
Chapter 1

MACHINE TRANSLATION

Machine translation is one of the holy grails of natural language processing.
It is a seemingly well-defined task: converting text in one language into
another while preserving its meaning. It mirrors a human activity that is
done by amateur bilingual speakers and professionals on a daily basis. But
at the same time, it is fraught with difficulties so that most researchers do
not expect to reach human quality anytime soon. The goal is more modest:
producing translations that are good enough, or useful.

In recent years, with the advent of the world wide web and the emergence
of data-driven methods, machine translation research has received a jolt of
new activity and much more visibility. An expanding number of research
groups have taken on the problem. Everybody has access to machine trans-
lation by visiting popular web sites such as Google Translate or Systran’s
Babelfish.1

The prominence of machine translation research signifies two things: Ma-
chine translation systems have matured to the point that they offer a useful
service for a large number of people. But the visible lack of accuracy also
shows that much work still needs to be done, maybe not to reach perfect
translation, but reach ever higher levels of quality.

1.1 Machine translation today

The most profound recent change in the long history of machine translation
can be dated back to 1988. While machine translation research started
in the 1940s, a group of researchers at IBM proposed to radically change
the approach to machine translation. A statistical approach to language
translation [Brown et al., 1988] would not anymore require a large group
of linguists toiling away at defining the transformations and lexicons that
powered traditional systems up to that point. Instead, large corpora of

1http://translate.google.com/ and http://babelfish.yahoo.com/
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translated texts, typically many millions of words, would provide the answer
and a clever statistical model would help to learn the rules of translation and
provide the basis for a decoding algorithm that finds the best translation for
a given input sentence.

The rather simple models proposed by IBM at that time (we will dis-
cuss them in some detail in the Section 1.3 on page 9 on word alignment)
have evolved over the last two decades into so-called phrase-based model
(Section 1.4 on page 16) and tree-based models (Section 1.5 on page 25).

Current research pursues several directions, most notably

• the development of models that mirror more closely linguistic under-
standing of language,

• the application of novel machine learning methods to the estimation
problem of learning translation rules from the data, and

• the attempts to exploit various types of data sources, which are often
not in the desired domain or may not be even proper sentence-by-
sentence translations at all.

Machine translation is being integrated into various applications: cross-
lingual information retrieval, speech translation, tools for translators, to
name a few.

This chapter focuses on the basic methods that underlay modern machine
translation systems. But before that, let us make first sure that we know
what our goal is and how we evaluate that we are coming closer.

1.2 Machine translation evaluation

We defined machine translation above as converting text in one language into
another while preserving its meaning — and there it is, the word meaning.
While it may inspire the minds of philosophers, it is a dreaded word for the
engineer. What is meaning? How can we measure it? How do we know that
two words, phrases, or sentences have the same meaning? And if they are
close, how close?

The fact that there are almost as many metrics for machine translation
as there are research groups working in the field [Callison-Burch et al., 2008],
[Callison-Burch et al., 2009], [Przybocki et al., 2008] is testament to how this
indeed not a trivial problem. Figure 1.1 on the next page shows what hap-
pens when we ask ten different human translators to translate one sentence,
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Israeli officials are responsible for airport security.
Israel is in charge of the security at this airport.
The security work for this airport is the responsibility of the Israel government.
Israeli side was in charge of the security of this airport.
Israel is responsible for the airport’s security.
Israel is responsible for safety work at this airport.
Israel presides over the security of the airport.
Israel took charge of the airport security.
The safety of this airport is taken charge of by Israel.
This airport’s security is the responsibility of the Israeli security officials.

Figure 1.1. Ten different translations of the same Chinese sentence, created by
different human translators (a typical example from the 2001 NIST evaluation set)

here from Chinese to English. Even for such a short sentence, each transla-
tor comes up with a different translation. This is not due to the nature of
Chinese — the same can be demonstrated for other languages.

This means that if we translate a Chinese sentence into a machine trans-
lation system, the result would very unlikely match a human translation,
even if it were a perfectly fine translation. So, how do we know whether it
is a correct translation?

Since we cannot expect that it matches one of the references, we need to
have some measure that matches the meaning of the system output against
the meaning of the source, or as it is more commonly done, against the
meaning of human reference translations.

1.2.1 Human assessment

Since we do not trust computers to deal with problems of meaning, a com-
mon retreat is to assign the task to human judges. Given the source and
the system output, we may ask them if the output constitutes a correct
translation.

Figure 1.2 on the following page shows how four different human judges
assessed translations of a French sentence into English in a recent study
[Koehn and Haddow, 2009]. While the judges agreed for some translations,
for most there is disagreement. So, even a simple task such the assessment
of correctness of translation does not lead to clear answers.

Is this a problem? No. In the probabilistic view of the world that we
adopt in statistical machine translation, there are no clear answers. Some
answers are just more likely than others. For each translation there is a
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correct Sans se démonter, il s’est montré concis et précis.
1/3 Without fail, he has been concise and accurate.
4/0 Without getting flustered, he showed himself to be concise and precise.
4/0 Without falling apart, he has shown himself to be concise and accurate.
1/3 Unswayable, he has shown himself to be concise and to the point.
0/4 Without showing off, he showed himself to be concise and precise.
1/3 Without dismantling himself, he presented himself consistent and precise.
2/2 He showed himself concise and precise.
3/1 Nothing daunted, he has been concise and accurate.
3/1 Without losing face, he remained focused and specific.
3/1 Without becoming flustered, he showed himself concise and precise.

Figure 1.2. Human judgments on translations. Four different human evaluators
often disagree if a translation is correct, for instance the first translation of the
French sentence was judged as correct by one judge and wrong by three others.

Reference: Israeli officials are responsible for airport security.
System A: Israeli officials are responsible for security.
System B: Israeli officials are responsible for rail security.
System C: Israeli officials are not responsible for airport security.
System D: Israeli officials are responsible. For airport security.
System E: Israeli officials are responsible for arport sequrity.

Figure 1.3. Five different translation with mistakes. How would you rank them?

probability distribution over possible judgments. If we have enough samples,
our statistics converge to the true distribution, and hence valid assessments.
In the world of meaning, there is no true black and white. There will always
be someone who finds fault with a translation.

In practice, machine translation systems will produce translations that
will have some mistakes. Especially for long sentences of, say, 30 words,
we cannot expect flawless output. Moreover, we are often not interested in
absolute assessments (How many sentences are translated correctly?) but in
comparisons of systems (Is system A better than system B?). So, instead of
asking if a translation is correct, we more often are in a situation where we
ask if one translation is better than another.

See Figure 1.3 for an artificial example of five different systems that
produce five different translations, each of them with a different mistake, be
it a missing word, mistranslation of a word, insertion of the word not, wrong
punctuation, or spelling errors. Which translation do you prefer?

Again, not a straightforward task. Human judges have different prefer-
ences. Some may be very obsessed with punctuation [Truss, 2003], while



Section 1.2. Machine translation evaluation 5

others could not care less. How bad is the insertion of a simple function
word? What if it is not?

We may want to break up the simple question of correctness into more
fine-grained distinctions. Is the translation fluent, i.e., is the output well-
formed in the target language? Is the translation adequate, i.e., is the
meaning preserved regardless of output language quality? Even with such
categories different human judges may have different preferences.

And here we are getting a bit more concerned. We are setting up a
very artificial task for a human judge. Nobody except for language teachers
who are grading exams would look at translations and assess their quality
in isolation. Humans use translations to fill an information need. If the
translation of a foreign text gives them the answers they were looking for,
then it was successful.

To truly test machine translation quality, we need to place it in a setting
that involves its use. There have been some recent efforts to create task-
based evaluation methods. For instance, we may give a human assessor a
translated text and then ask her questions about the content. If she able to
answer them, the translation was successful [Jones et al., 2006]. In a variation
of this method, we may ask a human assessors to edit the translation to
produce fluent output without access to the source. Then, we check if the
edited translation is correct, hence testing her understanding [Callison-Burch
et al., 2009].

1.2.2 Automatic evaluation metrics

The development of machine translation systems requires frequent evalua-
tion; too frequent for costly manual evaluation. One of the turning points
of statistical machine translation research was the establishment of a regime
of automatic evaluation that is commonly accepted. In fact, papers on im-
provements in machine translation rarely include human evaluation, but they
pretty much have to include improvements in the current most popular au-
tomatic evaluation metric bleu.

How can we trust a computer program that computes a metric score to
give us reliable assessment of machine translation quality? If a computer
program could tell us if a translation is correct or wrong, why could it not
produce a correct translation in the first place? Well, it uses one trick and
one cop-out.

The trick is to not only use the source and system output, but also to
use one or more reference translations that were produced by reliable human
translators. We have already discussed at length that human and machine
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translation may lead to translations that are different from existing reference
translations but still be correct. But, and here is where the cop-out comes
in and the argument gets a bit murky: if the machine translation is similar
to existing reference translations, then it is more likely to be correct. While
it is easy to defeat this argument with a single sentence example, the case
for automatic metrics is built on the use of a large test set of 100s or even
1000s of sentences. Over a large test set, better translations are expected to
be more similar to references.

Developers of machine translation evaluation metrics do not just appeal
to such an argument, they validate this claim by carrying out correlation
studies that show that their metrics rank systems in pretty much the same
way as human judges would do. There are even evaluation campaigns for
evaluation metrics, where different metric developers compete for the highest
correlation with human judges [Callison-Burch et al., 2008], [Callison-Burch
et al., 2009], [Przybocki et al., 2008].

We have now established a regime to test performance during develop-
ment of a machine translation system: We first select a test set. We give it
to human translators to produce one or more translations. We then run our
machine translation system, and measure how similar the output is to the
reference translations. Then, we make a change to our machine translation
system, run it again over the same test data, measure similarity again and
see if it has improved.

We are left with the task to define a measure of similarity between
machine translation output and reference translations. This is again one of
these dreaded words that are in the same sphere as meaning, but we will
start simply.

1.2.3 WER, BLEU, METEOR, ...

Language is made up out of words, so two sentences are similar, if they
share a lot of words. So, when comparing machine translation output and
a reference translation, we can count: (a) matches, words that are both in
the reference and in the output, (b) insertions, words that are only in the
output, and (c) deletions, words that are only in the reference.
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Given these three statistics, we can compute a number of metrics:

precision = matches
matches+insertions (1.1)

recall = matches
matches+deletions (1.2)

per = 1− matches
matches+max(insertions,deletions) (1.3)

f-score = 2×precision×recall
precision+recall (1.4)

weighted f-score = (1+α)×precision×recall
α×precision+recall (1.5)

All these metrics are the basis of machine translation metrics that have
been proposed over the last years. There is some debate, if precision or recall
is more important, which is related to the question how to penalize too short
and too long translations. per, position-independent errror rate, is one
of the earliest metrics that have been proposed.

Let us now look at a number of refinements that have been applied to
this simple idea of matching words between machine translation output and
reference translations.

The first refinement is the use of multiple reference translations.
Given the allowable variation in translation, it may be too constraining to
use only a single reference translation as the gold standard. If we have
multiple translations, the chances that correct machine translation output
matches one of them very closely increases. This should reduce the problem
of correct but badly scoring translations. In terms of integrating multiple
reference translations into a metric, we may always choose the best score with
any of the reference translations, or come up with more elaborate schemes.
For instance, we may count as a match if an output word matches in any of
the reference translations.

Secondly, we may match not only words, but also n-grams of words.
This is an attempt to take word order into account. We may not expect that
all the matching words in output and reference are in the same order, but if
neighboring words in the output match neighboring words in the reference
translation, then this is certainly a plus.

These two refinements are the basis of the bleu score [Papineni et al.,
2002]. It is the most commonly used metric in the field, so it is worth taking
a closer look. The formal definition is:

bleu = brevity-penalty× exp

(
1
4

4∑
i=1

log precisioni

)

brevity-penalty = min
(

1,
output-length

reference-length

) (1.6)
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bleu is in essence the geometric mean of n-gram precisions, typically
using n-grams of length 1–4 (precisioni is precision for n-grams of size i).
Since it is a precision-based metric, there is a need to hedge against too
short translations. This is done with a brevity penalty, which only comes
into effect if the output length is shorter than the reference length. Multiple
reference translations are incorporated by allowing n-gram matches against
any of the reference translations. If an n-gram occurs multiple times in the
output, it is only counted as correct as many times as the maximum number
of times it occurs in one of the reference translations. The reference length
for multiple references is chosen by selecting the closest length to the output
length.

The bleu score is computed over entire documents or test sets, not for
single sentences. In fact, it is not a very good metric for single sentences,
since the 4-gram precision is often zero, or otherwise has too strong of an
impact. When using bleu on the sentence level, the precision is typically
smoothed by adding 1 to the number of actual matches.

Since the bleu score was proposed in 2002, a number of further refine-
ments have been proposed. One is to relax the restriction of matches to
exact surface form matches. We may also want to give at least partial credit
for words that only differ in their morphological variation but derive from
the same lemma. We may also give credit to synonym matches utiliz-
ing resources such as WordNet [Miller et al., 1993]. A metric that recently
gained some prominence, meteor [Banerjee and Lavie, 2005], allows for such
matches and also relies more heavily on recall instead of precision.

An old idea is to not only treat sentences as bag of words or n-grams,
but to compute a explicit word alignment between the machine translation
output and the reference translation. A metric borrowed from speech recog-
nition, word error rate (wer), enforces such an alignment and does not allow
for any reordering between the sentences. Since there is a significant amount
of allowable variation in word order without change in meaning, wer has
been refined into metrics that do allow movements but penalize them as
additional errors (similar to insertions and deletions). ter, which is known
as translation error rate or translation edit rate, computes the minimal cost
alignment between output and reference allowing for moves. Unfortunately,
finding the optimal alignment is a computationally hard problem, so this
metric is slow in practice and usually an approximation is computed.

Finally, we have all the ingredients for setting up machine translation
evaluation as a machine learning problem. Over the years, evaluation cam-
paigns have created training data in terms if system translations and their
human assessment. We have a well-defined goal: optimizing correlation of
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an automatic metric with the human judgments. So, we can use any kind of
features in a machine learning approach. In recent years, researchers have
incorporated linguistic features such as syntactic relationships or semantic
roles.

1.3 Word alignment

The idea of statistical machine translation is to learn translation rules from
a sentence-aligned parallel corpus. Let us start with the extraction of word
translations from such a corpus. Detecting word translations provides the
basis for establishing a word alignment, a fundamental step in any statistical
machine translation model.

1.3.1 Co-occurence

We assume that we have a sentence-aligned parallel corpus, where each for-
eign sentence f is paired with its English translation e. Such corpora are
available on the Internet (for instance Europarl2 or from the LDC3), or are
collected by translation agencies who call them translation memories. Raw
corpora require some basic pre-processing, typically tokenization (separating
out punctuation), data cleaning (throwing out very long sentences or sen-
tences mismatched due to their relative length), and normalizing upper and
lower case (for instance, by lowercasing all words), and we are ready to go.

We would like to learn which words in one language translate into words
of the other language. We want to learn this in form of a probability distri-
bution t(e|f) that gives for each foreign word f and each English word e the
probability that e is a translation of f . For instance, for the German word
Haus we expect to learn something like this:

t(e|Haus) =



0.8 if e = house,
0.16 if e = building,
0.02 if e = home,
0.015 if e = household,
0.005 if e = shell.

(1.7)

As the name statistical machine translation implies, we learn such a
model from the statistics of the data, i.e., the counts that we see in our

2http://www.statmt.org/europarl/
3http://www.ldc.upenn.edu/



10 Machine Translation Chapter 1

parallel corpus. We can go over all sentence pairs that contain a specific
foreign word f (like Haus), and see what English words occur on the English
side. Based on these counts, we can estimate the conditional probability
distribution:

t̂(e|f) =
count(f, e)∑
e′ count(f, e′)

(1.8)

We have to be a bit careful with the counting. Let us say, we have foreign
sentence f that contains the German word f in question. On the English side,
there are five words. Can we now treat each co-occurence of f with each of
the five words e ∈ e as one count?

We could, but this would lead to different count collections for short and
long sentences. In a sentence pair with five English words, we would collect
five counts for the foreign word f . But if there are ten English words, we
would collect ten counts. But in fact, the foreign word f occurs in each
instance only once.

So, instead, we are resorting to fractional counting: If there are five
English words, and since we do not know which of them is the translation of
f , we count each word as 1

5 .
How well will this work? Intuitively, an English word e that is a common

translation of f will co-occur frequently with that word, so we would expect
to estimate a relatively high t̂(e|f). But, then, the English period at the end
of the sentence will occur in nearly every English sentence, so it will likely co-
occur more frequently with f than any of its true translations individually.
But is the most likely translation of every foreign word really the period?

Something has gone awry. We normalize the co-occurence counts (f, e)
with the frequency of f , but not with the frequency of e. There are now
several other statistical measures we could use to do our estimation. For
instance, we could look at mutual information. In fact, several such measures
have been used in the literature to massage co-occurence statistics.

1.3.2 IBM Model 1

The very first model of machine translation, IBM Model 1, tackles the es-
timation problem in a different way. Instead of changing the conditional
probability model, it forces us to find for each sentence pair a word align-
ment. The probability of a foreign sentence f to translate into an English
sentence e with a alignment a is defined as:
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p(e, a|f) =
1
Z

le∏
j=1

t(ej |fa(j)) (1.9)

The formula includes the alignment function a which is straightforward
to explain: it matches each English position j to a foreign word position
a(j). Note that the formula above is a slight simplification of the original
IBM Model 1. We avoid the introduction of the noisy channel model4 at
this point. We are also glossing over the normalization Z that ensures that
p(e, a|f) is a proper probability distribution.

Let us say that we went through the estimation process that we did in
the section above. We ended up with a conditional distribution t(e|f). We
now look at the first sentence pair of the parallel corpus again, and would
like to find the most likely word alignment.

A closer look at Equation 1.10 on page 13 reveals that maximizing
p(e, a|f) means that we independently maximize each t(ej |fa(j)). In other
words, we need to find the one foreign word f in the sentence f that best
explains e.

You may still have in mind the mess we got ourselves into in the previous
section. Each foreign word f would prefer to produce the English period.
But this is not the question we are asking here. Only one foreign word gets
to produce the period. But we also need to explain the other English words.
What is the foreign word that best explains an occurrence of the English
house? It is certainly not the foreign period, which is a very confused word
that spreads its probability mass over very many words. We would expect
that the German Haus has a fighting chance to be chosen to align to house.
Yes, it is also confused and may have an odd preference for producing periods,
but we would expect p(house|Haus) to be bigger than p(house|.).

Let us go one step further: if we go through each sentence pair of the
parallel corpus, find the most likely word alignment for each, and then use
only aligned words for count collection, we would expect to obtain better
statistics for estimating the word translation probability distribution t(e|f).
In the next section, we will do one better: we will invoke the magic of the
EM algorithm.

4The noisy channel approach employs the Bayes’ rule argmaxep(e|f) = p(e) p(f |e) to
integrate a language model p(e), and hence reverses the direction of the translation model
from p(e|f) to p(f |e).
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1.3.3 Expectation Maximization

To learn word translation probabilities from a parallel corpus, we are suffer-
ing from the curse of incomplete data. Yes, we have a parallel corpus, where
English sentences are matched up with their foreign translations. But while
we have aligned sentences, we do not have aligned words.

If we had the true word alignment, it would be straightforward to collect
counts and estimate word translation probabilities t(e|f). On the other hand,
if someone gave us the true word translation probabilities t(e|f), then we
could find for each sentence pair the most likely word alignment. But we
have neither. So, what can we do?

The basic idea of the EM algorithm is the following: let us just pretend
that we have a probability distribution t(e|f). Then we can find the best
word alignments. And with those word alignments, we can estimate a better
model. Now we have a new model and can repeat the process.

The EM algorithm, in a nutshell, is the following process:

1. Initialize the model, typically with a uniform distribution

2. Apply the model to the data: compute probabilities for each possible
word alignment

3. Learn the model from the data, based on collected counts from the
word alignments and estimate a new word translation probability dis-
tribution

4. Go to steps 2 until convergence

In fact, in the section above, we already went through two iterations of
the EM algorithm with slight simplifications. In the EM algorithm, we have
to consider each possible alignment — not just the most likely alignment —
and collect counts based on the conditional probability of the alignment given
the sentence pair (we implicitly did this in the first iteration by collecting
fractional counts).

Going over each possible alignment is quite a daunting task: since each
English word is aligned to any of the foreign words, there is an exponential
number of possible word alignments for a sentence pair. For IBM Model 1,
there is a trick that allows us to do exact estimation in polynomial time,
but in further refinements of the model (see section below), this is no longer
possible. Instead, we have to sample the alignment space to find the most
likely alignments, and restrict our count collection to this subset.
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1.3.4 Alignment model

IBM Model 1 is a very simplistic model for word alignment or statistical
machine translation, and even the original researchers at IBM only used it
as a stepping stone to more sophisticated models. It does not work very well
with rare words, since there are just too many choices. It also does not work
if a foreign word occurs multiple times in the foreign sentence. Which one
of them should an English word pick for alignment? They all have the same
probability.

One way to extend the model is to include a component for alignment
probabilities. IBM Model 2 introduces a model based on absolute word posi-
tions: a(i|j, le, lf ). Based on the length of the English and foreign sentences
le, lf and the English word position j, we predict the foreign word position
i.

Putting it all together, we have IBM Model 2:

p(e, a|f) =
1
Z

le∏
j=1

t(ej |fa(j)) a(a(j)|j, le, lf ) (1.10)

Instead of mapping absolute word positions, it is preferable to condition
the alignment of a word on the alignment of its preceding word. After all,
words typically move in phrases. Such a relative alignment model is used in
IBM Model 4, and also in the HMM alignment model [Vogel et al., 1996].

One more extension: while we restrict each English word to align to
a single foreign word, foreign words may align to any number of English
words. To reign in, IBM Model 3 introduces the concept of fertility, and
adds another conditional probability that predicts how many English words
a foreign word generates.

1.3.5 Symmetrization

We have come to the point to admit to the most shameful secret in statistical
machine translation. The IBM Models, although they are still commonly
used for word alignment, are fundamentally flawed. The trick that makes
EM training work so well is to enforce that each English word aligns to
exactly one foreign word.5

Linguistically, this makes very little sense, and the restriction to 1-to-
many alignments is also oddly asymmetrical. So, what can be done? Well, we
run the EM training with the IBM Models in both directions (resulting in a

5Actually, we also allow an English word to align to the artificial null word, but we
do not allow an English word to align to multiple foreign words.
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Figure 1.4. Overcoming the flaw in IBM Models, which assume one-to-many
alignments (or many-to-one if run in reverse): A heuristic such as grow-diag-final
starts with the alignment points from the intersection of two alignments obtained
by running the model in both directions (black arrows). Then, it adds neighboring
alignment points from the union (white arrows).

1-to-many and a many-to-1 alignment), and then force an agreement between
the two resulting word alignments. We call this crude hack symmetrization
[Och and Ney, 2003].

Once we obtained the two word alignments, we can take the union and the
intersection between their alignment points. In a common method, we use
all alignment points in the intersection and add some of the alignment points
in the union. Typically points that neighbor already established alignment
points are added. See Figure 1.4 for an illustration.

For instance, in the commonly used grow-diag-final method that ships
with the open source Moses system, alignment points that directly and di-
agonally neighbor existing alignment points are added until convergence.
Then, in a desperate final step, alignment points for words that are hitherto
unaligned are added. The pseudo-code for the heuristic is given in Figure 1.5
on the facing page.

There are a number of refinements of this symmetrization process, for
instance symmetrization can be done after each iteration of EM training
[Matusov et al., 2004]. Also, machine learning methods have been developed
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Input: sentence pair (e, f), with alignments e2f and f2e
Output: word alignment a

1: grow-diag-final(e2f ,f2e):
2: neighboring = ((-1,0),(0,-1),(1,0),(0,1), (-1,-1),(-1,1),(1,-1),(1,1))
3: alignment = intersect(e2f ,f2e);
4: grow-diag();
5: final(e2f);
6: final(f2e);

7: function grow-diag():
8: while iterate until no new points added do
9: for all english words e ∈ {e1...en} do

10: for all foreign words f ∈ {f1...fm} do
11: if e aligned with f then
12: for all neighboring points enew, fnew do
13: if (enew unaligned | fnew unaligned)

& (enew, fnew) ∈ union(e2f, f2e) then
14: add alignment point (enew, fnew)
15: end if
16: end for
17: end if
18: end for
19: end for
20: end while

21: function final(a):
22: for all english words enew ∈ {e1...en} do
23: for all foreign words fnew ∈ {f1...fm} do
24: if (enew unaligned | fnew unaligned) & (enew, fnew) ∈ union(e2f, f2e)

then
25: add alignment point (enew, fnew)
26: end if
27: end for
28: end for

Figure 1.5. Pseudo-code for a symmetrization heuristic that settles on a set
of alignment points between the intersection and the union of two IBM Model
alignments.
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to either iteratively add alignment points to the intersection [Ren et al.,
2007], [Ma et al., 2008], or to delete alignment points from the union [Fossum
et al., 2008].

1.3.6 Word alignment as machine learning problem

As with evaluation metrics, once the natural language community manages
to properly define a problem, it does not take long before the hordes of
machine learning researchers come in and attack it with all their favorite
algorithms. This has also happened with word alignment, increasingly so in
recent years.

For machine learning, word alignment is an interesting unsupervised
learning problem. It would be futile to list all methods that have been
recently applied. You have your usual suspects, as the perceptron algorithm
[Moore, 2005], [Moore et al., 2006], maximum entropy models [Ittycheriah
and Roukos, 2005], neural networks [Ayan et al., 2005], max-margin meth-
ods [Taskar et al., 2005], boosting [Wu and Wang, 2005], [Wu et al., 2006],
support vector machines [Cherry and Lin, 2006], conditional random fields
[Blunsom and Cohn, 2006], [Niehues and Vogel, 2008] or MIRA [Venkatap-
athy and Joshi, 2007].

One ingredient for a successful onslaught of machine learning was the
establishment of test sets, in this case gold standard word alignments that
were created by human annotators. There are several such sets for a number
of language pairs, usually available through the LDC.6

There is some debate over how to best evaluate alignment quality. One
early metric, alignment error rate (AER) has come under heavy criticism
[Fraser and Marcu, 2007]. Since word alignment is mostly done in the con-
text of statistical machine translation, the ultimate evaluation metric is the
machine translation quality that can be obtained using the word alignment.
Of course, this is a very costly metric to compute.

1.4 Phrase-based models

Currently, the dominant approach in statistical machine translation is a
model based on the mapping of short text chunks (typically only 1-3 words
long), which are somewhat misleadingly called phrases albeit they are not
necessarily linguistic phrases, i.e. constituents in a syntactic analysis.

Compared to word based models, phrase-based models overcome the fun-
damental flaw of insisting on the lexical mapping of a 1-to-1 correspondence

6http://www.ldc.upenn.edu/
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for six hours they spoke with each other . 

sprachen sie sechs Stunden  miteinander . 

Figure 1.6. Phrase-based machine translation. The input is segmented into
phrases ( not necessarily linguistically motivated), translated one-to-one into phrases
in English and possibly reordered.

of words. Of course, word-based models do confront reality and introduce
components such as fertility or null-word generation. But these compli-
cations make training and decoding algorithms much more cumbersome.
Phrase-based models also have the advantage that with more training data
longer and longer phrases can be learned. In the limit, a sentence may be
translated by looking it up in its entirety in the training corpus.

1.4.1 Model

The phrase-based model has the advantage that it is quite easy, which allows
for straightforward training methods and efficient decoding algorithms. See
Figure 1.6 for an illustration. The input sentence is segmented into phrases
and each phrase is mapped 1-to-1 into an English phrase. Phrases may be
reordered.

Let us now define the phrase-based statistical machine translation model
mathematically. First, we apply the Bayes’ rule, so we can integrate a lan-
guage model plm by inverting the translation direction. The best English
translation ebest for a foreign input sentence f is defined as

ebest = argmaxe p(e|f)

= argmaxe

p(f |e) plm(e)
p(f)

= argmaxe p(f |e) plm(e)

(1.11)

Note that we can ignore p(f) since it is constant for all possible transla-
tions e. We decompose p(f |e) further into

p(f |e) =
I∏
i=1

φ(f̄i|ēi) d(starti − endi−1 − 1) (1.12)

The foreign sentence f is broken up into I phrases f̄i. Each foreign
phrase f̄i is translated into an English phrase ēi. Since we mathematically
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Figure 1.7. Phrase extraction: given the word alignment, the phrase pair (opens
quickly, geht schnell auf) is extracted.

inverted the translation direction, the phrase translation probability φ(f̄i|ēi)
is modelled as a translation from English to foreign.

Reordering is handled by a distance-based reordering model. We
consider reordering relative to the previous phrase. We define starti as the
position of the first word of the foreign input phrase that translates to the
ith English phrase, and endi as the position of the last word of that foreign
phrase. Typically this model is not estimated from the data, but rather a
fixed cost relative to the movement distance is applied: d(x) = 1

Zα
|x|.

There are other components that we may want to add. Typically, a word
penalty ω|ei| is factored in that adds a factor ω for each produced word. This
allows us to adjust the model to produce shorter or longer output.

1.4.2 Training

The main knowledge source in phrase-based models is a massive phrase trans-
lation table. It contains input phrases, their possible translations and corre-
sponding probability scores.

The table is learned from a word-aligned parallel corpus. Given a sen-
tence pair and a word alignment, we extract all phrase pairs that are consis-
tent with the word alignment. By consistent we mean that all the words in
the phrases align to each other and not to words outside the phrase pair.

See Figure 1.7 for an example. Given the word alignment points between
(opens, geht), (opens, auf), and (quickly, schnell), we can extract the phrase
pair (opens quickly, geht schnell auf).

There are some subtle decisions in phrase extraction, for instance a max-
imum phrase length (typically 5–7), if phrases may have unaligned words at
the boundaries (typically yes, but sometimes limited), or if partial counts
are assigned, if multiple target phrases are found for a source phrase (done



Section 1.4. Phrase-based models 19

either way).
When extracting all phrase pairs, count collection leads to a straightfor-

ward definition of conditional phrase translation probability based on relative
frequency:

φ̂(f̄ |ē) =
count(ē, f̄)∑
f̄ ′ count(ē, f̄ ′)

(1.13)

The conditional phrase translation probabilities are often estimated from
very sparse counts. In the extreme case, for an English phrase ē that only
occurs once, its lone foreign correspondent f̄ receives a phrase translation
probability of φ̂(f̄ |ē) = 1.

There are several ways to remedy this. Commonly, additional scoring
functions based on the lexical translation probabilities are added, for instance
IBM Model 1. Discounting the raw counts using Good Turing smoothing
have also been shown to be effective [Foster et al., 2006].

We will refine the model in Section 1.4.5 on page 23 below, where we
reformulate it as a log-linear model that allows for the easier integration of
additional scoring functions, but let us first turn to the practical issue of
actually producing translations for a new, previously unseen input sentence.

1.4.3 Decoding

Let us say, we would like to translate the German sentence

Sechs Stunden sprachen sie miteinander .
six hours spoke they with each other .

An English sentence typically starts with the subject, so when creating
a translation into English, we would pick out the subject sie and start the
translation with They. Then we would pick out the verb sprachen and con-
tinue to the translation with spoke. By building the translation from left to
right, we reach the English translation:

They spoke with each other for six hours.

With our decoding algorithm, we want the machine also to translate from
left to right. However, this is not so simple. There are many options in our
phrase translation table to choose from. See Figure 1.8 on the following page
for an excerpt of the options from a real example (using a phrase translation
table aquired from the Europarl corpus). Only when we have the full sentence
translation, then we can compute its full translation probability.
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Sechs Stunden sprachen sie miteinander .
six hours it would be with each other .

six , hours , it would to each other .
6 hours of they spoke together .

for six few hours spoke they with
time talked she each other

Figure 1.8. Translation options for a short German sentence

At the beginning, the algorithm may pick any of the translation options
displayed in the figure. In the second step, we are not able to translate the
same input word or phrase again, but we are still left with almost as many
options. A näıve algorithm that tries all possible combinations of translation
options to translate the sentence has a run time that is exponential with
respect to sentence length. In fact, machine translation decoding has been
proven to be NP-complete [Knight, 1999].

In the commonly used beam search stack decoding algorithm, we explore
the space of possible translations by keeping the promising partial transla-
tions and extending them with new translation options until we have covered
the entire input sentence.

The partial translations (called hypotheses) are organized in stacks,
based on the number of input words they cover. So, for instance, stack one
contains all hypotheses that have already translated one input word. We
only keep a limited number of hypotheses in a stack, so we have to prune
out some that do not look promising.

We proceed through the expansions of all hypotheses in a stack, which
generates new hyoptheses that are placed in stacks farther down the road.
Then, we move on to the next stack. The pseudo code for the algorithm is
displayed in Figure 1.9 on the next page. For a graphical illustration, please
refer to Figure 1.10 on the facing page.

The term beam search implies that we search through the most promis-
ing part of the search space, using a ”beam of light” that illuminates a
number of alternatives but that is not bright enough to explore all possible
paths.

We mentioned that we have to sort out the less promising hypotheses in
each stack. Note that when generating a partial translation, we can already
compute all the probability costs implied by Equation 1.13 on the previous
page that have been incurred by the translation options so far. We can then
sort the hypotheses according to the costs-so-far and drop the worst ones.
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Input: Foreign sentence f = f1, ...flf
Output: English translation e

1: place empty hypothesis into stack 0
2: for all stacks 0...n− 1 do
3: for all hypotheses in stack do
4: for all translation options do
5: if applicable then
6: create new hypothesis
7: place in stack
8: recombine with existing hypothesis if possible
9: prune stack if too big

10: end if
11: end for
12: end for
13: end for

Figure 1.9. Pseudo-code for the stack decoding heuristic.

hours

they

six
... hours ... they spoke

... spoke

no word
translated

one word
translated

two words
translated

three words
translated

Figure 1.10. Illustration of the stack decoding heuristic.
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Figure 1.11. Cube pruning: Sorting hypotheses (y-axis) and options (x-axis)
allows for the expansion of only the most promising hypotheses.

Especially since hypotheses may cover different words, pruning based on
costs-so-far is unfair to the translations that already tackled the harder part
of the sentence. So, in addition to the cost-so-far, we include a future cost
estimate.

There is one more, very important twist: recombination. There may
be two different decoding paths that lead to pretty much the same state in
the search. For instance, we may start translation with the 1-word phrase
mapping sie → they and then continue with sprachen → spoke. But we may
have simple used the 2-word phrase mapping sprachen sie→ they spoke. One
of the two resulting hypotheses will have a higher cost-so-far (depending on
the translation costs of the phrase translations), so we can safely drop the
worse one.

Note that hypotheses do not have to match exactly for recombination,
they only have to be undistinguishable in terms of their continuation. While
they have to match in the foreign word coverage (this affects future search),
they may differ in the output words that they have produced so far if these
are outside the window of the n-gram language model.

1.4.4 Cube Pruning

A popular new variation of the decoding heuristic is called cube prun-
ing, although in phrase-based decoding it has nothing to do with cubes or
pruning. A better name would be sorted expansion. Since most of the
hypothesis that are generated are discarded, cube pruning focuses on ex-
panding hypotheses that are most promising. To this end, hypotheses are
translation options are sorted, and only the most probable hypotheses are
combined with the most probable translation options.
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See Figure 1.11 on the facing page for an illustration. Let us say that we
want to expand hypotheses that covered the first word already with transla-
tion options that cover the second word. In the example, there are four such
hypotheses, and five such translation options - in practice the numbers are
easily a magnitude bigger. The original beam search algorithm generates all
four×five expansions — we now want to focus on just a subset of these.

The most promising new hypotheses is the combination of the best old
hypothesis with the best translation option. So, we start in the top left
corner.

We could proceed by creating the top n hypotheses based on the old hy-
pothesis cost and the estimated translation option cost. However, the cost
of the new hypothesis is not simply the combination of the cost of the hy-
pothesis and the cost of the expansion. Only once we put them together, we
can compute the true language model cost, and we know the true hypothesis
cost.

So, instead, we proceed in a way that takes into account that some hy-
pothesis and some translation options turn out to be more promising that
their costs suggest. We always expand the hypotheses are neighbor the
best hypothesis that we have expanded so far and that still has unexpanded
neighbors.

In the example, the most promising hypothesis in the top left corner has
a true cost of 2.1. We explore its neighbors, which have costs of 2.5 and 2.9.
Next we, explore the neighbors of the hypothesis with cost 2.5, and so on.

1.4.5 Log-linear models and parameter tuning

We have already mentioned a number of components that may improve our
translation model: lexical translation probabilities or a word penalty. It
would be awkward to derive a model that includes such components math-
ematically from the sentence translation probability p(e|f) with appeals to
interpolation, independence assumptions and back-off, so may just throw
in the towel, and clearly state that our model is a combination of feature
functions hi that are weighted (λi) according to their importance:

p(e|f) =
∏
i

hi(e, f)λi

log p(e|f) =
∑
i

λi log hi(e, f)
(1.14)

The feature functions are the components of the phrase-based model that
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we introduced in Section 1.4.1 on page 17, for instance the language model
hlm(e, f) = plm, or the phrase translation model hφ(e, f) =

∑
i φ(f̄i|ēi).

Now that we introduced weights λi for the feature functions hi, how do
we set them? Each of the feature functions has something to say about the
English sentence e being a good translation of the f. We would like to weight
these functions so that we optimize overall translation quality.

Here is where we close the circle to the discussion of automatic evaluation
metrics: for a given tuning set of foreign input sentences and their reference
translations, we can — under any given weight setting {λi} — translate the
set with our model and decoder, and compute the resulting automatic bleu
score. We then change the weight setting, decode again, and see if we have
an improvement. What we have here is a well defined multi-dimensional
optimization problem, which is called parameter tuning or minimum
error rate training (MERT).

Since decoding is very expensive, we use a short-cut of generating n-best
translations for each input sentence and carry out optimization on these n-
best lists first. A common method [Och, 2003] optimizes one parameter at a
time. It is possible to find the optimal value for one parameter when leaving
all others fixed. However, we are limiting ourselves to a grid search that may
get stuck in local optima. So, random restarts are needed. Also, we re-run
the decoder to avoid optima on the n-best lists that are unrepresentative of
the full search space.

1.4.6 Coping with model size

It is not entirely intuitive, but the phrase translation tables we build for
phrase-based models are much larger than the parallel corpus itself. Consider
that a sentence with n contains O(n2) phrases.

Typically, training corpora have millions of sentence pairs, and resulting
phrase translation tables are often measured in Gigabytes. Moore’s Law has
gone a long way to make the practical use of phrase based models feasable,
but even today we are not able to store large models in memory. Efforts to
run translation systems in hand-held devices excerbates the situation.

A number of solutions have been suggested, ranging from efficient storage
of the translation table to filtering and pruning. Let us take a look.

We already mentioned that a table is larger than the corpus we extract
it from. A compelling solution is to not store the table at all, but only
the corpus. Of course, we need to quickly look up source phrases (and their
translations) that match a given input sentence. Here, the use of suffix arrays
has been proposed [Callison-Burch et al., 2005].
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A suffix array is a data structure that contains a sorted list of all suffixes
of the corpus. Think of suffixes as very long phrases starting anywhere in
the corpus and going to the end. The number of suffixes is identical with
the number of words in the corpus, and hence the sorted index is of the
same size as well. When we look up a suffix of the input sentences, we can
find arbitrarily large matches using the index. We then we refer to the (also
stored) word alignment and target side of the corpus to extract phrases on
the fly.

However, if even the corpus size is too large, then we need to be even
more constraint in what we store in memory. Note that, for the translation
of a single sentence, only a tiny fraction of the phrase translation table is
used. Instead of loading all of it into memory, we can filter it down to the
fraction that is needed. Filtering is common in experimental work, where
the same test set of typically one or two thousand sentences is used.

If we want to deploy a machine translation system in an online setting,
we do not have the time to filter through Gigabytes of data. Unless, we
organize the table on-disk in an efficient data structure that lends itself to
quick lookups of phrases, such as a prefix tree [Zens and Ney, 2007].

Finally, we can take a hard look at the translation table, realize that
much of it is junk: either long phrase pairs that are very unlikely to ever be
useful, or low-probability phrases such as thousands of translations for the
period (there are even more for the comma). So, why do not just clean up?
Phrase pairs may be discarded based on significance tests on their more-
than-random occurrence [Johnson et al., 2007], log likelihood ratios [Wu
and Wang, 2007]. Such considerations may also be taking into account in
second pass phrase extraction stage that does not extract bad phrase pairs
[Zettlemoyer and Moore, 2007].

We may only need to extract the shortest phrase pairs that explain each
training sentence pair [Quirk and Menezes, 2006]. This is also the basis of
the n-gram translation model [Mariño et al., 2006], [Costa-jussà et al., 2007],
a variant of the phrase-based model. Or, we may prune the translation table
based on how often a phrase pair was considered during decoding and how
often it was used in the best translation [Eck et al., 2007a], [Eck et al.,
2007b]. Finally, [Kutsumi et al., 2005] uses a support vector machine for
cleaning phrase tables.

1.5 Tree-based models

Any reader with some background in linguistics will view our models as
hopelessly näıve. One of the fundamental properties of language is recursion.
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A sentence is made up of clauses, which are made up of verbs, noun phrases
and alike. Noun phrases may include relative clauses that again are made
up of verbs etc. Virtually all modern theories of grammar look at a sentence
and do not see a string of words, but a hierarchical tree structure.

None of this is a revelation to researchers in statistical machine trans-
lation. The use of syntactic trees — either using syntactic parsers or auto-
matically learning tree structures from the data — within the paradigm of
statistical machine translation has been an ongoing focus of attention since
the mid-1990s. However, until very recently, such approaches have not been
successful in head-to-head comparisons with simpler phrase-based models.

One reason is that operations on tree structures are more complex and
thus require computationally more expensive learning methods and also
make the search during decoding much harder. This led to simplifications
such as requiring some form of isomorphism between source and target syn-
tax trees (for instance, only allowing reordering of children nodes, but no
major restructuring) that turned out to be too harsh a restriction.

Another problem for syntax-based approaches is that talking about syn-
tax in all its glory is fine, but at the end of day we have to use available
syntactic parsing tools that may be just not good enough.

Current tree-based approaches build on the success of phrase-based mod-
els, and can be seen as extensions of that approach.

1.5.1 Hierarchical phrase-based modes

A limitation of phrase-based models, as we defined them, is that they do
not allow for discontinuous phrases with gaps. For instance, we may want
to map between English and French:

does not X → ne X pas

Such a mapping may be expressed, however, by a synchronous context-
free grammar, which distinguished between terminal symbols (words) and
non-terminals (X). A grammar rule may also have multiple non-terminals:

X1 of X2 → X2 X1

Coming from phrase-based models, we may view such rules as phrase
mappings from which sub-phrase pairs have been subtracted. Allowing for
such rules, we obtain better explanation for certain reordering phenomena,
role of functions words such as of and discontinuous phrases.

The extraction of such so-called hierarchical phrase pairs [Chiang,
2005] from a word aligned parallel corpus is straight forward. In addition to



Section 1.5. Tree-based models 27

Die
 G

ara
gen

tür
geh

t
sch

nell
au

f

The

garage

door

opens

quickly

Figure 1.12. Learning hierarchical phrase translation rules: Starting with the
phrase pair (geht schnell auf, opens quickly), we extract the sub-phrase pair (schnell,
quickly) and arrive at the translation rule (geht x auf, opens x).

the fully lexicalized phrase pairs, we have to take a look at each phrase pair,
see if we can subtract sub-phrase pairs and replace them by non-terminals.
Then, we proceed to also add these hierarchical phrase pairs to our transla-
tion table. See Figure 1.12 for an example.

The process of extracting sub-phrase pairs has the potential to blow
up the number of phrase pairs, we have to introduce some reasonable con-
straints, for instance: rules must include at least one word, rules must span
at most a maximum number of words, etc.

Adding hierarchical phrase pairs seems to be an obvious win, except that
it breaks the decoding algorithm we presented in Section 1.4.3 on page 19,
which required that we construct the translation left to right. How can we
build a sentence left to right, when we have to add phrases such as ne X pas?

Coming from syntactic grammars, there is a straight forward answer:
this is a parsing problem, and we have to apply a parsing algorithm, such as
chart parsing.

1.5.2 Chart decoding

Instead of decoding from left to right, we decode bottom up. First we find
translations for all single words, then for all spans of two words, then for all
spans of three words, and so on until we covered the entire sentence. See
Figure 1.13 on the following page for an illustration.

For instance, when translating the sentence

Je ne parle pas anglais.

into English, we may first apply a number of traditional phrase translation
rules that give us the chart entries:
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Figure 1.13. Decoding with tree-based model: One stack for each input word
(bottom row), and higher level stacks for each contiguous span.

I speak English
je ne parle pas anglais

We can then apply hierarchical phrase rule (where X matches speak):

ne X pas → do not X

This adds the chart entry do not speak:

do not speak
I speak English
je ne parle pas anglais

Finally, we can apply the glue rule:

X1 X2 → X1 X2

Using it twice gives us the complete output:

I do not speak English
I do not speak

do not speak
I speak English
je ne parle pas anglais

A rough sketch of the chart decoding algorithm is given in Figure 1.14
on the next page. In practice, a number of refinements are needed to avoid
the loop over all possible sequences (starting in line 4) and all rules (starting
in line 5), which is computationally too expensive. When entering new chart
entries for a span, an efficient search through the underlying chart entries
and available rules has to be carried out, for instance by using Early parsing.
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Input: Foreign sentence f = f1, ...flf
Output: English translation e

1: for span length l = 1 to lf do
2: for start=0 .. lf -l do // beginning of span
3: end = start+l
4: for all sequences s of entries and words in span [start,end] do
5: for all rules r do
6: if rule r applies to chart sequence s then
7: create new chart entry c
8: add chart entry c to chart
9: end if

10: end for
11: end for
12: end for
13: end for
14: return English translation e from best chart entry in span [0,lf ]

Figure 1.14. Sketch of the core chart decoding algorithm

1.5.3 Syntactic models

Having made the leap to hierarchical phrase models, it is not much further
to a syntax-based model with real constituents labels such as vp and np.
In addition to a word aligned parallel corpus, we now also need syntactic
annotation on source or target side, or both. See Figure 1.15 on the following
page for an example.

Syntax on the source side acts as a restriction on which rules may apply.
Syntax on the target side requires the syntactic parsing of the output sen-
tence into a tree, thus enforcing syntactic well-formedness in addition to the
fluency enforced by the n-gram language model.

To give one example, our French verb negation rule may look like this:

vp: ne v pas → vp: do not v

There are some caveats to keep in mind when adding syntactic labels.
Phrases in phrase-based models do not have to match constituents in a syntax
tree. However, since each chart entry requires a constituent label, we have
two choices: (a) require that the target side phrase is a single constituent,
or (b) create artificial constituent labels.

Let us give an example. In a phrase models, we may have the rule:

der große → the big
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Figure 1.15. Extracting syntactic translation rules: As in the hierarchical phrase
pair example from Figure 1.12 on page 27, the phrase pair (geht x auf, opens x) is
acquired. The syntactic annotation informs the identity of the non-terminals, thus
giving us the rule vp: geht adv auf → vp: opens adv.

When adding syntactic labels on the English target side, choice (a) re-
quires us to extend the rule to the entire noun phrase that includes the big:

der große x → np: the big n

Choice (b) requires us to make a new label, for instance:

der große → dt+j: the big

Both choices have draw-backs: choice (a) throws out many phrase pairs
as potential rules, thus limiting the knowledge we extract from the parallel
corpus. Choice (b) leads to an explosion of non-terminal labels, thus making
decoding harder.

A third choice that has been used in syntax-based models is the bina-
rization of the syntax tree to make the restriction of limiting phrases to
constituents less harsh.

1.6 Linguistic challenges

So far, we have only paid scant attention to the nature of the problem of
translation. Most readers, especially if they have learned a second language,
will have an intuitive understanding of what makes translation a hard prob-
lem: words in the source language have different meanings and thus different
translations, the word order between languages differs, and the relationship
between words in a sentence are encoded in different ways — be it morpho-
logical markup, function words and order.
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All these problems have to be overcome in statistical machine transla-
tion systems. While we pretend that the methods that we present here
are language-independent, they do in fact work better if the languages be-
tween we translate have mostly the same word order, similar concepts and
metaphors, and there is little morphological complexity on the target side.
To give an example, they work very well for French–English, but perform
worse for Chinese–Turkish.

1.6.1 Lexical choice

A popular problem in computational linguistics is word sense disambigua-
tion. Words such as interest or bank have multiple meanings. This shows
up in translation as the problem of lexical choice, i.e., we have to chose as
translation for bank into German either Bank or Ufer, thus selecting either
the money or river sense of the word.

Research in word sense disambiguation has shown that local context (the
neighboring words or part-of-speech tags), content words in a larger window,
the syntactic role of the word, and syntactic related words are good indicators
of word sense.

In fact, by using an n-gram language model, we already capture effec-
tively local context information that is very useful to make the right lexical
choice. The prior probability is also very helpful: the money sense of bank is
just much more frequent than its river sense. Consequently, statistical ma-
chine translation systems handle lexical choice rather well, certainly better
than the traditional rule-based systems.

Nevertheless, in recent years, some researchers have targeted word sense
disambiguation in statistical machine translation and have shown gains by
incorporating the type of additional features we alluded to above. It is
very straightforward to convert the traditional conditional probability dis-
tribution — be it at the word or phrase level — into a more sophisticated
classifier.

A common choice is to use maximum entropy to incorporate arbitrary
features from the source sentence. It is harder to incorporate target side
features, since these often split states in our beam search decoding algorithm.
If we, say, condition the translation of a word on the first word in our target
sentence, we cannot recombine hypotheses that have different first words.

1.6.2 Morphology

The models we have presented so far operate on surface forms of words. For
instance, they make no connection between the singular house and plural
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houses. Since most of the work in statistical machine translation has focused
on English as a target language and English has relatively low morphological
complexity, this has not been regarded as a high priority problem. Yes,
we lose some generalization ability by treating house and houses as two
completely different words, but we also keep our model simple and may be
able to make sometimes better distinctions in the translation of singular and
plural forms.

However, when translating into morphologically rich languages such as
Turkish, Hungarian, Czech, or German, treating morphology becomes much
more important. The first concern is that rich morphology leads to much
larger vocabulary sizes and hence sparse data problems in model estimation.

Secondly, when translating into morphologically rich languages, it is often
not clear from the local context which morphological variant to chose. For
instance, when translating the man into German, we have as choice der
Mann, des Mannes, dem Manne, or den Mann. Which one is correct depends
on the relationship of the noun phrase to its syntactic head, e.g., is it the
subject or object?

Factored translation models [Koehn and Hoang, 2007] propose to rep-
resent words not as simple tokens but as vectors of factors such as the lemma,
part-of-speech tag, gender, count, and so on. Including such additional an-
notation into our models has two benefits. First, it allows for generalization
such as the translation between lemmas instead of surface forms. Secondly,
it enriches the model which can be exploited for, say, reordering based on
part-of-speech tags or grammatical coherence checks based on morphological
tags.

Adding factored representations to phrase models has been used to enrich
the input for better morphological choice in the target, increase grammatical
coherence in the output, or improve translation of rare morphological vari-
ants. The work has also shown that there is a risk involved in breaking up
phrase translation into separate mapping steps by assuming independence
between them. If we know how to translate morphologically rich phrases
because we have seen them very often, there is only harm in decomposing
their translation into more fine-grained steps — just as the translation of
large phrases (if possible) is better than word-for-word translation.

1.6.3 Word order

Sentences are made up of one or more clauses, and each clause describes an
action that centers on a verb and its arguments and adjuncts. To define
which of the entities mentioned in the sentence is the subject and which are
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the objects and what they roles are, language such as English use word order.
English is an SVO language, meaning that a clause typically starts with

a subject (English), followed by a verb (is) and any number of objects (an
SVO language). Other languages may have different canonical word order,
for instance VSO, SOV, etc. This presents a straightforward problem for
translation: the words need to be rearranged when mapped into the target
language.

The insight that reordering is mostly driven by syntactic differences is
one fundamental motivation for the tree-based models that we discussed in
Section 1.5 on page 25. If we obtain syntactic trees of the input or construct
parse trees of the output during translation, then movements that look ar-
bitrary on the surface level (e.g., a word moves nine positions to the left),
may be a simple child node reordering in a syntactic tree.

Since the use of tree-based models is generally rather complex, simpler
approaches have been proposed to incorporate syntactic trees into statistical
machine translation models. One idea is to pre-reorder the input before
the actual translation process. The goal is to re-arrange the input in a way
that it still consists of the same input words, but now in the expected word
order of the output. This may be done via hand-written rules (since we are
mostly worried about well-understood long-distance movements), or rules
learned automatically from a word-aligned source-annotated parallel corpus,
maybe even just using part-of-speech tags. We may settle on a unique input
sequence or represent potential choices in a reordering lattice. The expec-
tation is that such a rearranged input is easier to translate with traditional
phrase-based models, maybe even without allowing any reordering at all
afterwards.

Another class of languages, free word order languages, cannot be easily
classified as SVO or VSO. Recall that the purpose of a fixed word order is
to define the relationship between the different constituents in the sentence,
such as the relationships of noun phrases to the verb. Some languages use
different means to define this relationship: markers or noun cases. Markers
are used for instance in Japanese, but also English speakers should be familiar
with the concept: prepositions play pretty much the same role (from the
house vs. to the house). Noun cases change the surface form of words, for
instance der Mann is a subject, but dem Manne is an object.

The mapping between languages that use such different means of defining
syntactic relationships has not yet been sufficiently explored in statistical
machine translation — partly because the strong focus on English as the
output language where fixed word order is well handled by n-gram language
models.
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1.7 Tools and data Resources

Although building a machine translation system is a complex task, it is much
facilitated by the tools and data resources that have been made available,
often in form of open source software. Look out for any recent developments,
but let us quickly review some of the most commonly used resources.

1.7.1 Basic tools

The training pipeline for statistical machine translation is fairly straight
forward to implement, save for two non-trivial steps: sentence alignment
and word alignment.

Translated text found out in the wild (think about a book and its transla-
tion, or a multi-lingual web site) rarely comes in the sentence-aligned format
that the methods described in this chapter require. Hence, the first step is
to align individual sentences that are translations of each other.

The simplest methods rely on length of sentences as a measure of simi-
larity, more complex methods utilize also translation dictionaries. A widely
used for sentence alignment is Hunalign7, which uses both of these knowl-
edge sources to determine the best alignments, and also offers filtering func-
tions for potential mismatches.

We discussed the problem of word alignment at length in Section 1.3
on page 9. The GIZA++ toolkit8 is a open source implementation of the
popular IBM Models that we presented above. It is widely used. More
recently, the problem word alignment has regained attention in the research
community. One outcome of this is the Berkeley word aligner,9 which
integrates the idea of symmetrizing word alignments (recall Section 1.3.5 on
page 13) more closely into the alignment method.

The use of language models is essential for machine translation. In al-
most all cases, machine translation systems integrate existing language model
tools and libraries, instead of re-inventing the wheel. Most popular is the
open source SRILM toolkit,10 which has been developed for over a decade.
A recent addition is the IRSTLM toolkit,11 which targets compact repre-
sentation and scalable training tools for very large language models (using
billions of words). Worth mentioning is also the randLM toolkit12 which

7http://mokk.bme.hu/resources/hunalign/
8http://www.fjoch.com/GIZA++.html
9http://nlp.cs.berkeley.edu/Main.html#WordAligner

10http://www.speech.sri.com/projects/srilm/
11http://hlt.fbk.eu/en/irstlm/
12http://sourceforge.net/projects/randlm/
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uses a lossy data structure to even more space-efficiently encode such large
language models.

1.7.2 Machine translation systems

Entire machine translation systems — including the training process and the
decoder — have become available with open source licenses.

The mostly used toolkit is Moses,13 which implements most of the
methods describes in this chapter. It draws heavily on existing tools for
word alignment and language modeling mentioned above. More recently,
the Joshua14 decoder has been developed with a focus on hierarchical and
syntax-based models.

We have not discussed rule-based approaches to machine translation in
this chapter, but many commercial systems in use today are still based on
translation rules written by hand. Typically, such systems allow the inte-
gration of more detailed knowledge into translation decision, but suffer from
the lack of a language model and other probabilistically weighted decision
processes. Nevertheless, there is still active work in this area. The open
source Apertium project15 aims at the construction of rule-based machine
translation system for many language pairs.

1.7.3 Parallel corpora

Finally, or better firstly, you will need to have translated texts as training
data for statistical machine translation systems — the more, the better. The
more closely tailored to your domain of interest, the better.

Practically all parallel corpora used in machine translation systems are
found corpora, i.e. they have been build for other purposes and co-opted
by machine translation research. The main source of such corpora are gov-
ernments (for instance Canada for French-English) and international insti-
tutions (UN, European Union). Most translations are currently produced
in the commercial sector (product documentation, marketing material), but
they are usually closely guarded by their content owners. A promising new
direction is the exploitation of collaborative efforts on the internet to create
translations — the buzz words are wiki translation and crowd sourcing.

Here a short list of commonly used corpora:

13http://www.statmt.org/moses/
14http://sourceforge.net/projects/joshua/
15http://www.apertium.org/
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• The Canadian Hansards16 consists of the proceedings of the Cana-
dian parliament, which are translated between French and English.

• The Europarl corpus17 consists of the translated proceedings of the
European parliament. It offers about 40 million words in 11 languages
each.

• The Acquis corpus18 consists of the legal documents that member
countries of the European Union have to sign up. The corpus covers
22 languages with up to 40 million words per language.

• The OPUS project19 collects parallel corpora from a wide variety
sources, including open source documentation and movie subtitles.

• The LDC20 is the main source of data for the field of computational
linguistics. The organization makes also parallel corpora available,
especially for Arabic–English and Chinese–English, which have been
the target of recent US sponsored research programs.

1.8 Future directions

The field of statistical machine translation is, despite of its 20 years of history,
very much in motion. The strong focus on evaluation campaigns and hence
emphasis of performance over fanciful ideas leads to rapid adoptions of new
methods that have shown to be successful. Current research focuses on a
number of issues that we briefly touch upon here.

Statistical machine translation models have a lot of numbers in them,
and the estimations of these parameter values is a core problem. While
the reliance on probability distributions mirrored in the training data has
brought us a long way, there is intense interest in applying more advanced
machine learning methods. Current systems rely on a mix of generative
models (e.g., the phrase translation probabilities) and discriminate training
(parameter tuning, see Section 1.4.5 on page 23).

Research on syntactic models is in full swing, and there are many open
questions about how representation, e.g., phrase structure grammars vs. de-

16a part of the corpus is available at http://www.isi.edu/natural-language/download/hansard/,
more is available through the LDC

17http://www.statmt.org/europarl/
18http://wt.jrc.it/lt/Acquis/
19http://urd.let.rug.nl/tiedeman/OPUS/
20http://www.ldc.upenn.edu/
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pendency grammars, specific grammar formalisms, efficient decoding algo-
rithms and so on.

The reliance on parallel data to train statistical models places a lot of im-
portance on a often very scarce resource. How can be also utilize comparable
or purely monolingual data? How do we deal with small in-domain data vs.
large out-of-domain data? Can we exploit user interactions with machine
translation systems as additional training data to improve our systems?

Finally, since machine translation closely interacts with other informa-
tion processing applications, there is keen interest in integrating statistical
machine translation into such applications.

Two applications have been explored in recent work. First, speech trans-
lation aims at the integration of speech recognition, machine translation,
and speech synthesis. Secondly, since high quality translation still requires a
human in the loop, recent computer aided translation tools exploit methods
in statistical translations.

1.9 Summary

The application of data-driven methods to machine translation has turned
the field into a hotbed of activity.

Machine translation is a seemingly stright-forward task: translating text
written in one language into text in another language, but with the same
meaning. But exactly how to measure, if a translation of a sentence is correct
is still a open question, as we discussed in Section 1.2 on evaluation.

An important step in learning translation models from a parallel corpus
is word alignment (Section 1.3). A word aligned parallel corpus allows the
estimation of phrase-based (Section 1.4) and tree-based models (Section 1.5),
the currently most commonly followed approaches.

Machine translation has made great progress, for instance translating
news stories from French to English with today’s technogoly produces very
readable and accurate output. But many challenges remain, especially for
language pairs with divergent word order and rich morphology (Section 1.6).

Research in the area is facilitated by a large array of open source tools and
resources (Section 1.7), and many future directions remain to be explored
(Section 1.8).
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