional prob 
ability distributions 210. At prima facie, the Viterbi alignment 
for the ?rst sentence pair may appear incorrect because 
humans have a natural tendency to build alignments betWeen 
the smallest phrases possible. HoWever, note that the choice 
made by our model is quite reasonable. After all, in the 
absence of additional information, the model can either 
assume that “a” and “y” mean the same thing or that phrases 
“a b c” and “x y” mean the same thing. The model chose to 
give more Weight to the second hypothesis, While preserving 
some probability mass for the ?rst one. 

Also note that although the joint distribution puts the sec 
ond hypothesis at an advantage, the conditional distribution 
does not. The conditional distribution 210 is consistent With 
our intuitions that tell us that it is reasonable both to translate 
“a b c” into “x y”, as Well as “a” into “y”. The conditional 
distribution mirrors our intuitions. 

In an alternative embodiment, a system such as system 100 
of FIG. 1 may learn phrase-to-phrase translations from Word 
to-Word alignments. That is, a model such as model 105 may 
develop a phrase translation lexicon by expanding Word-to 
Word translation lexicons learned by Word-to-Word models. 
The phrase translation model is based on the noisy channel 
model. The system use Bayes rule to reformulate the transla 
tion probability for translating a foreign sentence f into 
English e as 

This alloWs for a language model p(e)and a separate trans 
lation model P(fl e). 

During decoding (i.e., translation), the foreign input sen 
tence f is segmented into a sequence of I phrases fl]. The 
system assumes a uniform probability distribution over all 
possible segmentations. 

Each foreign phrase in flZ is translated into an English 
phrase 51- . The English phrases may be re ordered. Phrase 
translation is modeled by a probability distribution (1)6361). 
Due to the Bayes rule, the translation direction is inverted 
from a modeling standpoint. 

Reordering of the English output phrases is modeled by a 
relative distortion probability distribution d(al-—bl-_ 1), Where al 
denotes the start position of the foreign phrase that Was trans 
lated into the ith English phrase, and bl._ 1, denotes the end 
position of the foreign phrase translated into the (i—l)th 
English phrase. 
The distortion probability distribution d(~) may be trained 

using a joint probability model, such as that described in 
connection With the previous described embodiment. Alter 
natively, the system could also use a simpler distortion model 
d(al-—bl-_l):(x‘“i_bi*1_1‘ With an appropriate value for the 
parameter 0t. 

In order to calibrate the output length, the system intro 
duces a factor 00 for each generated English Word in addition 
to the trigram language model p L M. This is a simple means to 
optimiZe performance. Usually, this factor is larger than 1, 
biasing longer output. 
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In summary, the best English output sentence ebest given a 
foreign input sentence f according to the model is 

Where p(fl e) is decomposed into 

The GiZa++ toolkit Was developed to train Word-based 
translation models from parallel corpora. As a by-product, it 
generates Word alignments for this data. The system may 
improve this alignment With a number of heuristics. The 
system collects all aligned phrase pairs that are consistent 
With the Word alignment. The Words in a legal phrase pair are 
only aligned to each other, and not to Words outside. Given the 
collected phrase pairs, the system estimates the phrase trans 
lation probability distribution by relative frequency: 

count (J7 | F) 

2 count (J7 | F) 

In some embodiments, smoothing may be performed. 
If the system collects all phrase pairs that are consistent 

With Word alignments, this includes many non-intuitive 
phrases. For instance, translations for phrases such as “house 
the” may be learned. Intuitively the system Would be inclined 
to believe that such phrases do not help. Restricting possible 
phrases to syntactically motivated phrases could ?lter out 
such non-intuitive pairs. 

Another motivation to evaluate the performance of a phrase 
translation model that contains only syntactic phrases comes 
from recent efforts to built syntactic translation models. In 
these models, reordering of Words is restricted to reordering 
of constituents in Well-formed syntactic parse trees. When 
augmenting such models With phrase translations, typically 
only translation of phrases that span entire syntactic subtrees 
is possible. It is important to knoW if this is a helpful or 
harmful restriction. 

The system may de?ne a syntactic phrase as a Word 
sequence that is covered by a single subtree in a syntactic 
parse tree. We collect syntactic phrase pairs as folloWs: the 
system Word-aligns a parallel corpus, as described above. The 
system then parses both sides of the corpus With syntactic 
parsers. For all phrase pairs that are consistent With the Word 
alignment, the system additionally checks if both phrases are 
subtrees in the parse trees. Only these phrases are included in 
the model. Hence, the syntactically motivated phrase pairs 
learned are a subset of the phrase pairs learned Without 
knowledge of syntax. The phrase translation probability dis 
tribution may be estimated by relative frequency. 

FIG. 8 displays results from experiments With different 
maximum phrase lengths. All phrases consistent With the 
Word alignment (AP) Were used. As shoWn in FIG. 8, limiting 
the length to a maximum of only three Words per phrase 
already achieves top performance. Learning longer phrases 
does not yield any improvement. Reducing the limit to only 
tWo, hoWever, is detrimental. AlloWing for longer phrases 
increases the phrase translation table siZe. The increase is 
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almost linear With the maximum length limit. Still, none of 
these model siZes caused memory problems. 
The system may validate the quality of a phrase translation 

pair by checking hoW Well its Words translate to each other. 
For this, a lexical translation probability distribution W(f|e) 
may be used. The distribution may be estimated by relative 
frequency from the same Word alignments as the phrase 
model 

count (f, e) 
w(fle) = i 

Zcount (f’, e) 
f/ 

A special English NULL token may be added to each 
English sentence and aligned to each unaligned foreign Word. 

Given a phrase pair f,eand a Word alignment a betWeen the 
foreign Word positions I-l, . . . , n and the English Word 

positions j:0, l, . . . , m, the system computes the lexical 

Weight pW by 

FIG. 9 shoWs an example. 
If there are multiple alignments a for a phrase pair (f5), the 

system may use the alignment With the highest lexical Weight: 

The system may use the lexical Weight pW during transla 
tion as an additional factor. This means that the model p(f | e) 
is extended to 

The parameter 7» de?nes the strength of the lexical Weight 
pW. Good values for this parameter are around 0.25. 

FIG. 10 shoWs the impact of lexical Weighting on machine 
translation performance. In our experiments, the system 
achieved improvements of up to 0.01 on the BLEU score 
scale. 

Phrase translation With a lexical Weight is a special case of 
the alignment template model With one Word class for each 
Word. The simpli?cation performed by the system has the 
advantage that the lexical Weights can be factored into the 
phrase translation table beforehand, speeding up decoding. In 
contrast to the beam search decoder for the alignment tem 
plate model, the decoding method described in connection 
With FIGS. 5 and 6, are able to search all possible phrase 
segmentations of the input sentence, instead of choosing one 
segmentation before decoding. 

In the experiment, the system learned phrase pairs from 
Word alignments generated by GiZa++. The IBM Models that 
this toolkit implements only alloW at most one English Word 
to be aligned With a foreign Word. The system remedies this 
problem With a heuristic approach. 

First, the system aligns a parallel corpus bidirectionally, 
i.e., foreign to English and English to foreign. This gives tWo 
Word alignments that the system tries to reconcile. If the 
system intersects the tWo alignments, the system gets a high 
precision alignment of high-con?dence alignment points. If 
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the system takes the union of the tWo alignments, the system 
gets a high-recall alignment With additional alignment points. 

The space betWeen intersection and union may be expan 
sion heuristics that start With the intersection and add addi 
tional alignment points. The decision Which points to add 
may depend on a number of criteria, e.g., Which alignment 
does the potential alignment point exist (Foreign-English or 
English-Foreign), Whether the potential point neighbor 
already established points, Whether “neighboring” means 
directly adjacent (block-distance), or also diagonally adja 
cent Whether the English or the foreign Word that the potential 
point connects are unaligned so far, and if both are unaligned 
and the lexical probability for the potential point. 

The system starts With intersection of the tWo Word align 
ments. The system only adds neW alignment points that exist 
in the union of tWo Word alignments. The system also alWays 
requires that a neW alignment point connects at least one 
previously unaligned Word. 

First, the system expands to only directly adjacent align 
ment points. The system checks for potential points starting 
from the top right comer of the alignment matrix, checking 
for alignment points for the ?rst English Word, then continues 
With alignment points for the second English Word, and so on. 
This is done iteratively until no more alignment point can be 
added. In a ?nal step, the system adds non-adj acent alignment 
points, With otherWise the same requirements. 

FIG. 11 shoWs the performance of this heuristic (base) 
compared against the tWo mono-directional alignments (e2f, 
f2e) and their union (union). The ?gure also contains tWo 
modi?cations of the base heuristic: In the ?rst (diag) the 
system also permit diagonal neighborhood in the iterative 
expansion stage. In a variation of this (diag-and), the system 
requires in the ?nal step that both Words are unaligned. 

The ranking of these different methods varies for different 
training corpus siZes. For instance, the alignment f2e starts 
out second to Worst for the 10,000 sentence pair corpus, but 
ultimately is competitive With the best method at 320,000 
sentence pairs. The base heuristic is initially the best, but then 
drops off. The discrepancy betWeen the best and the Worst 
method is quite large, about 0.2 BLEU (an IBM scoring 
system), for almost all training corpus siZes, albeit not alWays 
signi?cantly. 

Decoding 
The phrase-based decoder in some embodiments may 

employ a beam search algorithm. The English output is gen 
erated left to right in form of partial translations (or hypoth 
eses). 

The system may begin the search of possible translations in 
an initial state Where no foreign input Words are translated and 
no English output Words have been generated. NeW states 
may be created by extending the English output With a phrasal 
translation of that covers some of the foreign input Words not 
yet translated. The current cost of the neW state is the cost of 
the original state multiplied With the translation, distortion 
and language model costs of the added phrasal translation. 

Each search space (hypothesis) is represented by (a) a back 
link to the best previous state, (b) the foreign Words covered 
so far, (c) the last tWo English Words generated (needed for 
computing future language model costs), (d) the end of the 
last foreign phrase covered (needed for computing future 
distortion costs), (e) the last added English phrase (needed for 
reading the translation from a path of hypotheses), (f) the cost 
so far, and (g) the estimate of the future cost. 

Final states in the search are hypotheses that cover all 
foreign Words. Among these the hypothesis With the loWest 
cost is selected as best translation. 
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10 
TWo hypotheses can be merged, if they agree in (a) the 

foreign Words covered so far, (b) the last tWo English Words 
generated, and (c) the end of the last foreign phrase covered. 

If there are tWo paths that lead to tWo hypotheses that agree 
in these properties, the system keeps the cheaper hypothesis, 
e.g., the one With less cost so far. The other hypothesis cannot 
be part of the path to the best translation, and the system can 
safely discard it. Note that the inferior hypothesis can be part 
of the path to the second best translation. 

FIG. 5 is a ?owchart describing a phrase-based decoding 
operation 500 according to an embodiment. An algorithm 
describing the operation is shoWn in FIG. 6. The system may 
start With an initial empty hypothesis. A neW hypothesis is 
then expanded from an existing hypothesis by the translation 
of a phrase. A sequence of untranslated foreign Words and a 
possible English phrase translation for them is selected (block 
505). The English phrase is attached to the existing English 
output sequence (block 510). Then the foreign Words are 
marked as translated and the probability cost of the hypoth 
esis is updated (block 515). The cheapest (highest probabil 
ity) ?nal hypothesis With no untranslated foreign Words is the 
output of the search (block 520). 
The hypotheses are stored in stacks. The stack sm contains 

all hypotheses in Which m foreign Words have been translated. 
The system may recombine search hypotheses. While this 
reduces the number of hypotheses stored in each stack some 
What, stack siZe is exponential With respect to input sentence 
length. This makes an exhaustive search impractical. 

Thus, the system prunes out Weak hypotheses based on the 
cost they incurred so far and a future cost estimate. For each 
stack, the system only keeps a beam of the best n hypotheses. 
Since the future cost estimate is not perfect, this leads to 
search errors. Our future co st estimate takes into account the 
estimated phrase translation cost, but not the expected distor 
tion cost. 

For each possible phrase translation anyWhere in the sen 
tence (referred to as a “translation option”), the system mul 
tiplies its phrase translation probability With the language 
model probability for the generated English phrase. As lan 
guage model probability, the system may use the unigram 
probability for the ?rst Word, the bigram probability for the 
second, and the trigram probability for all folloWing Words. 
Given the costs for the translation options, the system can 

compute the estimated future cost for any sequence of con 
secutive foreign Words by dynamic programming. Note that 
this is only possible, since the system ignore distortion costs. 
Since there are only n(n+l)/2 such sequences for a foreign 
input sentence of length n, the system can pre-compute these 
cost estimates beforehand and store them in a table. 

During translation, future costs for uncovered foreign 
Words can be quickly computed by consulting this table. If a 
hypothesis has broken sequences of untranslated foreign 
Words, the system look up the cost for each sequence and take 
the product of their costs. 

The space of hypotheses generated during the beam search 
forms a lattice of paths, each representing a translation, for 
Which a translation score can be easily computed. Extracting 
the n-best paths from such a lattice is a Well-studied problem. 

Paths branch out, When there are multiple translation 
options for a hypothesis from Which multiple neW hypotheses 
can be derived. Paths join, When hypotheses are merged. As 
described above, the system may discard a hypothesis if it 
agrees With a loWer-cost hypothesis With some of the same 
properties. In order to keep the information about merging 
paths, the system keeps a record of such mergings that con 
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tains identi?er of the previous hypothesis, identi?er of the 
loWer-cost hypothesis, and cost from the previous to higher 
cost hypothesis. 

FIG. 7 gives an example for the generation of such an arc. 
In this case, the hypotheses 2 and 4 are equivalent in respect 5 
to the heuristic search, as detailed above. Hence, hypothesis 4 
is deleted. But to retain the information about the path leading 
from hypothesis 3 to 2, the system stores a record of this arc 
705. The arc also contains the cost added from hypothesis 3 to 
4. Note that the cost from hypothesis 1 to hypothesis 2 does 
not have to be stored, since it can be recomputed from the 
hypothesis data structures. 

The beam siZe, e. g., the maximum number of hypotheses in 
each stack, may be ?xed to a certain number. The number of 
translation options is linear With the sentence length. Hence, 
the time complexity of the beam search is quadratic With 
sentence length, and linear With the beam siZe. 

Since the beam siZe limits the search space and therefore 
search quality, the system has to ?nd the proper trade-off 
betWeen speed (loW beam siZe) and performance (high beam 
siZe). In experiments, a beam siZe of only 100 proved to be 
suf?cient. With larger beams siZes, only a feW sentences Were 
translated differently. The decoder translated 1755 sentence 
of length 5 to 15 Words in about 10 minutes on a 2 GHZ 
Linux® system. The system achieved fast decoding, While 
ensuring high quality. 

In some embodiments, a decoder such as decoder 110 of 
FIG. 1 may implement a greedy procedure. Given a foreign 
sentence F, the decoder ?rst produces gloss of it by selecting 
phrases in E* that the probability p(E, F). The decoder then 
iteratively hillclimb by modifying E and the alignment 
betWeen E and P so as to maximiZe the formula p(E)p(F|E). 
The decoder hillclimbs by modifying an existing alignment/ 
translation through a set of operations that modify locally the 
alignment/translation built until a given time. These opera 
tions replace the English side of an alignment With phrases of 
different probabilities, merge and break existing concepts, 
and sWap Words across concepts. The probability p(E) is 
computed using a simple trigram language model. The lan 
guage model is estimated at the Word (not phrase) level. FIG. 
3 shoWs the steps taken by the decoder in order to ?nd the 
translation of sentence “je vais me arreter la.” Each interme 
diate translation 405 in FIG. 4 is preceded by its probability 
410 and succeeded by the operation that changes it to yield a 
translation of higher probability. 
A number of embodiments have been described. Neverthe 

less, it Will be understood that various modi?cations may be 
made Without departing from the spirit and scope of the 
invention. For example, blocks in the ?oWcharts may be 
skipped or performed out of order and still produce desirable 
results. Different translation methods may be used. Accord 
ingly, other embodiments are Within the scope of the folloW 
ing claims. 

The invention claimed is: 
1. A method comprising: 

receiving a phrase —e>l. in a ?rst language; and 
generating a j oint probability model from a parallel corpus, 

the generating based on at least one generated pair of 
a a _ a _ 

phrases ( e i, f I.) wherein e icompnses a ?rst number of 

Words and fi comprises a second number of Words, the 
?rst number being different from the second number. 

2. The method of claim 1, further comprising: 
generating a phrase-to-phrase probabilistic dictionary 

from the joint probability model and the parallel corpus. 

12 
3. The method of claim 1, Wherein said generating the joint 

probability model comprises: 
stochastically generating a bag of concepts C; 

' ~ % % 

for each cl- 5 C, generating the pair of phrases ( e i, f 1) 

according to the distribution “if, fl); and 
ordering the phrases generated in each language so as to 

create tWo linear sequences of phrases. 
4. The method of claims 3, further comprising training the 

10 model, the training comprising: 
determining high-frequency n-grams in E and F; 
initialiZing a t-distribution table With alignments; 
performing Viterbi based EM training for a plurality of 

iterations; and 
deriving a joint probability model and a conditional prob 

ability model. 
5. The method of claim 1, Wherein generating the joint 

probability model comprises: 
(1) stochastically generating a bag of concepts C; 
(2) initialiZing E and F to empty sentences €; 
(3) randomly removing a concept cl- 5 C and generating the 

20 

a a 

pair of phrases ( e l- f 1) according to the distribution t( 
a a 

e 1'’ f1‘); 

(4) appending the phrase f l. to the end of F; 
25 

(5) inserting phrase —e>l-, at position 1 in E provided that no 
other phrase occupies any of the positions between 1 and 
a a a 

l+| e il , Where| e il gives the length ofthe phrase e i; and 
repeating steps (3) to (5) until C is empty. 
6. The method of claims 5, further comprising training the 

model, the training comprising: 
determining high-frequency n-grams in E and F; 
initialiZing a t-distribution table With alignments; 
performing Viterbi based EM training for a plurality of 

iterations; and 
deriving a joint probability model and a conditional prob 

ability model. 
7. The method of claim 1, further comprising: 
determining a translation for an input sentence comprising 

30 

35 

40 

the phrase Z. using a greedy decoding operation. 
8. The method of claim 1, further comprising: 
determining a translation for an input sentence comprising 

45 a 

the phrase e I- using a beam search algorithm. 
9. A method comprising: 
generating a phrase-to-phrase probabilistic dictionary 

from a parallel corpus using Word-for-Word alignments 
in the parallel corpus and a phrase-based model gener 
ated from the parallel corpus, the generating based on a 

50 

. a a . a . 

generatedpa1r of phrases( e i, f l-Where1n e icompnses 

a ?rst number of Words and fl. comprises a second 
number of Words, the ?rst number being different from 
the second number. 

1 0. The method of claim 9, further comprising determining 
a best output sentence in a second language for an input 
sentence in the ?rst language, the determining comprising: 

segmenting the input sentence into a sequence of phrases; 
translating each of the phrases into a phrase in the second 

language; and 
reordering the output phrases. 
11. The method of claim 10, Wherein the reordering com 

65 prises using a relative distortion probability distribution. 
12. The method of claim 9, Wherein the generating com 

pnses: 

55 

60 
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performing a Word-to-Word alignment on both sides of the 
parallel corpus to produce a plurality of Word align 
ments; and 

collecting a plurality of aligned phrase pairs that are con 
sistent With Word alignments in said plurality of Word 
alignments. 

13. The method of claim 12, further comprising: 
estimating a phrase translation probability distribution of 

the collected phrase pairs based on relative frequencies. 
14. The method of claim 13, further comprising: 
parsing both sides of the Word-aligned parallel corpus With 

a syntactic parser to generate syntactic parse trees; and 
for each of the collected phrase pairs, checking if both 

phrases associated With the collected phrase pair is asso 
ciated With a subtree in the syntactic parse trees. 

15. The method of claim 13, further comprising: 
identifying a collected aligned phrase pair of the collected 

phrase pairs, the collected phrase pair associated With a 
plurality of alignments; and 

calculating a lexical Weight for each of the plurality of 
alignments. 

16. The method of claim 9, Wherein the generating com 
prises: 

performing bidirectional Word-to-Word alignment opera 
tions on the parallel corpus to generate tWo sets of Word 
alignments. 

17. The method of claim 16 further comprising: 
identifying alignment points at intersections betWeen the 
tWo sets of Word alignments. 

18. The method of claim 16, further comprising: 
identifying alignment points at a union of the tWo sets of 
Word alignments. 

19. A method comprising: 
(1) receiving an input string including a plurality of Words 

in a ?rst language; 
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from an initial hypothesis in a second language, (2) select 

ing a sequence from said plurality of Words in the input 
string, (3) selecting a possible phrase translation in the 
second language for said selected sequence, (4) attach 
ing the possible phrase translation to the current hypoth 
esis to produce an updated hypothesis, (5) marking the 
Words in said selected sequence as translated, (6) storing 
the hypothesis sequence in a stack, and (7) updating a 
probability cost of the updated hypothesis; 

(8) repeating steps (2) to (7) based on a siZe of the stack to 
produce one or more possible translations for the input 
string; and 

(9) selecting one of said possible translations in the stack 
having a highest probability. 

20. The method of claim 19, Wherein the initial hypothesis 
is empty. 

21. The method of claim 19, Wherein the each of the pos 
sible translations comprises a hypothesis leaving no corre 
sponding untranslated Words in the input string. 

22. The method of claim 19, Wherein updating the prob 
ability cost comprises calculating a current cost for the 
updated hypothesis and estimating a future cost for the 
updated hypothesis. 

23. The method of claim 19, further comprising: 
discarding the updated hypothesis if the updated hypoth 

esis has a higher cost than n-best updated hypotheses in 
the stack, Where n corresponds to a predetermined beam 
size. 

24. The method of claim 1, Wherein the ?rst number of 
Words or the second number of Words is one. 

25. The method of claim 9, Wherein the ?rst number of 
Words or the second number of Words is one. 


