Computer Aided Translation Advances and Challenges

Philipp Koehn

7 August 2016

Overview

- A practical introduction: the CASMACAT workbench
- Postediting
- Types of assistance
- Logging, eye tracking and user studies
- Implementation details of the CASMACAT workbench

•

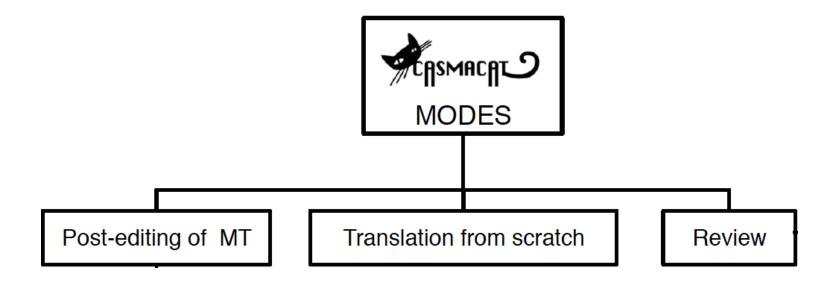
part I

CASMACAT workbench

CASMACAT workbench

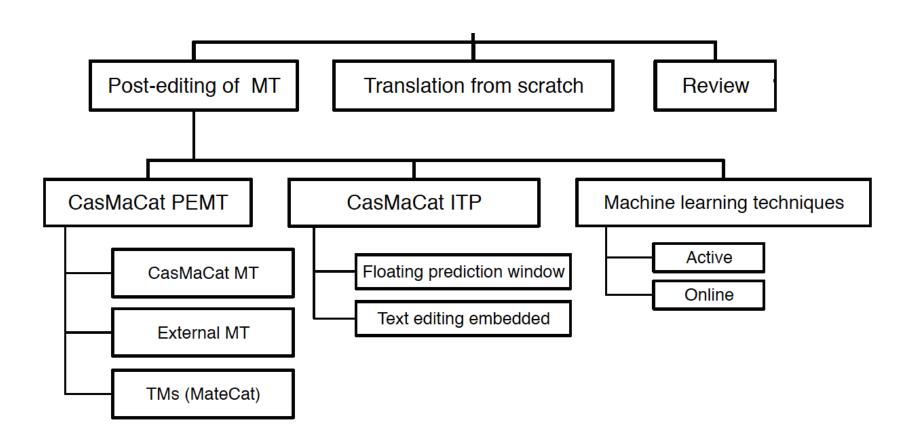
CASMACAT Project 2011-2014

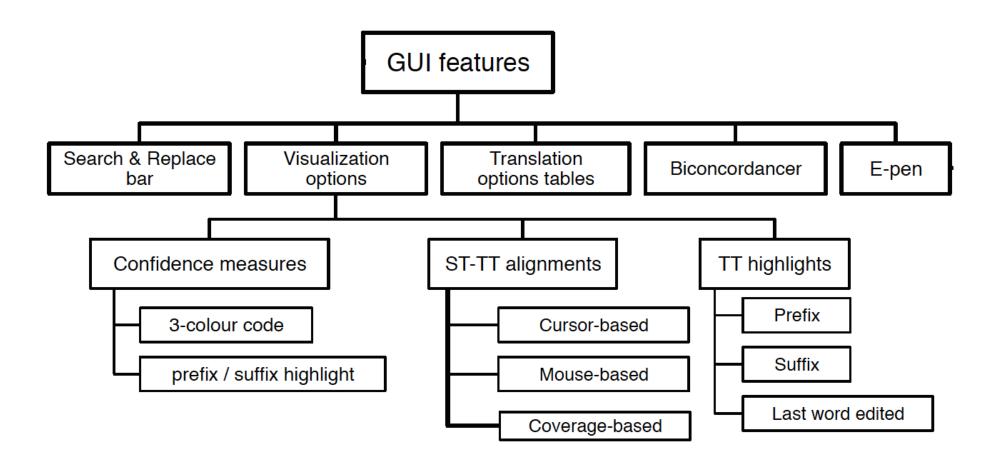
- Cognitive studies of translators leading to insights into interface design
 - → better understanding of translator needs
- Workbench with novel types of assistance to human translators
 - interactive translation prediction
 - interactive editing and reviewing
 - adaptive translation models

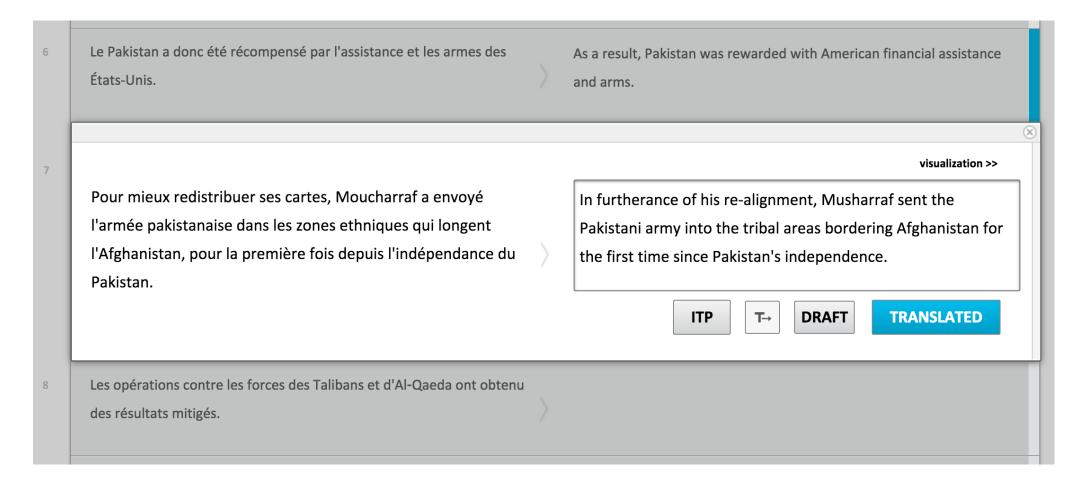

→ better tools for translators

• Demonstration of effectiveness in field tests with professional translators

→ increased translator productivity


Core Modes

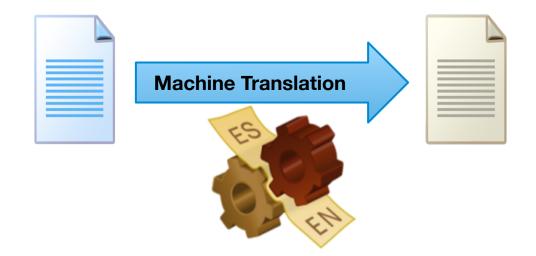

Postediting Modes


GUI Features

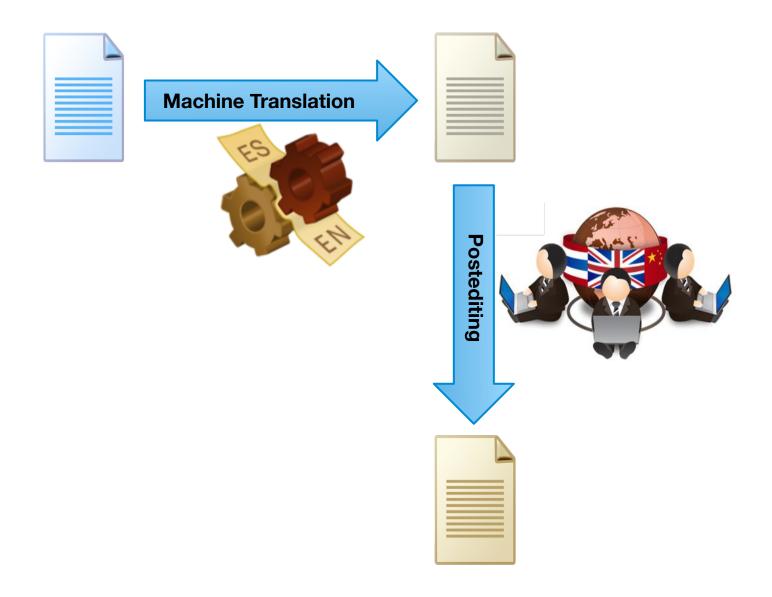
Postediting Interface

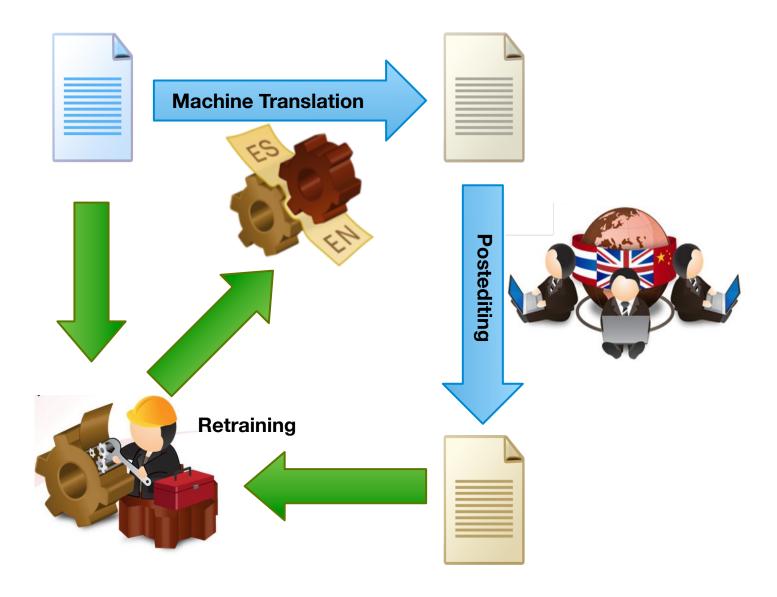
- Source on left, translation on right
- Context above and below

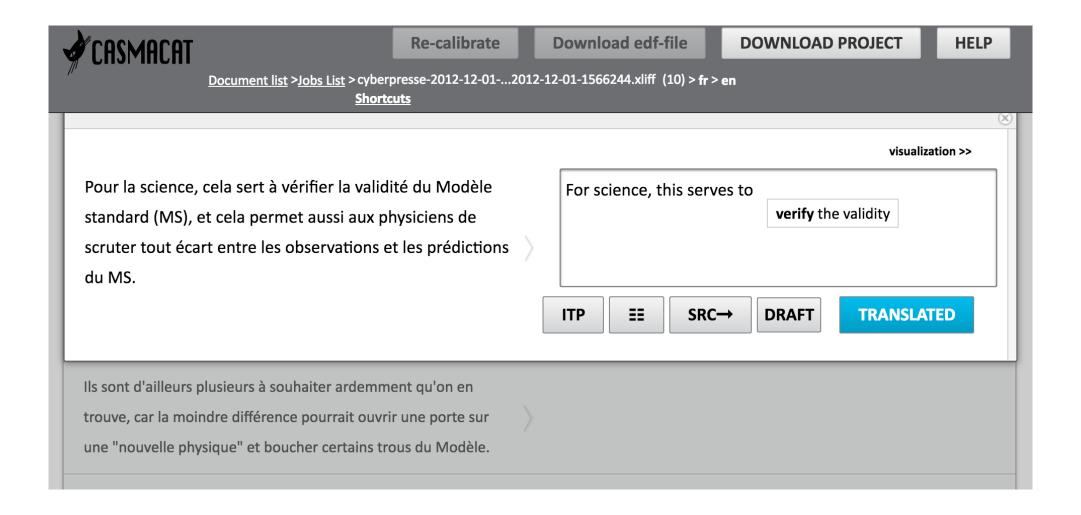
Confidence Measures



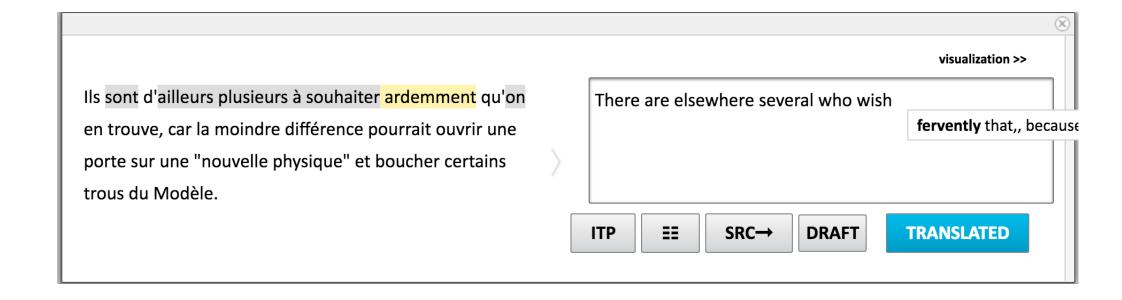
- Sentence-level confidence measures
 - \rightarrow estimate usefulness of machine translation output
- Word-level confidence measures
 - → point posteditor to words that need to be changed


Incremental Updating


Incremental Updating

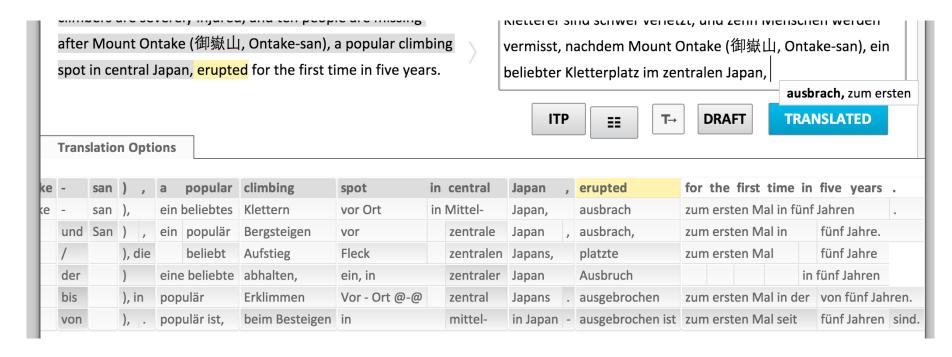

Incremental Updating

Interactive Translation Prediction


Word Alignment

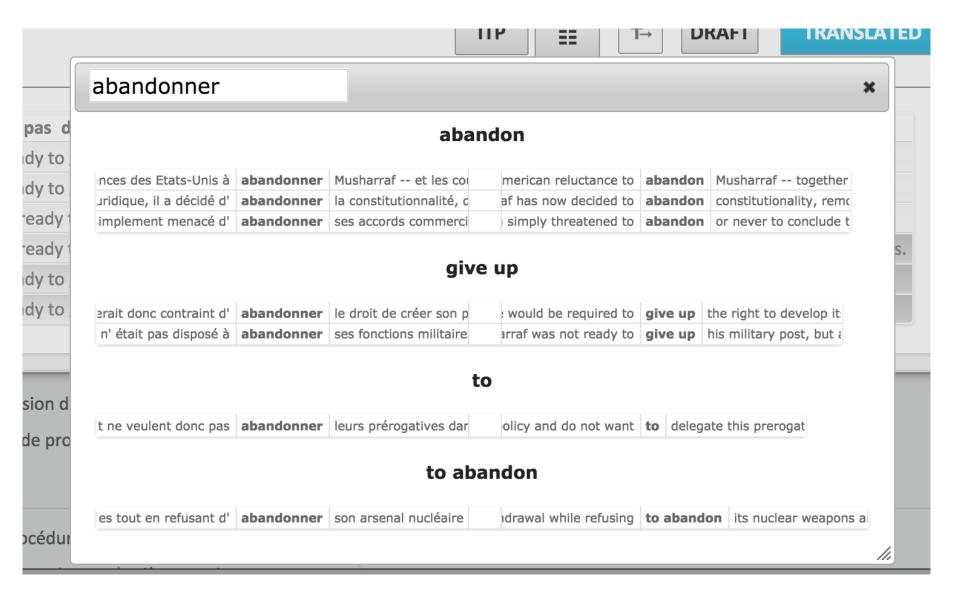
	8
visualization >> 🗸 displayMouseAlign 🗸 displayCaretAlign 🗌 displayShadeOffTr	ranslatedSource displayConfidences highlightValidated highlightPrefix highlightLastValidated limitSuffixLength
Pour mieux redistribuer ses cartes, Moucharraf a envoyé l'armée pakistanaise dans les <mark>zones ethniques</mark> qui <mark>longent</mark> l' <mark>Afghanistan</mark> , pour la première fois depuis l'indépendance du Pakistan.	In furtherance of his re-alignment, Musharraf sent the Pakistani army into the tribal areas bordering Afghanistan for the first time since Pakistan's independence. ITP T-> DRAFT TRANSLATED

Word Alignment

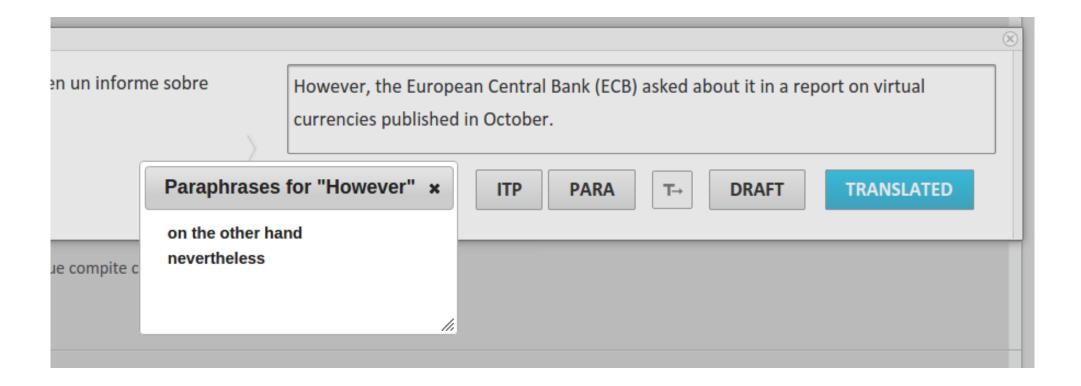


- With interactive translation prediction
- Shade off translated words, highlight next word to translate

Translation Option Array



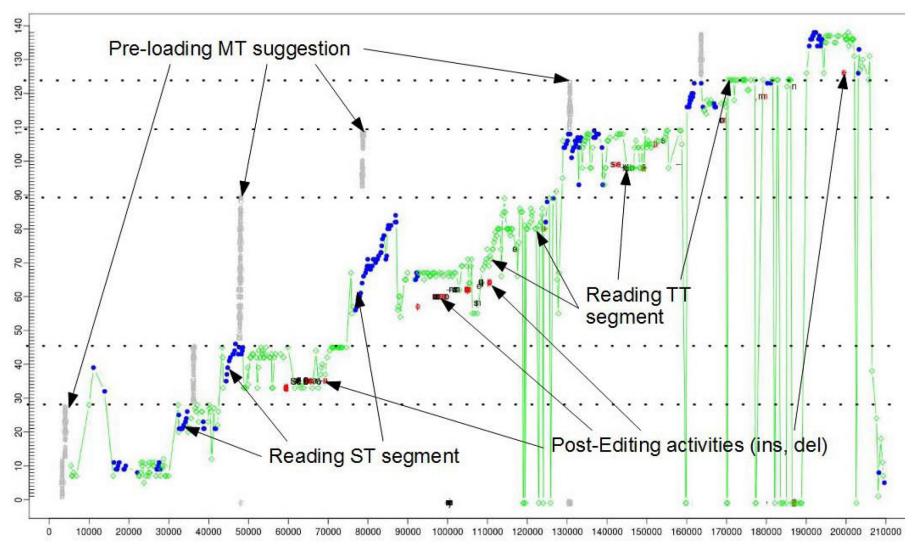
- Visual aid: non-intrusive provision of cues to the translator
- ullet Clickable: click on target phrase o added to edit area
- Automatic orientation
 - most relevant is next word to be translated
 - automatic centering on next word


Bilingual Concordancer

Paraphrasing

How do we Know it Works?

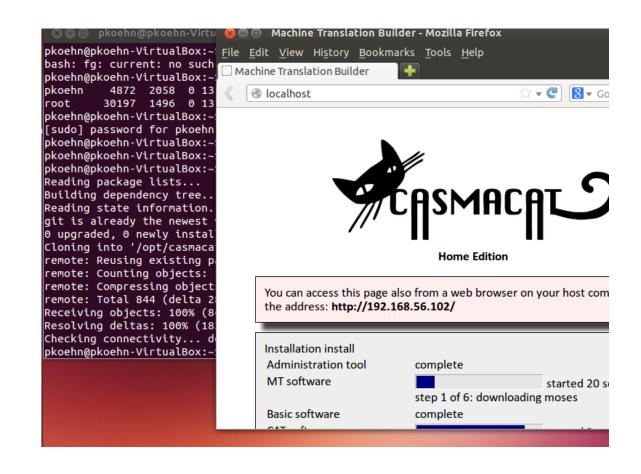
• Intrinsic Measures


- word level confidence: user does not change words generated with certainty
- interactive prediction: user accepts suggestions

User Studies

- professional translators faster with post-editing
- ... but like interactive translation prediction better
- Cognitive studies with eye tracking
 - where is the translator looking at?
 - what causes the translator to be slow?

Logging and Eye Tracking



Home Edition

- Running CASMACAT on your desktop or laptop
- Installation
 - Installation software to run virtual machines (e.g., Virtualbox)
 - installation of Linux distribution(e.g., Ubuntu)
 - installation script sets up all the required software and dependencies

Administration through Web Browser

Administration

Translate

- Translate new document
- List documents

Engines

- Manage engines
- Upload engine
- Build new prototype

Settings

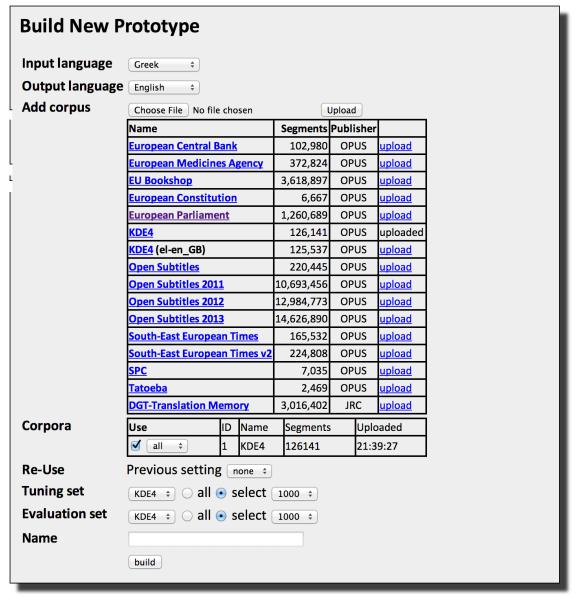
- Reset CAT and MT server
- CAT Settings
- Update Software

Deployed: fr-en-upload-1

Memory: 1.2 GB used, 6.6 GB free
Disk: 12.9 GB used, 10.2 GB free

 Uptime:
 22:24

 Load:
 0.01, 0.05, 0.08


 Monday, 06 October 2014, 21:22:41

Training MT Engines

• Train MT engine on own or public data

Managing MT Engines

Manage Engines

English-French

Available Engines

#	Name	Size	Build date	Action
2	NC+TED	2.3G	27 Mar 14	deploy delete download

Prototypes (Inspect Details in Prototype Factory)

#	Name	Status	Build date	Action
2	NC+TED	<u>done</u>	Fri 20:34	<u>delete</u>
1	<u>NC</u>	<u>done</u>	Fri 20:34	<u>create engine</u> <u>delete</u>

English-Spanish

Available Engines

#	Name	Size	Build date	Action
2	NC+TED	2.3G	27 Mar 14	deploy delete download

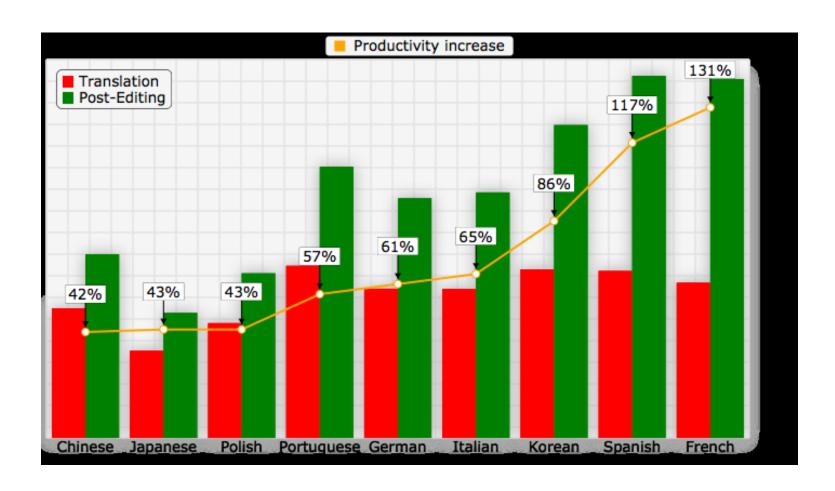
Prototypes (Inspect Details in Prototype Factory)

#	Name	Status	Build date	Action
3	NC+TED+EP	stopped	Fri 20:34	<u>resume</u> <u>delete</u>
2	NC+TED	<u>done</u>	Fri 20:34	<u>delete</u>
1	<u>NC</u>	<u>done</u>	Fri 20:34	<u>create engine</u> <u>delete</u>

CAT Settings

CAT Settings	
Updated.	
Interactive Translation Prediction Search and Replace	
Bilingual Concordancer	
Hide Contributions Floating Predictions	
Translation Options Allow Change of Visualization Opti	ions 🗸
Restrict ITP to Draft Stage Show/Hide Visualization Preference	
displayMouseAlign displayCaretAlign	
${\bf display Shade Off Translated Source}$	
displayConfidences highlightValidated	
highlightPrefix highlightSuffix	
highlightLastValidated limitSuffixLength	
	update

part II


cat methods

post-editing

Productivity Improvements

(source: Autodesk)

MT Quality and Postediting Effort

- Postediting effort = number of words changed
- Evaluation metric at IWSLT 2014
 - TER = automatic metric, comparison against a reference translation
 - HTER = postediting metric, actual words changed

English—**German**

Ranking	HTER	TER
EU-BRIDGE	19.2	54.6
UEDIN	19.9	56.3
KIT	20.9	54.9
NTT-NAIST	21.3	54.7
KLE	28.8	59.7

English-French

Ranking	HTER	TER
EU-BRIDGE	16.5	42.6
RWTH	16.6	41.8
KIT	17.6	42.3
UEDIN	17.2	43.3
MITLL-AFRL	18.7	43.5
FBK	22.3	44.3
MIRACL	32.9	52.2

Translator Variability

• Professional translators

English—**German**

English-French

Posteditor	HTER	TER	Postec	litor HTER	TER
PE 1	32.2	56.1	PE 1	35.0	42.6
PE 2	19.7	56.3	PE 2	17.5	42.8
PE 3	40.9	56.2	PE 3	23.7	43.0
PE 4	27.6	55.9	PE 4	39.7	42.3
PE 5	25.0	55.6	PE 5	19.7	42.9

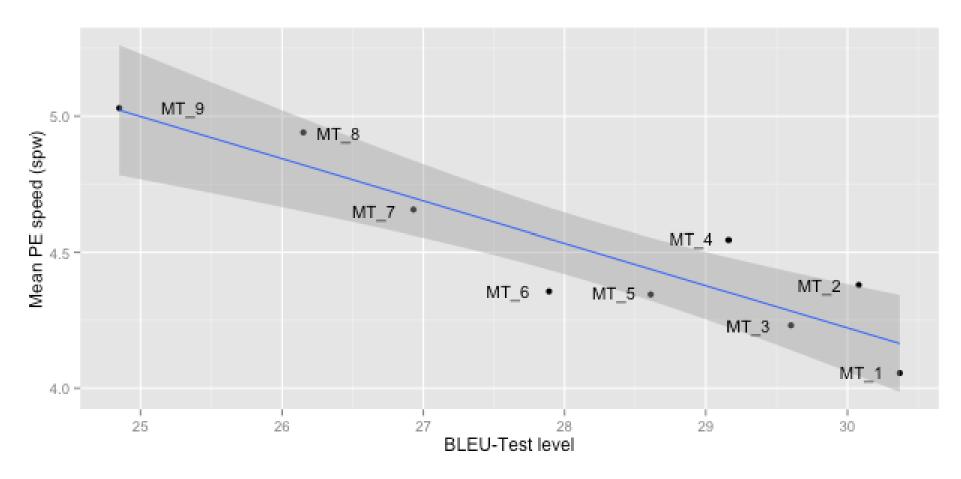
• Also very high variability

MT Quality and Productivity

System	BLEU	Training Sentences	Training Words (English)
	20.27		, ,
MT1	30.37	14,700k	385m
MT2	30.08	7,350k	192m
MT3	29.60	3,675k	96m
MT4	29.16	1,837k	48m
MT5	28.61	918k	24m
MT6	27.89	459k	12m
MT7	26.93	230k	6.0m
MT8	26.14	115k	3.0m
MT9	24.85	57k	1.5m

- Same type of system (Spanish–English, phrase-based, Moses)
- Trained on varying amounts of data

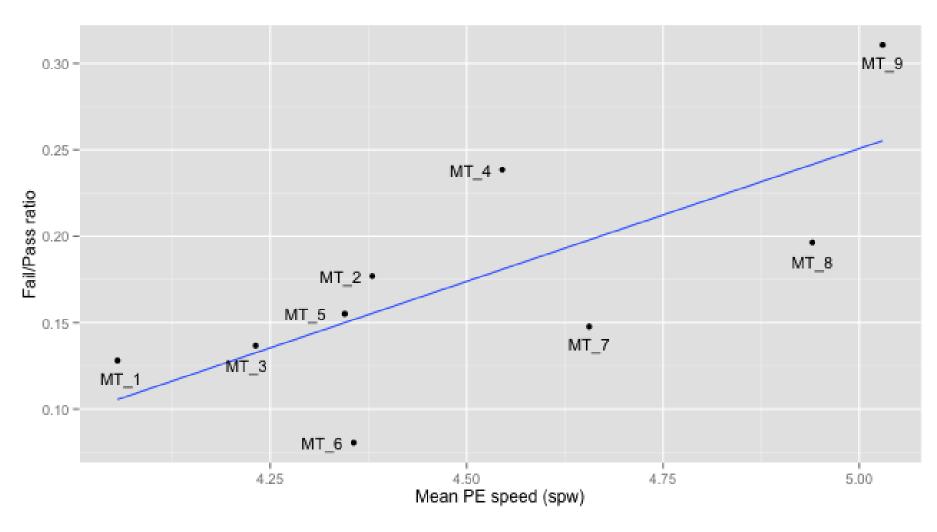
MT Quality and Productivity



System	BLEU	Training	Training	Post-Editing
		Sentences	Words (English)	Speed
MT1	30.37	14,700k	385m	4.06 words/sec
MT2	30.08	7,350k	192m	4.38 words/sec
MT3	29.60	3,675k	96m	4.23 words/sec
MT4	29.16	1,837k	48m	4.54 words/sec
MT5	28.61	918k	24m	4.35 words/sec
MT6	27.89	459k	12m	4.36 words/sec
MT7	26.93	230k	6.0m	4.66 words/sec
MT8	26.14	115k	3.0m	4.94 words/sec
MT9	24.85	57k	1.5m	5.03 words/sec

- User study with professional translators
- Correlation between BLEU and post-editing speed?

MT Quality and Productivity



BLEU against PE speed and regression line with 95% confidence bounds +1 BLEU \leftrightarrow decrease in PE time of \sim 0.16 sec/word

MT Quality and PE Quality

better $MT \leftrightarrow$ fewer post-editing errors

Translator Variability

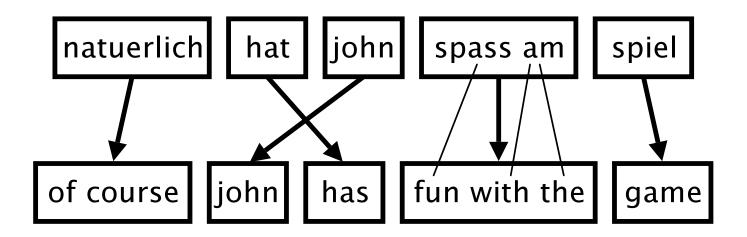
	HTER	Edit Rate	PE speed (spw)	MQM Score	Fail	Pass
TR1	44.79	2.29	4.57	98.65	10	124
TR2	42.76	3.33	4.14	97.13	23	102
TR3	34.18	2.05	3.25	96.50	26	106
TR4	49.90	3.52	2.98	98.10	17	120
TR5	54.28	4.72	4.68	97.45	17	119
TR6	37.14	2.78	2.86	97.43	24	113
TR7	39.18	2.23	6.36	97.92	18	112
TR8	50.77	7.63	6.29	97.20	19	117
TR9	39.21	2.81	5.45	96.48	22	113

• Higher variability between translators than between MT systems

Postediting and MT Metrics

- Goal of MT quality metrics not clear
 - understandability: do you get the meaning?
 - post-editing effort: how much effort to change?
- Example: dropping of the word "not"
 - understandability: big mistake
 - post-editing effort: quick add of just one word
- Not clear, what tradition manual metrics prefer (adequacy, fluency)
- Not clear, what BLEU score etc. prefer

word alignment


Word Alignment

	8
visualization >> displayCaretAlign displayShadeOffTr	ranslatedSource displayConfidences highlightValidated highlightPrefix highlightLastValidated limitSuffixLength
Pour mieux redistribuer ses cartes, Moucharraf a envoyé l'armée pakistanaise dans les <mark>zones ethniques</mark> qui <mark>longent</mark> l' <mark>Afghanistan</mark> , pour la première fois depuis l'indépendance du Pakistan.	In furtherance of his re-alignment, Musharraf sent the Pakistani army into the tribal areas bordering Afghanistan for the first time since Pakistan's independence. ITP THO DRAFT TRANSLATED

Word Alignment from MT

- Machine translation output is constructed by phrase mappings
- Each phrase mapping has internal word alignment
- ⇒ This can be used to visualize word alignments
 - But: word alignment points become invalid after user edits

Word Alignment from Alignment Tools

- During machine translation training, standard component is word alignment
- Standard tools
 - old workhorse: GIZA++
 - currently popular tool: fast-align
- These tools have been adapted to align new sentence pairs

Mouse Over Alignment

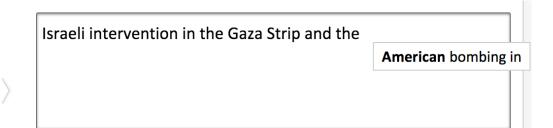
Pour mieux redistribuer ses cartes, Moucharraf a envoyé l'armée pakistanaise dans les zones ethniques qui longent l'Afghanistan, pour la première fois depuis l'indépendance du Pakistan.

In furtherance of his re-alignment, Musharraf sent the Pakistani army into the tribal areas bordering Afghanistan for the first time since Pakistan's independence.

• Highlight the source word aligned to the word at the current **mouse** position

Caret Alignment

Pour mieux redistribuer ses cartes, Moucharraf a envoyé l'armée pakistanaise dans les zones ethniques qui longent l'Afghanistan, pour la première fois depuis l'indépendance du Pakistan.


In furtherance of his re-alignment, Musharraf sent the Pakistani army into the tribal areas bordering Afghanistan for the first time since Pakistan's independence.

• Highlight the source word aligned to the word at the current **caret** position

Shade Off Translated

L'intervention israélienne dans la bande de Gaza et les bombardements <mark>américains</mark> en Irak pour lutter contre les djihadistes de l'État islamique en Irak et au Levant ont également ajouté de la nervosité sur les marchés.

- Use in interactive prediction mode
- Shade off words that are already translated
- Highlight words aligned to first predicted translation word

confidence measures

("quality estimation")

Levels

- Machine translation engine indicates where it is likely wrong
- Different Levels of granularity
 - document-level (SDL's "TrustScore")
 - sentence-level
 - word-level

Sentence-Level Confidence

- Translators are used to "Fuzzy Match Score"
 - used in translation memory systems
 - roughly: ratio of words that are the same between input and TM source
 - if less than 70%, then not useful for post-editing
- We would like to have a similar score for machine translation
- Even better
 - estimation of post-editing time
 - estimation of from-scratch translation time
 - \rightarrow can also be used for pricing
- Very active research area

Quality Estimation Shared Task

- Shared task organized at WMT since 2012
- Given
 - source sentence
 - machine translation
- Predict
 - human judgement of usefulness for post-editing (2012, 2014)
 - HTER score on post-edited sentences (2013–2016)
 - post-editing time (2013, 2014)
- Also task for word-level quality estimation (2014–2016) and document-level quality estimation (2015)

QuEst

- Open source tool for quality estimation
- Source sentence features
 - number of tokens
 - language model (LM) probability
 - 1–3-grams observed in training corpus
 - average number of translations per word
- Similar target sentence features
- Alignment features
 - difference in number of tokens and characters
 - ratio of numbers, punctuation, nouns, verbs, named entities
 - syntactic similarity (POS tags, constituents, dependency relationships)
- Scores and properties of the machine translation derivation
- Uses Python's SCIKIT-LEARN implementation of SVM regression

WMT 2016: Best System

- Yandex School of Data Analysis (Kozlova et al., 2016)
- QuEst approach with additional features
 - syntactically motivated features
 - language model and statistics on web-scale corpus
 - pseudo-references and back-translations
 - other miscellaneous features
- Performance
 - mean average HTER difference 13.53
 - ranking correlation 0.525

word level confidence

Visualization

• Highlight words less likely to be correct

Methods

- Simple methods quite effective
 - IBM Model 1 scores
 - posterior probability of the MT model
- Machine learning approach
 - similar features as for sentence-level quality estimation

Annotation

• Machine translation output

Quick brown fox jumps on the dog lazy.

Post-editing

The quick brown fox jumps over the lazy dog.

Annotation

• Problems: dropped words? reordering?

Quality Requirements

- Evaluated in user study
- Feedback
 - could be useful feature
 - but accuracy not high enough
- To be truly useful, accuracy has to be very high
- Current methods cannot deliver this

WMT 2016: Best System

- Unbabel (Martins et al., 2016)
- Viewed as tagging task
- Features: black box and language model features
- Method: Combination of
 - feature-rich linear HMM model
 - deep neural networks
 (feed-forward, bi-directionally recurrent, convolutional)
- Performance
 - F-score for detecting good words: 88.45
 - F-score for detecting bad words: 55.99

automatic reviewing

Automatic Reviewing

- Can we identify errors in human translations?
 - missing / added information
 - inconsistent use of terminology

Input Sentence

Er hat seit Monaten geplant, im Oktober einen Vortrag in Miami zu halten.

Human Translation

Moreover, he planned for months to give a lecture in Miami.

Reviewing with E-Pen

Intuition

- reviewing more efficient with pen and paper
- e-pen enables this work process in digital environment
- Work carried out
 - fronted modified for larger drawing area
 - backend support for hand-written text recognition (HTR)
 - development of methods for HTR
- ullet Field trial carried out \rightarrow corpus of reviewing edits

Analysis of Reviewer Edits

- 171 insertions vast majority function words
- 152 deletions about half substantial content
- 621 replacements of which:
 - 75 changes to punctuation only
 - 28 change to lowercase / uppercase
 - 29 cases that are mostly deletions
 - 8 cases that are mostly insertions
 - 289 morphological/spelling changes (Levenshtein distance of less than 50%)
 - 190 other changes, about equal amounts function words and content words

Automatic Reviewing

- Focus on translation errors
 - not: basic spell checking
 - not: basic grammar checking
- Do not try the impossible
 - semantic errors
 - errors in function words
- What is left?
 - added content (insertions)
 - non-translated content (deletions)
 - inconsistency in terminology

Method

- Word alignment of human translation and source
- Detect unaligned words
 - insertion of content words:
 unaligned sequence of words in the draft translation
 - deletion of content words:
 unaligned sequence of words in the source sentence
 - inconsistent terminology:
 source word occurs multiple times, aligned to different word
- Only content words (minimum 4 characters)

Evaluation on Field Trial Data

- Two evaluation metrics
 - strict: predicted word X deleted / inserted
 - generous: predicted any deletion / insertion

	Strict Scoring		Generous Scoring		
Edit type	Precision	Recall	Precision	Recall	Baseline Precision
Deletion	7%	27%	11%	48%	7%
Insertion	-	-	5%	35%	4%
Any edit	-	-	20%	60%	14%

• Good enough to be useful?

Subjective Evaluation

- Evaluation on community translation platform data
- English–German
- Predict insertions and deletions
- Manually check if these are valid suggestions (i.e., precision only) by native German speaker

Results

- 4 cases of detection of valid errors (3 deletions, 1 inset ion)
- 31 false alarms

Count	Туре
16 cases	unaligned verb
6 cases	one-to-many alignment
2 cases	non-literal
6 cases	misalignment, often due to unknown word
1 case	valid verb ellipsis, repeated in sub clause

• Good enough to be useful?

Input Sentence

Er hat seit Monaten geplant, im Oktober einen Vortrag in Miami zu halten.

Professional Translator

Input Sentence

Er hat seit Monaten geplant, im Oktober einen Vortrag in Miami zu halten.

Professional Translator

He

Input Sentence

Er hat seit Monaten geplant, im Oktober einen Vortrag in Miami zu halten.

Professional Translator

He | has

Input Sentence

Er hat seit Monaten geplant, im Oktober einen Vortrag in Miami zu halten.

Professional Translator

He has | for months

Input Sentence

Er hat seit Monaten geplant, im Oktober einen Vortrag in Miami zu halten.

Professional Translator

He planned |

Input Sentence

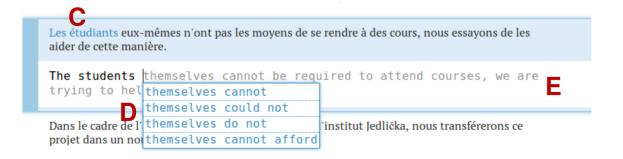
Er hat seit Monaten geplant, im Oktober einen Vortrag in Miami zu halten.

Professional Translator

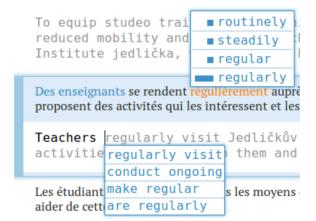
He planned | for months

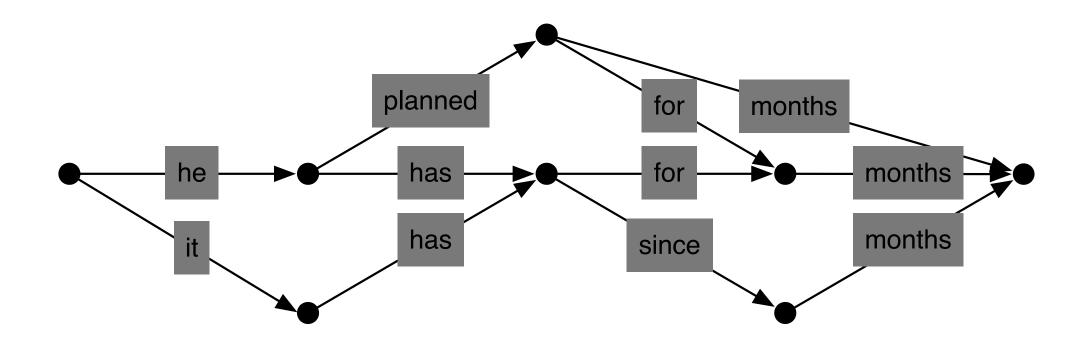
Visualization

• Show *n* next words

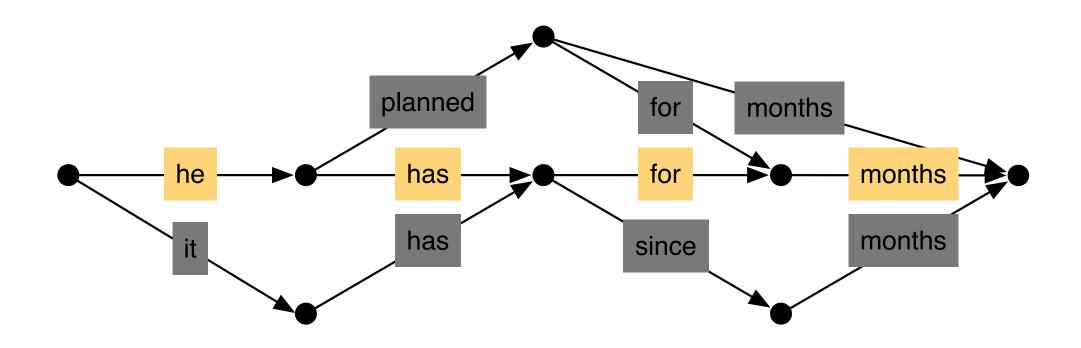


• Show rest of sentence

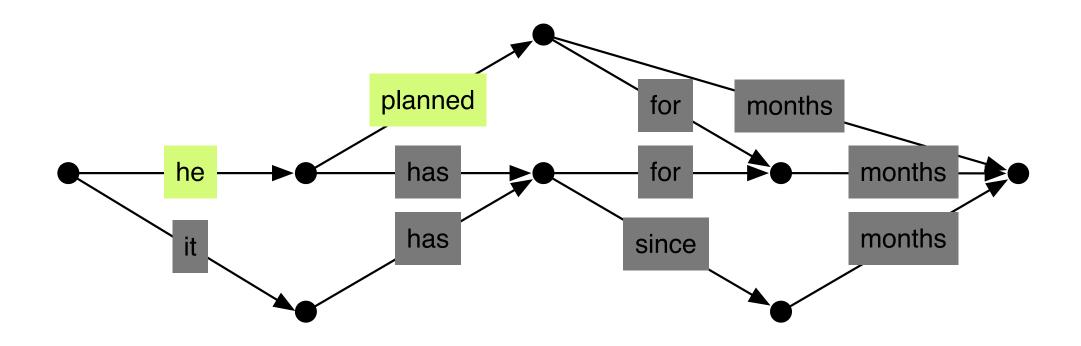

Spence Green's Lilt System


Show alternate translation predictions

• Show alternate translations predictions with probabilities

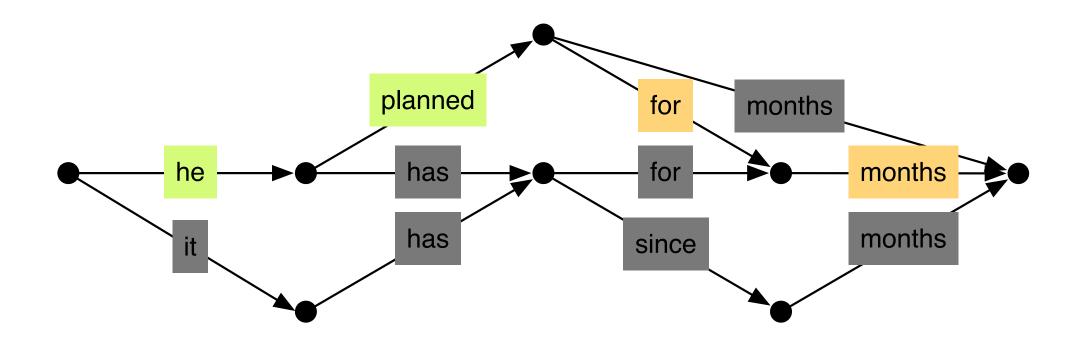


Search for best translation creates a graph of possible translations



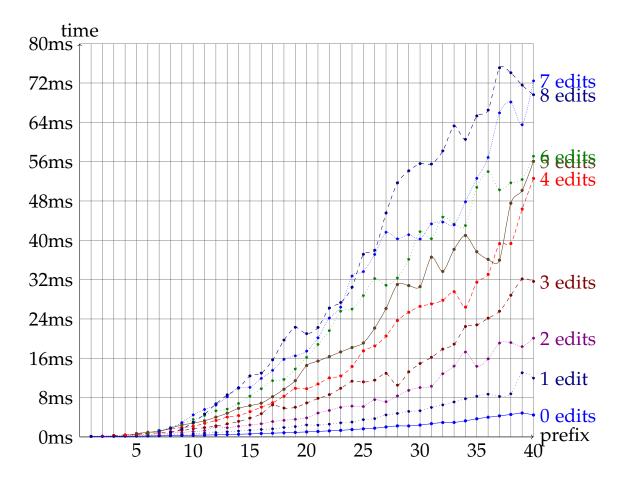
One path in the graph is the best (according to the model)

This path is suggested to the user



The user may enter a different translation for the first words

We have to find it in the graph



We can predict the optimal completion (according to the model)

Speed of Algorithm

- Average response time based on length of the prefix and number of edits
- Main bottleneck is the string edit distance between prefix and path.

Word Completion

- Complete word once few letters are typed
- Example: predict *college* over *university*?
- User types the letter $u \rightarrow$ change prediction

• "Desperate" word completion: find any word that matches

Redecoding

- Translate the sentence again, enforce matching the prefix
- Recent work on this: Wuebker et al. [ACL 2016]

Models and Inference for Prefix-Constrained Machine Translation

Joern Wuebker, Spence Green, John DeNero, Saša Hasan Lilt, Inc.

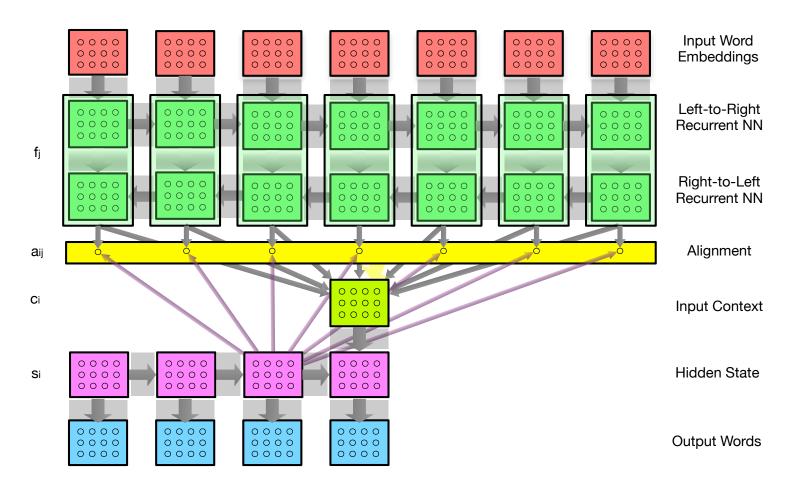
first_name@lilt.com

Minh-Thang Luong
Stanford University
lmthang@stanford.edu

Prefix-Matching Decoding

- Prefix-matching phase
 - only allow translation options that match prefix
 - prune based on target words matched
- Ensure that prefix can be created by system
 - add synthetic translation options from word aligned prefix (but with low probability)
 - no reordering limit
- After prefix is match, regular beam search
- Fast enough?
 - ⇒ Wuebker et al. [ACL 2016] report 51-89ms per sentence

Tuning



- Optimize to produce better predictions
- Focus on next few words, not full sentence
- Tuning metric
 - prefix BLEU (ignoring prefix to measure score)
 - word prediction accuracy
 - length of correctly predicted suffix sequence
- Generate diverse n-best list to ensure learnability
- Wuebker et al. [ACL 2016] report significant gains

Neural Interactive Translation Prediction

- Recent success of neural machine translation (see WMT 2016)
- For instance, attention model

Neural MT: Sequential Prediction

• The model produces words in sequence

$$p(\text{output}_t | \{\text{output}_1, \cdots, \text{output}_{t-1}\}, \vec{\text{input}}) = g(\text{output}_{t-1}, \text{context}_t, \text{hidden}_t)$$

• Translation prediction: feed in user prefix

Example

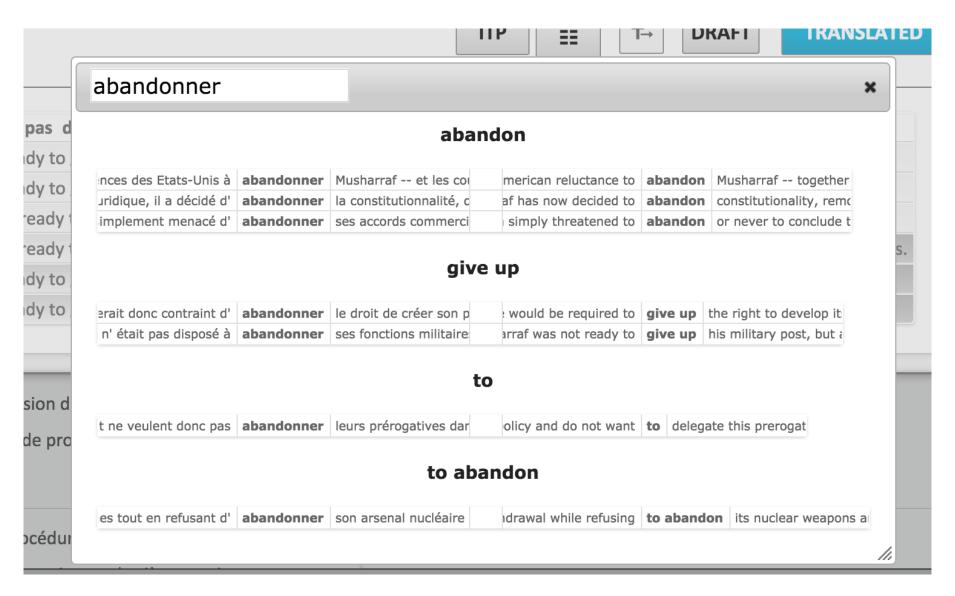
Input: Das Unternehmen sagte, dass es in diesem Monat mit Bewerbungsgesprächen beginnen wird und die Mitarbeiterzahl von Oktober bis Dezember steigt.

	Correct	Prediction	Prediction probability distribution
√	the	the	the (99.2%)
✓	company	company	company (90.9%) , firm (7.6%)
✓	said	said	said (98.9%)
✓	it	it	it (42.6%), this (14.0%), that (13.1%), job (2.0%), the (1.7%),
✓	will	will	will (77.5%), is (4.5%), started (2.5%), 's (2.0%), starts (1.8%),
✓	start	start	start (49.6%) , begin (46.7%)
	inter@@	job	job (16.1%), application (6.1%), en@@ (5.2%), out (4.8%),
×	viewing	state	state (32.4%), related (5.8%), viewing (3.4%) , min@@ (2.0%),
×	applicants	talks	talks (61.6%), interviews (6.4%), discussions (6.2%),
\checkmark	this	this	this (88.1%) , so (1.9%), later (1.8%), that (1.1%)
\checkmark	month	month	month (99.4%)
×	,	and	and (90.8%), , (7.7%)
×	with	and	and (42.6%), increasing (24.5%), rising (6.3%), with (5.1%) ,
\checkmark	staff	staff	staff (22.8%) , the (19.5%), employees (6.3%), employee (5.0%),
×	levels	numbers	numbers (69.0%), levels (3.3%), increasing (3.2%),
×	rising	increasing	increasing (40.1%) , rising (35.3%) , climbing (4.4%) , rise (3.4%) ,
\checkmark	from	from	from (97.4%)
\checkmark	October	October	October (81.3%), Oc@@ (12.8%), oc@@ (2.9%), Oct (1.2%)
X	through	to	to (73.2%), through (15.6%) , until (8.7%)
✓	December	December	December (85.6%) , Dec (8.0%), to (5.1%)
✓			. (97.5%)

Knowles and Koehn [AMTA 2016]

 Better prediction accuracy, even when systems have same BLEU score (state-of-the-art German-English systems, compared to search graph matching)

System	Configuration	BLEU	Word	Letter			
			Prediction	Prediction			
			Accuracy	Accuracy			
Neural	no beam search	34.5	61.6%	86.8%			
	beam size 12	36.2	63.6%	87.4%			
Phrase-based	_	34.5	43.3%	72.8%			


- Better recovery from failure
- Fast enough with GPU
 - translation speed with CPU: 100 ms/word
 - translation speed with GPU: 7ms/word

bilingual concordancer

Bilingual Concordancer

How does it Work?

- Have word-aligned parallel corpus
- Efficient data structure to quickly look up queried phrases (suffix arrays, we'll come back to them later)
- Translation spotting
 - look up queried phrase
 - use word alignment to identify target phrase
 - some edge cases (unaligned words at beginning/end)

machine translation

_

Dictionary German-English

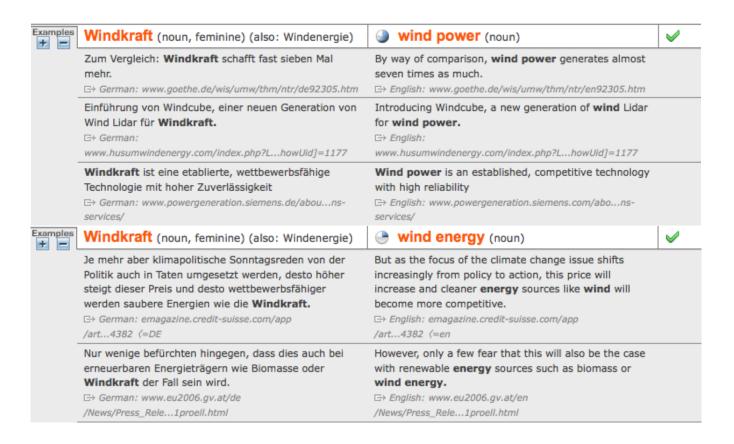
machine translation noun

maschinelle Übersetzung f 🕦

Maschinenübersetzung f (i)

translation machine noun

Übersetzungsmaschine f


See also:

 $\mathsf{machine}\, n \ \textcircled{\scriptsize 1} \) \ - \ \mathsf{Maschine}\, f \ \textcircled{\scriptsize 1} \ \cdot \ \mathsf{Ger\"{a}t}\, nt \ \textcircled{\scriptsize 1} \ \cdot \ \mathsf{Automat}\, m \ \textcircled{\scriptsize 1} \ \cdot \ \mathsf{Anlage}\, f \ \textcircled{\scriptsize 1} \ \cdot \ \mathsf{Apparat}\, m \ \textcircled{\scriptsize 1} \ \cdot \ \texttt{}$ machine v ◀)) - bearbeiten vt (i) maschinell herstellen v (i) spanen v zerspanen v maschinell bearbeiten v translation n ◀) – Übersetzung f (i) Translation f (i) Übersetzen nt (i) Verschiebung f (i) Sprachübersetzung f © Linguee Dictionary, 2015 Wikipedia External sources (not reviewed) The implementing provisions applicable to the machine translation system Die Durchführungsbestimmungen für das System der maschinellen would have to be established by the Select Committee [...] Übersetzung müssten vom engeren Ausschuss des EPO-Verwaltungsrats ⇒ cep.eu [...] By user licence agreements relating to the SYSTRAN machine translation Durch Lizenzverträge über die Benutzung der Software für maschinelle software program concluded between the applicants' [...] Übersetzungen SYSTRAN zwischen den Rechtsvorgängern der Klägerinnen [...] ⇒ eur-lex.europa.eu ⇒ eur-lex.europa.eu [...] curriculum vitae, in forms suitable for multilingual machine translation, [...] standardisierten Lebenslauf zu prüfen, die für eine automatische without restricting a user's option of adding other [...] \Rightarrow europarl.europa.eu Übersetzung in mehrere Sprachen geeignet sind, wobei der Nutzer [...] ⇒ europarl.europa.eu

Verification of Terminology

• Translation of German *Windkraft*

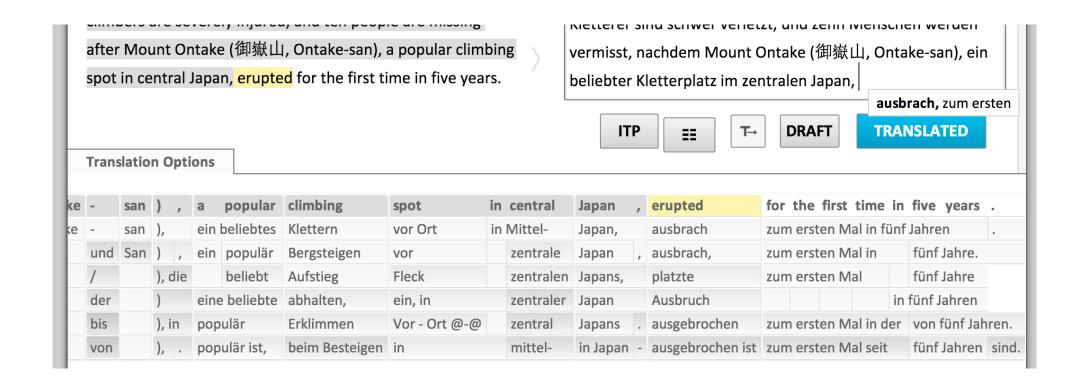
- Context shows when each translation is used
- Indication of source supports trust in translations

PRÉFÉRENCES REOUÊTES UTILISATEUR : lapalme MON COMPTE AIDE QUITTER Signet / Favori personnalisé : TransSearch (qu'est-ce que c'est ?) Requête bilingue Collection de documents : Les Hansards canadiens \$ Expression: take+ .. ride Chercher 92 traductions de *take+ .. ride* dans 106 occurrences dindons de la farce dindons de la farce monté un bateau Emissions continue to rise and taxpavers are being taken Les émissions continuent d'augmenter et c'est le faire avoir along for the ride. contribuable qui est le dindon de la farce. 2 se fasse rouler fait berner They are left with nothing. Now they are here illegally with Ces personnes se trouvent ici illégalement, elles n'ont aucun 2 se fait jouer no documentation. Canadians are being taken for a ride. document et nous, les Canadiens, sommes les dindons de 2 la farce. moqués de 2 fait This would affect close to 400,000 Canadians, 80,000 of Il s'agit d'une mesure qui toucherait près de 400 000 les a them Quebecers, who have been the ones taken for a Canadiens, dont 80 000 Québécois, qui ont été les dindons se sont fait avoir de la farce. ride. le public pour attirer la a fait une ballade I think that this is a prime example of a tainted system in Je pense que c'est un exemple patent d'un système vicié, où nous rouler dans ce projet 1 which people who cannot afford to invest in sectors eligible des gens qui n'ont pas les moyens d'investir dans des domaines où on peut obtenir des crédits d'impôt se voient, for tax credits are urged to do so through all kinds of scams nous tous and end up being taken for a ride. par toutes sortes de subterfuges, invités à le faire et, en en train de monter un bout de ligne, ils se trouvent à être les dindons de la bateau à la population farce. canadienne tête des contribuables que 1 se paie le passer une petite vite bourrer de l'autre côté de 1 la chambre en

ont pris la voiture que pour 1

faire une balade

TransSearch: Improved Transpotting

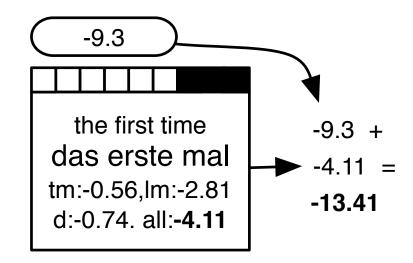

- Used to solve **difficult** translation problems
 - 7.2 million queries submitted to the system over a 6-year period
 - 87% contain at least two words
 - mainly search for idiomatic expressions such as in keeping with
- Improved translation spotting [Bourdaillet et al., MT Journal 2011]
- Filtering with classifier (45 features, trained on annotated data)
 - relative word count
 - word alignment scores
 - ratio of function words
- Merging of translations that only differ in function words, morphology
- Pseudo-relevance feedback

translation options

Translation Option Array

- Visual aid: non-intrusive provision of cues to the translator
- Trigger passive vocabulary

Visualization



- Show up to 6 options per word or phrase
- Rank best option on top
- Use color highlighting to show likelihood
 (grey = less likely to be useful)
- ullet Clickable: click on target phrase o added to edit area
- Automatic orientation
 - most relevant is next word to be translated
 - automatic centering on next word

How to Rank

- Basic idea: best options on top
- Problem: how to rank word translation vs. phrase translations?
- Method: utilize future cost estimates
- Translation score
 - sum of translation model costs
 - language model estimate
 - outside future cost estimate

Improving Rankings

• Removal of duplicates and near duplicates

bad	good
erupted	climbing
ausbrach	Klettern
ausbrach,	Bergsteigen
platzte	Aufstieg
Ausbruch	abhalten,
ausgebrochen	Erklimmen
ausgebrochen ist	beim Besteiger

- Ranking by likelihood to be used in the translation
 - \rightarrow can this be learned from user feedback?

Enabling Monolingual Translators

- Monolingual translator
 - wants to understand a foreign document
 - has no knowledge of foreign language
 - uses a machine translation system
- Questions
 - Is current MT output sufficient for understanding?
 - What else could be provided by a MT system?

Example

• MT system output:

The study also found that one of the genes in the improvement in people with prostate cancer risk, it also reduces the risk of suffering from diabetes.

• What does this mean?

Monolingual translator:

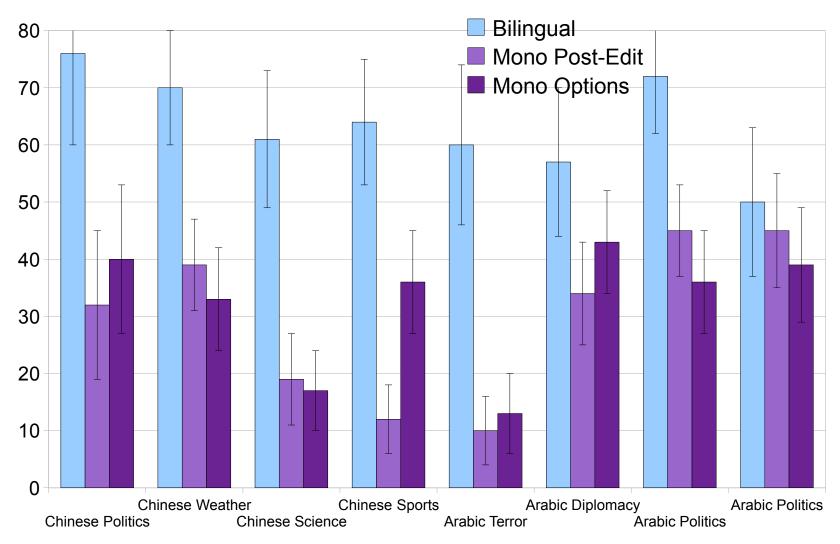
The research also found that one of the genes increased people's risk of prostate cancer, but at the same time lowered people's risk of diabetes.

Document context helps

Example: Arabic

وكان	مجلس	الثواب	لاميركى	11	تمد	اء	ميس	الذ	انونا	ā	يطالب		نسحد	القوات	القائلة	ا قا	الاميرك	من من	العراؤ	فدر	موعد	اقصاه	الاول	سانمن	
the	the us hous				adop		thurs		legal		calls for the	witho	drawal of		at troop		us		iraq	in	_		n the firs	_	
the	us house of 1	epreser	ntatives		th	e	thurso	lay ,	law	1				the figh	nting for	rces th	ne us	from	iraq		the	latest	the firs	of	
	the us	house		а	dopte	ed the	the	J	the leg	ally				fighti	ing force	es	us	fron	n irad	q in			i		
it was	us house	of repre	sentatives	s v	vas ad	opted	thursda	y , the	the la	w	demands	withdr	awal of tr	oops	fighte	er e	the (us		no	later	than	first		
he was	t	ne us hou	use	ě	adopte	ed by	thursd	ay 's	a la	W	calls for	withdra	wal of	comi	bat force	s		of		in the	not la	iter than	n first o	f	
he		us hous	e	ad	opted	by the	on thu	rsday	a lega	illy	calls for t	he with	drawal	forces	the figh	ter		from							
earlier ,			us		adopt	ted a	on thur	sday ,	by la	W	demands th	ne with	drawal of	troops				ira	q						
was				, 1	was a	dopted	thursda	y the	legall	у,	demands	withdra	awal of					of the							
it was the	2				adopt	ted ,	thu	,	the le	gal	calls for	r withdr	rawal					from	iraq i	n the					
earlier , th	e			a	dopted , the thursday , a		ay,a	legally @-@ de		demands	demands the withdrawal				th	the american				by	the firs	t of			
2008,	متحديا	1	مرة	جديدة	س	الرئي	جورج	بوش	الذي		يعارض	تحديد	ای	موعد											
2008,	defying	0	nce	new	pres	ident (george	w. bus	h, whi	ich op	pposes the	no dat	e has be	en set fo	or the .										
the 2008	defiant		nce agai	in	рі	resident	t george	bush	v	vho o	pposes no date has b		een set	for											
2008	challenging	a	gain	the nev	v				, w	which opposes			oses no date has been set												
	a defiant	the	first						, wh	10 ор	poses the			a date											
	in defiance of		nce again	١,					, who opposes		opposes			date .											
	, challenging	or	ice again f	the	pr	resident	t george	bush,	who	op	posed to se	tting ar	ny the	e date of	the										
,	in defiance	for the	first time	a new	pres	ident g	eorge w.	bush	s w	hich (opposes		n	o date											
in 2008,	defying the		again		us pi	resident	t george	w. bus	ih	ор	posed to		any t	the date	of										
	challenging th	e ti	me						wh	ю орр	poses the			date of											
	, defying	on	ce again ,	the						(opposes			date											

up to 10 translations for each word / phrase


Example: Arabic

بسحب	القوات	القائلة	الاميركية	من	العراق
withdrawal of	comb	at troops	us	;	iraq
	the figl	nting forces	the us	from	iraq
	fighti	ing forces	us	fro	m irac
withdrawal of tro	oops	fighter	the	us	
ithdrawal of	comi	bat forces		of	i
e withdrawal	forces	the fighter		from	
withdrawal of	troops			ira	ıq
rithdrawal of				of the	
withdrawal				from	iraq ir
e withdrawal			the am	erican	

Monolingual Translation with Options

No big difference — once significantly better

Monolingual Translation Triage

- Study on Russian–English (Schwartz, 2014)
- Allow monolingual translators to assess their translation
 - confident → accept the translation
 - verify \rightarrow proofread by bilingual
 - partially unsure \rightarrow part of translation handled by bilingual
 - completely unsure \rightarrow handled by bilingual
- Monolingual translator highly effective in triage

Monolingual Translation: Conclusions

- Main findings
 - monolingual translators may be as good as bilinguals
 - widely different performance by translator / story
 - named entity translation critically important
- Various human factors important
 - domain knowledge
 - language skills
 - effort

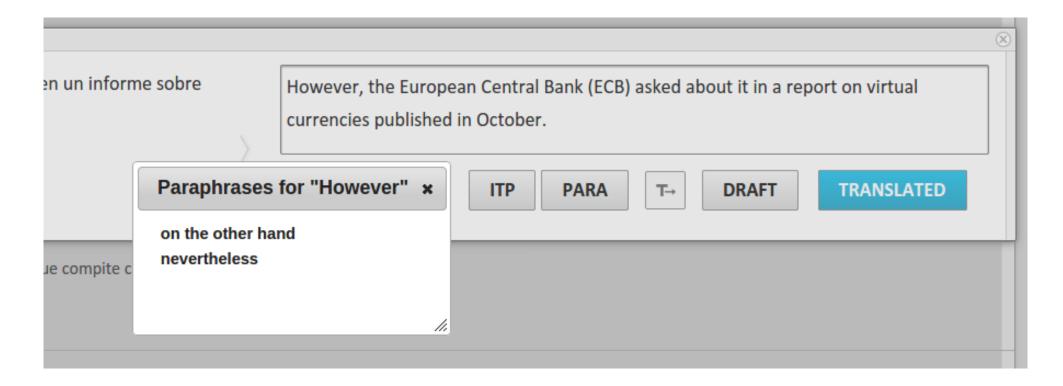
paraphrasing

Paraphrasing

Input Sentence

Er hat seit Monaten geplant, im Oktober einen Vortrag in Miami zu halten.

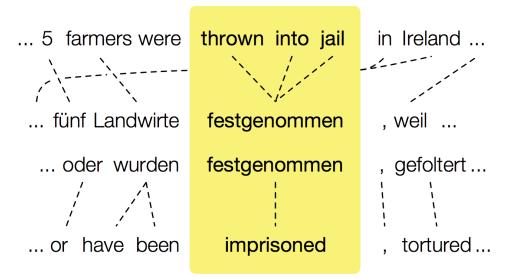
Professional Translator


He planned for months to give a lecture in Miami in October.

give a presentation present his work give a speech speak

User requests alternative translations for parts of sentence.

Visualization in CASMACAT



- User marks part of translation
- Clicks on paraphrasing button
- Alternative translations appear

Paraphrasing Research

- Somewhat popular research area
- Popular method: extract from parallel data
 - goal: find paraphrases
 for phrase e
 - look up likely translations $f_1, f_2, ...$ for e
 - for each f_i , look up likely translations $e'_{i1}, e'_{i2}, ...$
 - \Rightarrow these are the paraphrases

- Refinement: collect over several foreign languages, intersect
- Paraphrase database for several languages:

http://paraphrase.org/

Paraphrasing in Context

- Our problem: paraphrasing in context
 - driven by source
 - considers sentence context
 - ranking and diversity important
 - real time performance

Approach

- target span is mapped to source span
- search graph is consulted for alternative translations for source span
- additional translations generated by combining translation options
- \Rightarrow initial list of translations
 - various components to distill *n*-best paraphrases

Components

- Filtering: remove some translations
 - with extraneous punctuation
 - too similar to others
 - additional function words
- Scoring: score translations
 - translation model scores
 - language model score in context
 - compare alternate translations against best path
- Sorting: rank list
 - cluster translations by similarity
 - picks best translation from each cluster

Automatic Evaluation

Motivation

- alternative translations should fix translation errors
- → create bad translations by back-translation

Process

- Train machine translation system for both directions
- Translate test set target → source → target*
- Spot differences between target and target*
- Use span in target* as "marked by user", span in target as correct

Translate

Unlike in Canada, the American states are responsible for the organisation of federal elections.

Into

в отличие от канады, американские штаты ответственны за организацию федеральных выборов в соединенных штатах.

Back into English

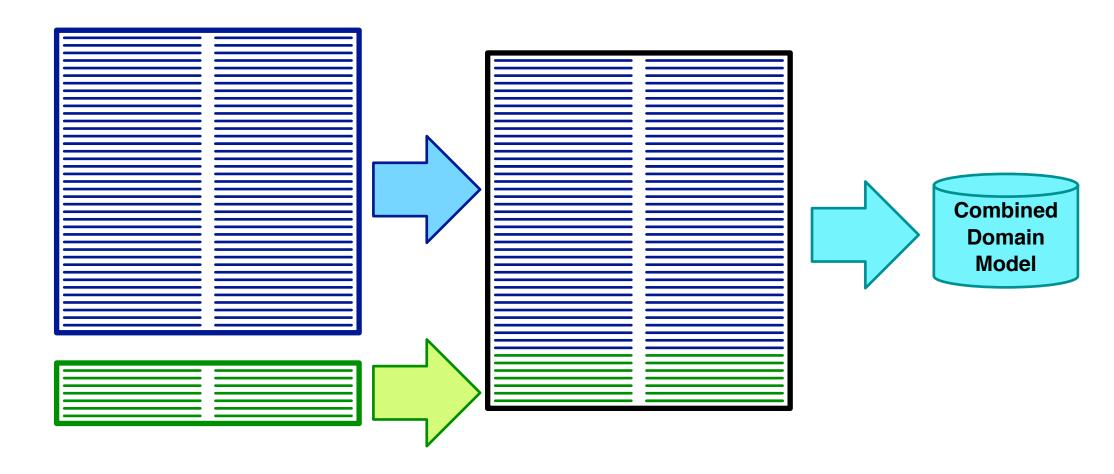
Unlike in Canada, **US states** are responsible for the organization of federal elections.

Manual Evaluation

- Web based interactive evaluation tool
- Same setup as automatic evaluation
 - shows target span
 - 5 selectable paraphrases
 - user accepts one \rightarrow correct
- Four users (U1–U4)
- Number of instances where one translation is correct

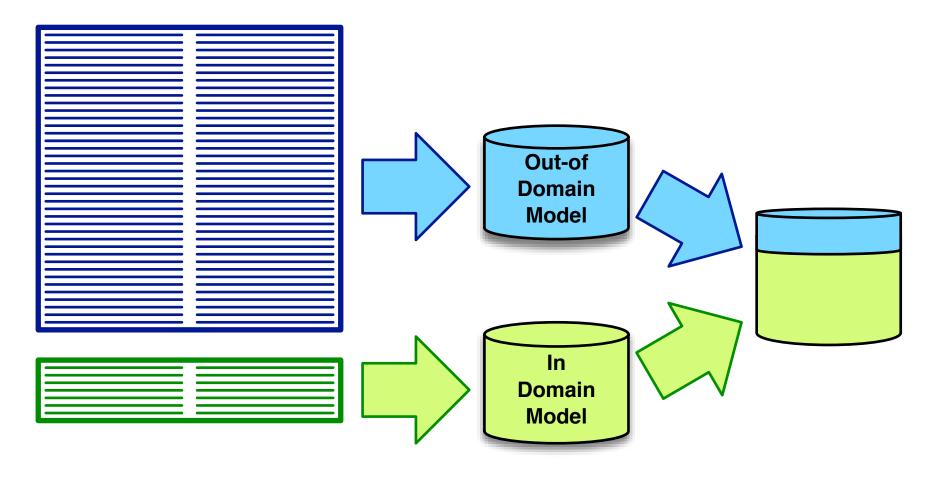
Method	U1	U2	U3	U4	average score
1	8	6	9	6	6/50
7	15	17	12	10	13/50
10	24	20	26	29	26/50

adaptation


Adaptation

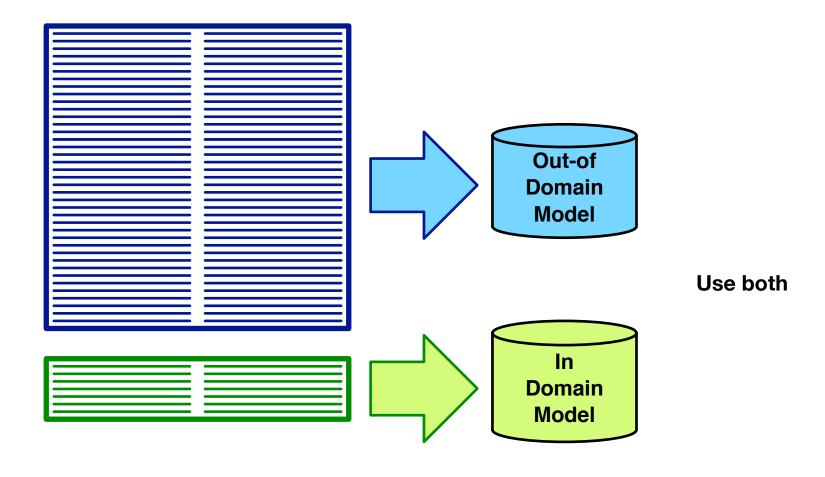
- Machine translation works best if optimized for domain
- Typically, large amounts of out-of-domain data available
 - European Parliament, United Nations
 - unspecified data crawled from the web
- Little in-domain data (maybe 1% of total)
 - information technology data
 - more specific: IBM's user manuals
 - even more specific: IBM's user manual for same product line from last year
 - and even more specific: sentence pairs from current project
- Various domain adaptation techniques researched and used

Combining Data



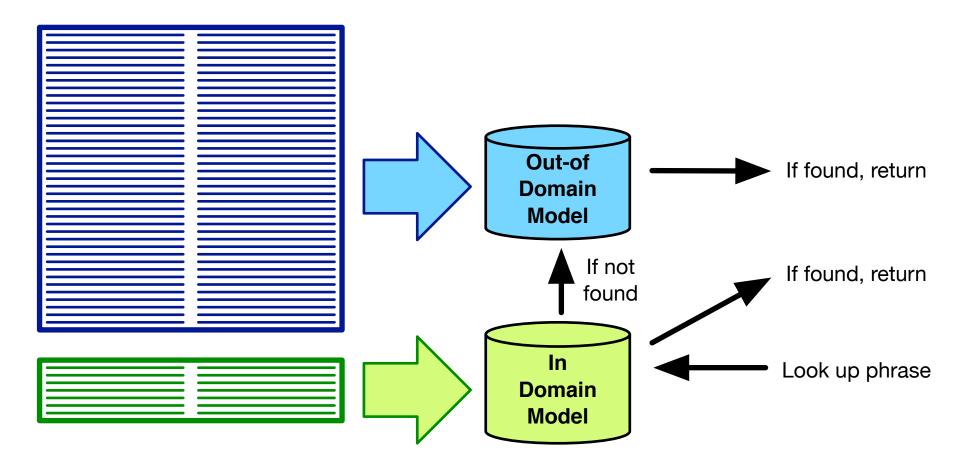
- Too biased towards out of domain data
- May flag translation options with indicator feature functions

Interpolate Models

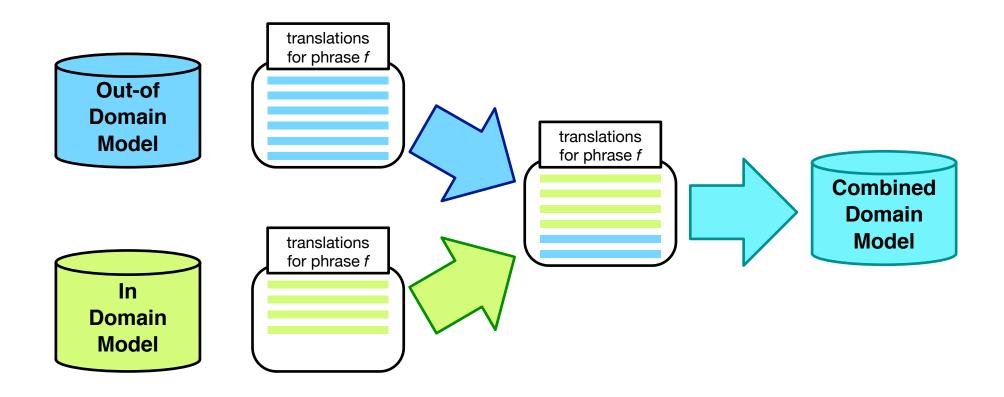


- $p_c(e|f) = \lambda_{in}p_{in}(e|f) + \lambda_{out}p_{out}(e|f)$
- Quite successful for language modelling

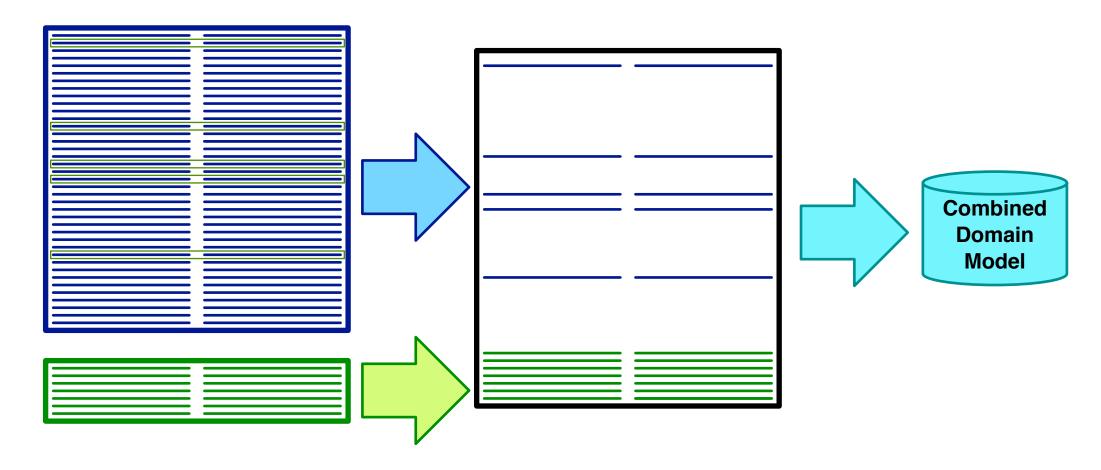
Multiple Models



ullet Multiple models o multiple feature functions


Backoff

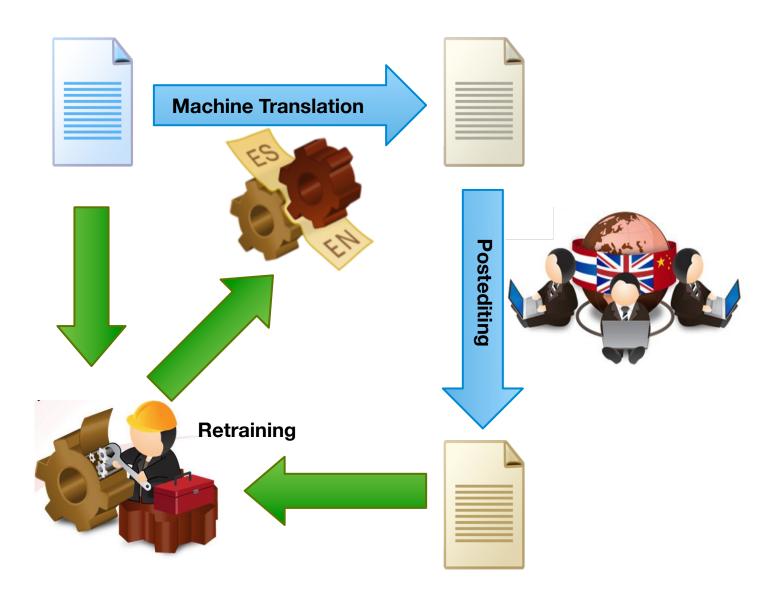
Fill-Up



- Use translation options from in-domain table
- Fill up with additional options from out-of-domain table

Sentence Selection

- Select out-of-domain sentence pairs that are similar to in-domain data
- Score similarity with language model, other means


Project Adaptation

- Method developed by the Matecat project
- Update model during translation project
- After each day
 - collected translated sentences
 - add to model
 - optimize
- Main benefit after the first day

Instant Adaptation

Adaptable Translation Model

- Store in memory
 - parallel corpus
 - word alignment
- Adding new sentence pair
 - word alignment of sentence pair
 - add sentence pair
 - update index (suffix array)
- Retrieve phrase translations on demand

On-Demand Word Alignment

- Needed: word alignment method that scores a sentence pairs
- Online EM algorithm
 - keep sufficient statistics of corpus in memory
 - run EM iteration on single sentence pair
 - update statistics
 - return word alignment
- For efficiency reason, a static model may be sufficient
- Implementations in bith mGIZA and fast-align

Suffixes

- 1 government of the people , by the people , for the people
- 2 of the people, by the people, for the people
- 3 the people, by the people, for the people
- 4 people, by the people, for the people
- 5 , by the people , for the people
- 6 by the people, for the people
- 7 the people, for the people
- 8 people, for the people
- 9 , for the people
- 10 for the people
- 11 the people
- 12 people

Sorted Suffixes

- 5 , by the people , for the people
- 9 , for the people
- 6 by the people, for the people
- 10 for the people
- 1 government of the people , by the people , for the people
- 2 of the people , by the people , for the people
- 12 people
- 4 people , by the people , for the people
- 8 people , for the people
- 11 the people
- 3 the people, by the people, for the people
- 7 the people, for the people

Suffix Array


```
, by the people , for the people
, for the people
by the people , for the people
for the people
government of the people , by the people , for the people
of the people , by the people , for the people
people
people , by the people , for the people
people , for the people
the people , the people , for the people
the people , by the people , for the people
the people , for the people
the people , for the people
```

suffix array: sorted index of corpus positions

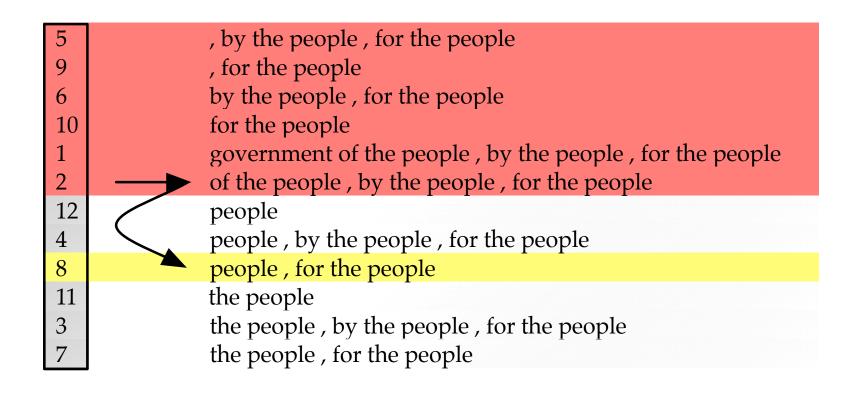
5	, by the people , for the people
9	, for the people
6	by the people , for the people
10	for the people
1	government of the people , by the people , for the people
2	of the people , by the people , for the people
12	people
4	people , by the people , for the people
8	people , for the people
11	the people
3	the people , by the people , for the people
7	the people , for the people

Query: people

5	, by the people , for the people
9	, for the people
6	by the people , for the people
10	for the people
1	government of the people , by the people , for the people
2	of the people , by the people , for the people
12	people
4	people , by the people , for the people
8	people , for the people
11	the people
3	the people , by the people , for the people
7	the people , for the people

Query: people

Binary search: start in the middle



5	, by the people , for the people
9	, for the people
6	by the people , for the people
10	for the people
1	government of the people, by the people, for the people
2	of the people , by the people , for the people
12	people
4	people , by the people , for the people
8	people , for the people
11	the people
3	the people , by the people , for the people
7	the people , for the people

Query: people

Binary search: discard upper half

Query: people

Binary search: middle of remaining space

Query: people

Binary search: match

5	, by the people , for the people
9	, for the people
6	by the people , for the people
10	for the people
1	government of the people, by the people, for the people
2	of the people , by the people , for the people
12	people
4	people , by the people , for the people
8	people , for the people
11	the people
3	the people , by the people , for the people
7	the people , for the people

Query: people

Finding matching range with additional binary searches for start and end

Bias Towards User Translation

- Cache-based models
- Language model
 - \rightarrow give bonus to n-grams in previous user translation
- Translation model
 - \rightarrow give bonus to translation options in previous user translation
- Decaying score for bonus (less recent, less relevant)
- More details: Bertoldi et al. [MT Summit 2013]

integration of translation memories

Progress in Translation Automation

• Translation Memory (TM)

- translators store past translation in database
- when translating new text, consult database for similar segments
- fuzzy match score defines similarity

widely used by translation agencies

• Statistical Machine Translation (SMT)

- collect large quantities of translated text
- extract automatically probabilistic translation rules
- when translating new text, find most probable translation given rules

wide use of free web-based services not yet used by many translation agencies

TM vs.

SMT

used by human translator

restricted domain (e.g. product manual)

very repetitive content

corpus size: 1 million words

commercial developers (e.g., SDL Trados) used by target language information seeker

open domain translation (e.g. news)

huge diversity (esp. web)

corpus size: 100-1000 million words

academic/commercial research (e.g., Google)

Main Idea

• Input

The second paragraph of Article 21 is deleted.

• Fuzzy match in translation memory

The second paragraph of Article 5 is deleted.

⇒ Part of the translation from TM fuzzy match

Part of the translation with SMT

The second paragraph of Article

21

is deleted.

• Input sentence:

The second paragraph of Article 21 is deleted.

• Input sentence:

The second paragraph of Article 21 is deleted.

• Fuzzy match in translation memory:

The second paragraph of Article 5 is deleted.

=

À l'article 5, le texte du deuxiéme alinéa est supprimé.

• Input sentence:

The second paragraph of Article 21 is deleted.

• Fuzzy match in translation memory:

The second paragraph of Article 5 is deleted.

À l'article 5, le texte du deuxiéme alinéa est supprimé.

• Detect mismatch (string edit distance)

• Input sentence:

The second paragraph of Article 21 is deleted.

• Fuzzy match in translation memory:

The second paragraph of Article 5 is deleted.

À l'article 5, le texte du deuxiéme alinéa est supprimé.

- Detect mismatch (string edit distance)
- Align mismatch (using word alignment from GIZA++)

• Input sentence:

The second paragraph of Article 21 is deleted.

• Fuzzy match in translation memory:

The second paragraph of Article 5 is deleted.

=

À l'article 5 , le texte du deuxiéme alinéa est supprimé.

Output word(s) taken from the target TM

• Input sentence:

The second paragraph of Article 21 is deleted.

• Fuzzy match in translation memory:

The second paragraph of Article 5 is deleted.

À l'article 5, le texte du deuxiéme alinéa est supprimé.

Output word(s) taken from the target TM

Input word(s) that still need to be translated by SMT

• Input sentence:

The second paragraph of Article 21 is deleted.

• Fuzzy match in translation memory:

The second paragraph of Article 5 is deleted.

À l'article 5, le texte du deuxiéme alinéa est supprimé.

XML frame (input to Moses)

<xml translation=" À l' article "/> 21

<xml translation=" , le texte du deuxiéme alinéa est supprimé . "/>

• Input sentence:

The second paragraph of Article 21 is deleted.

• Fuzzy match in translation memory:

The second paragraph of Article 5 is deleted.

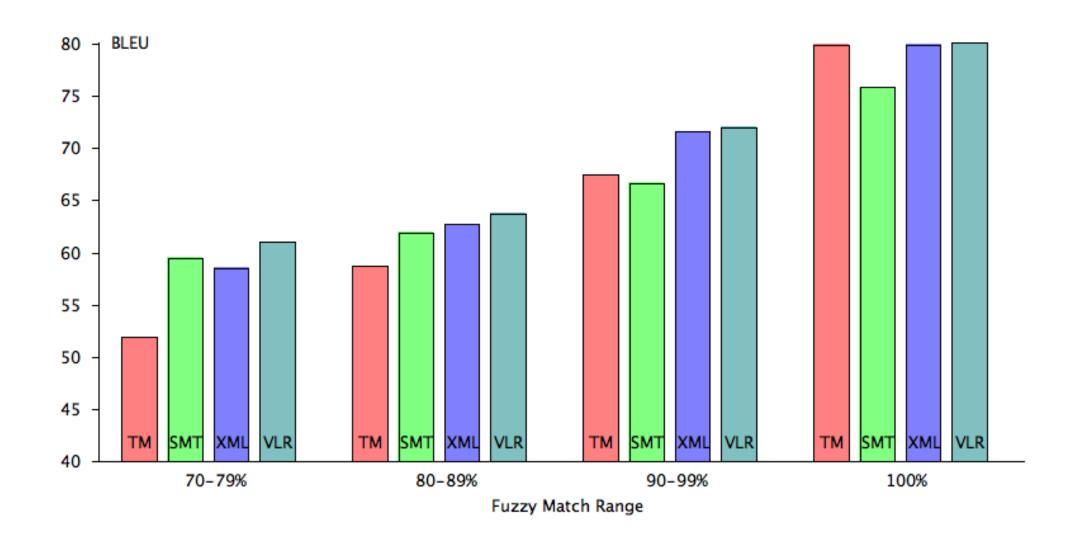
À l'article 5, le texte du deuxiéme alinéa est supprimé.

• More compact formalism for the purposes of this presentation:

< À l' article > 21 < , le texte du deuxiéme alinéa est supprimé . >

Two Solutions

• XML frames


```
<À l' article> 21 <, le texte du deuxiéme alinéa est supprimé .> for input The second paragraph of Article 21 is deleted .
```

• Very large hierarchical rule

```
( The second paragraph of Article x is deleted .; À l' article x , le texte du deuxiéme alinéa est supprimé . )
```

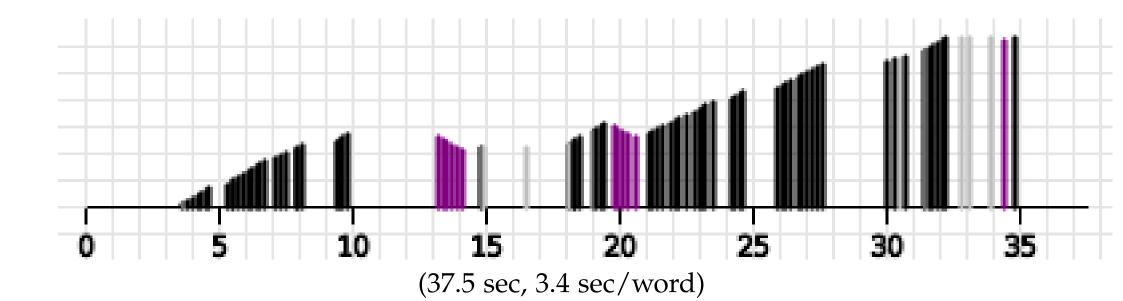
Result: Acquis

logging and eye tracking

Logging functions

- Different types of events are saved in the logging.
 - configuration and statistics
 - start and stop session
 - segment opened and closed
 - text, key strokes, and mouse events
 - scroll and resize
 - search and replace
 - suggestions loaded and suggestion chosen
 - interactive translation prediction
 - gaze and fixation from eye tracker

Logging functions


- In every event we save:
 - Type
 - In which element was produced
 - Time
- Special attributes are kept for some types of events
 - Diff of a text change
 - Current cursor position
 - Character looked at
 - Clicked UI element
 - Selected text
- ⇒ Full replay of user session is possible

Keystroke Log

Input: Au premier semestre, l'avionneur a livré 97 avions.

Output: The manufacturer has delivered 97 planes during the first half.

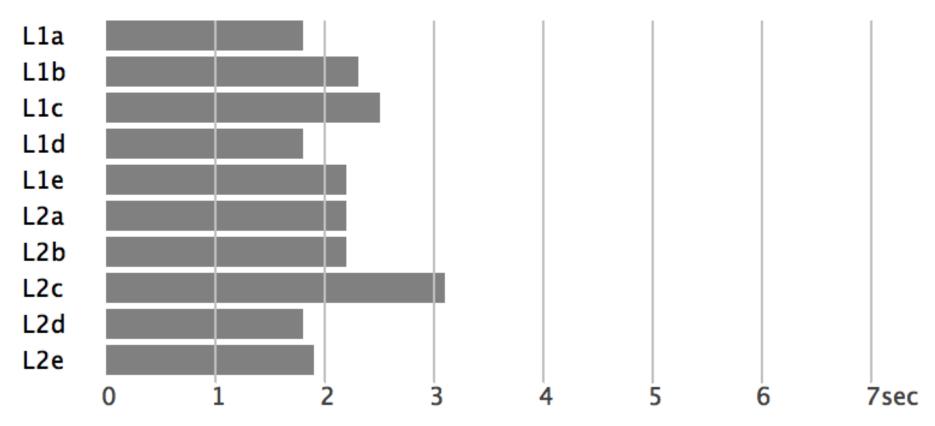
black: keystroke, purple: deletion, grey: cursor move

height: length of sentence

Example of Quality Judgments

Src.	Sans se démonter, il s'est montré concis et précis.									
MT	Without dismantle, it has been concise and accurate.									
1/3	Without fail, he has been concise and accurate. (Prediction+Options, L2a)									
4/0	Without getting flustered, he showed himself to be concise and precise.									
	(Unassisted, L2b)									
4/0	Without falling apart, he has shown himself to be concise and accurate. (Postedit, L2c)									
1/3	Unswayable, he has shown himself to be concise and to the point. (Options, L2d)									
0/4	Without showing off, he showed himself to be concise and precise. (Prediction, L2e)									
1/3	Without dismantling himself, he presented himself consistent and precise.									
	(Prediction+Options, L1a)									
2/2	He showed himself concise and precise. (Unassisted, L1b)									
3/1	Nothing daunted, he has been concise and accurate. (Postedit, L1c)									
3/1	Without losing face, he remained focused and specific. (Options, L1d)									
3/1	Without becoming flustered, he showed himself concise and precise. (Prediction, L1e)									
	-									

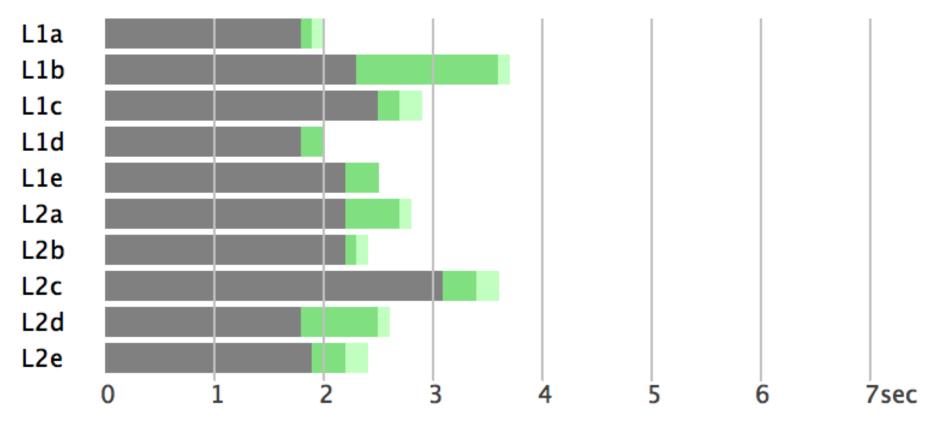
Main Measure: Productivity


Assistance	Speed	Quality
Unassisted	4.4s/word	47% correct
Postedit	2.7s (-1.7s)	55% (+8%)
Options	3.7s (-0.7s)	51% (+4%)
Prediction	3.2s (-1.2s)	54% (+7%)
Prediction+Options	3.3s (-1.1s)	53% (+6%)

Faster and Better, Mostly

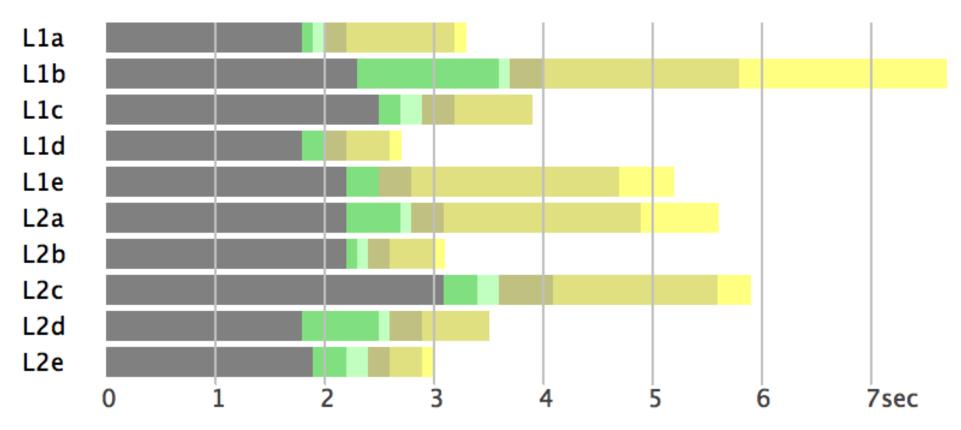
User	Unassisted	Pos	stedit	Ор	tions	Pred	liction	Predicti	on+Options
L1a	3.3sec/word	1.2s	-2.2s	2.3s	-1.0s	1.1s	-2.2s	2.4s	-0.9s
	23% correct	39%	+16%)	45%	+22%	30%	+7%)	44%	+21%
L1b	7.7sec/word	4.5s	-3.2s)	4.5s	-3.3s	2.7s	-5.1s	4.8s	-3.0s
	35% correct	48%	+13%	55%	+20%	61%	+26%	41%	+6%
L1c	3.9sec/word	1.9s	-2.0s	3.8s	-0.1s	3.1s	-0.8s	2.5s	-1.4s
	50% correct	61%	+11%	54%	+4%	64%	+14%	61%	+11%
L1d	2.8sec/word	2.0s	-0.7s	2.9s	(+0.1s)	2.4s	(-0.4s)	1.8s	-1.0s
	38% correct	46%	+8%	59%	(+21%)	37%	(-1%)	45%	+7%
L1e	5.2sec/word	3.9s	-1.3s	4.9s	(-0.2s)	3.5s	-1.7s	4.6s	(-0.5s)
	58% correct	64%	+6%	56%	(-2%)	62%	+4%	56%	(-2%)
L2a	5.7sec/word	1.8s	-3.9s	2.5s	-3.2s	2.7s	-3.0s	2.8s	-2.9s
	16% correct	50%	+34%	34%	+18%	40%	+24%	50%	+34%
L2b	3.2sec/word	2.8s	(-0.4s)	3.5s	+0.3s	6.0s	+2.8s	4.6s	+1.4s
	64% correct	56%	(-8%)	60%	-4%	61%	-3%	57%	-7%
L2c	5.8sec/word	2.9s	-3.0s	4.6s	(-1.2s)	4.1s	-1.7s	2.7s	-3.1s
	52% correct	53%	+1%	37%	(-15%)	59%	+7%	53%	+1%
L2d	3.4sec/word	3.1s	(-0.3s)	4.3s	(+0.9s)	3.8s	(+0.4s)	3.7s	(+0.3s)
	49% correct	49%	(+0%)	51%	(+2%)	53%	(+4%)	58%	(+9%)
L2e	2.8sec/word	2.6s	-0.2s	3.5s	+0.7s	2.8s	(-0.0s)	3.0s	+0.2s
	68% correct	79%	+11%	59%	-9%	64%	(-4%)	66%	-2%
avg.	4.4sec/word	2.7s	-1.7s	3.7s	-0.7s	3.2s	-1.2s	3.3s	-1.1s
	47% correct	55%	+8%	51%	+4%	54%	+7%	53%	+6%

Unassisted Novice Translators



L1 = native French, L2 = native English, average time per input word only typing

Unassisted Novice Translators



L1 = native French, L2 = native English, average time per input word typing, initial and final pauses

Unassisted Novice Translators

L1 = native French, L2 = native English, average time per input word

typing, initial and final pauses, short, medium, and long pauses most time difference on intermediate pauses

User: L1b	total	init-p	end-p	short-p	mid-p	big-p	key	click	tab
Unassisted	7.7s	1.3s	0.1s	0.3s	1.8s	1.9s	2.3s	-	-
Postedit	4.5s	1.5s	0.4s	0.1s	1.0s	0.4s	1.1s	-	-
Options	4.5s	0.6s	0.1s	0.4s	0.9s	0.7s	1.5s	0.4s	-
Prediction	2.7s	0.3s	0.3s	0.2s	0.7s	0.1s	0.6s	-	0.4s
Prediction+Options	4.8s	0.6s	0.4s	0.4s	1.3s	0.5s	0.9s	0.5s	0.2s

User: L1b	total	init-p	end-p	short-p	mid-p	big-p	key	click	tab
Unassisted	7.7s	1.3s	0.1s	0.3s	1.8s	1.9s	2.3s	-	-
Postedit	4.5s	1.5s	0.4s	0.1s	1.0s	0.4s	1.1s	-	-
Options	4.5s	0.6s	0.1s	0.4s	0.9s	0.7s	1.5s	0.4s	-
Prediction	2.7s	0.3s	0.3s	0.2s	0.7s	0.1s	0.6s	-	0.4s
Prediction+Options	4.8s	0.6s	0.4s	0.4s	1.3s	0.5s	0.9s	0.5s	0.2s

Slightly less time spent on typing

User: L1b	total	init-p	end-p	short-p	mid-p	big-p	key	click	tab
Unassisted	7.7s	1.3s	0.1s	0.3s	1.8s	1.9s	2.3s	-	-
Postedit	4.5s	1.5s	0.4s	0.1s	1.0s	0.4s	1.1s	-	-
Options	4.5s	0.6s	0.1s	0.4s	0.9s	0.7s	1.5s	0.4s	-
Prediction	2.7s	0.3s	0.3s	0.2s	0.7s	0.1s	0.6s	-	0.4s
Prediction+Options	4.8s	0.6s	0.4s	0.4s	1.3s	0.5s	0.9s	0.5s	0.2s

Less pausing

Slightly less time spent on typing

User: L1b	total	init-p	end-p	short-p	mid-p	big-p	key	click	tab
Unassisted	7.7s	1.3s	0.1s	0.3s	1.8s	1.9s	2.3s	-	-
Postedit	4.5s	1.5s	0.4s	0.1s	1.0s	0.4s	1.1s	-	-
Options	4.5s	0.6s	0.1s	0.4s	0.9s	0.7s	1.5s	0.4s	-
Prediction	2.7s	0.3s	0.3s	0.2s	0.7s	0.1s	0.6s	-	0.4s
Prediction+Options	4.8s	0.6s	0.4s	0.4s	1.3s	0.5s	0.9s	0.5s	0.2s

Less pausing

Especially less time in big pauses

Slightly less time spent on typing

Origin of Characters: Native French L1b

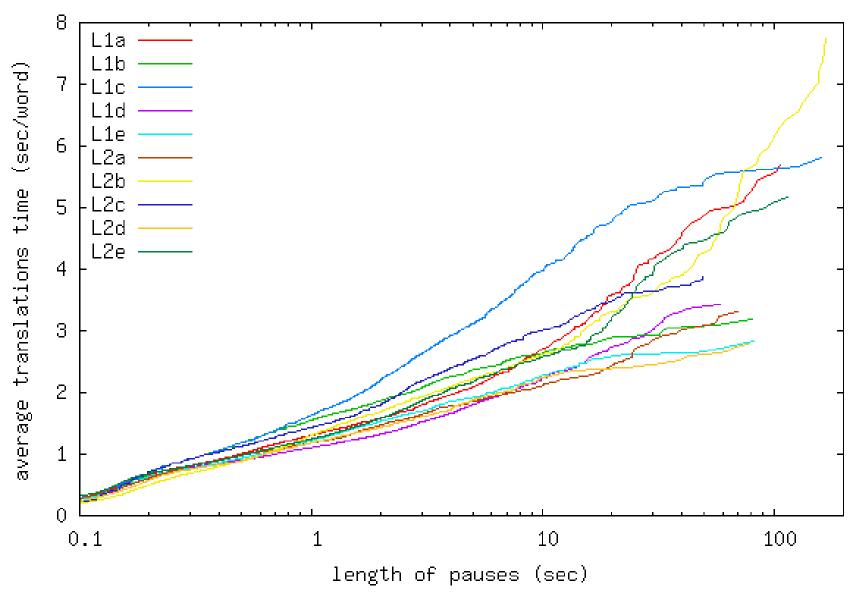
User: L1b	key	click	tab	mt
Postedit	18%	-	-	81%
Options	59%	40%	-	-
Prediction	14%	-	85%	-
Prediction+Options	21%	44%	33%	_

Origin of Characters: Native French L1b

User: L1b	key	click	tab	mt
Postedit	18%	-	-	81%
Options	59%	40%	-	-
Prediction	14%	-	85%	-
Prediction+Options	21%	44%	33%	-

Translation comes to large degree from assistance

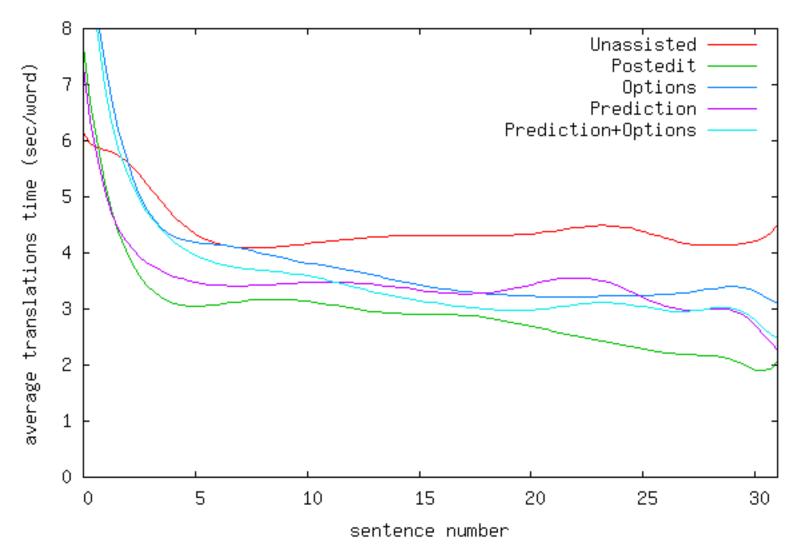
Pauses Reconsidered



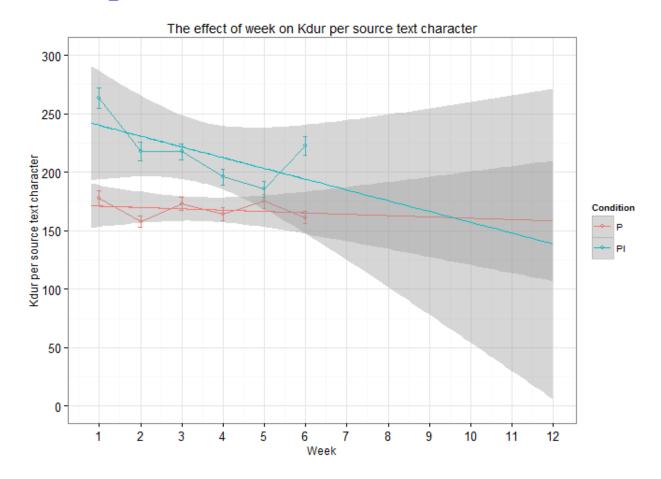
- Our classification of pauses is arbitrary (2-6sec, 6-60sec, >60sec)
- Extreme view: all you see is pauses
 - keystrokes take no observable time
 - all you see is pauses between action points
- Visualizing range of pauses: time t spent in pauses $p \in P$ up to a certain length l

$$sum(t) = \frac{1}{Z} \sum_{p \in P, l(p) \le t} l(p)$$

Results

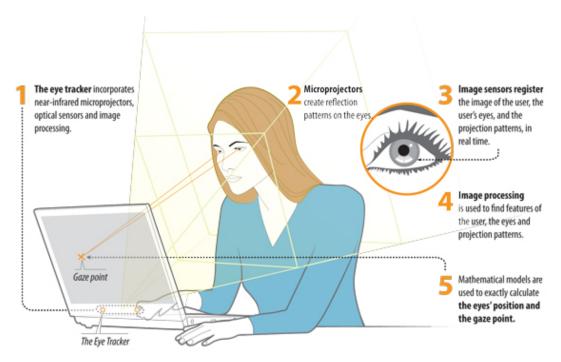


Learning Effects



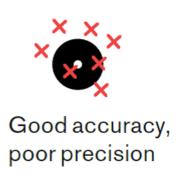
Users become better over time with assistance

Learning Effects: Professional Translators 170



CASMACAT longitudinal study Productivity projection as reflected in Kdur taking into account six weeks (Kdur = user activity excluding pauses > 5 secods)

Eye Tracking


- Eye trackers extensively used in cognitive studies of, e.g., reading behavior
- Overcomes weakness of key logger: what happens during pauses
- Fixation: where is the focus of the gaze
- Pupil dilation: indicates degree of concentration

Eye Tracking

• Problem: Accuracy and precision of gaze samples

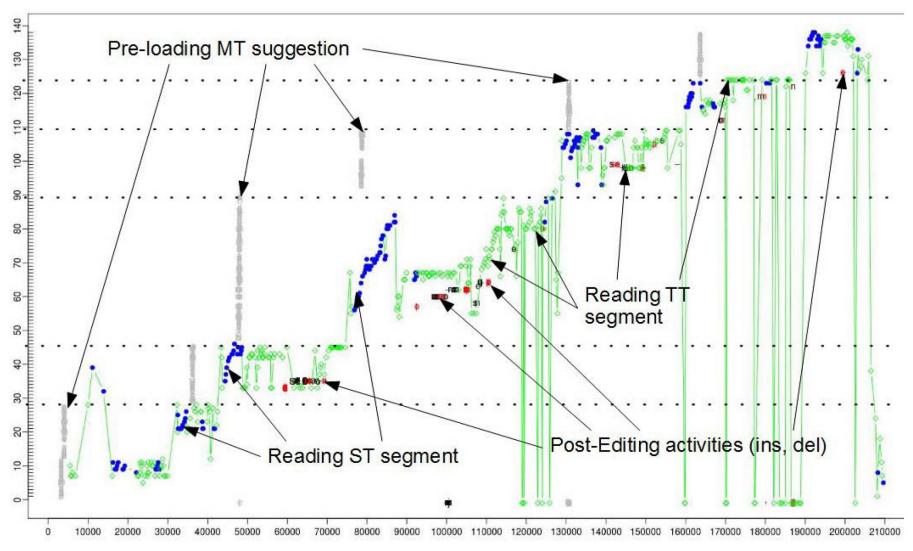
- = eye tracker result
- = target looked at

Gaze-to-Word Mapping

Recorded gaze lacations and fixations

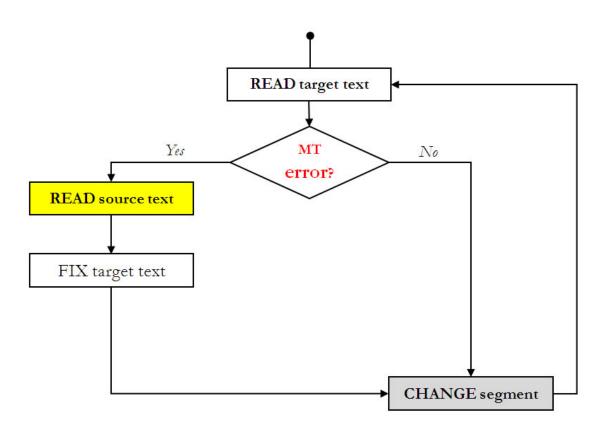
Right eye gaze samples

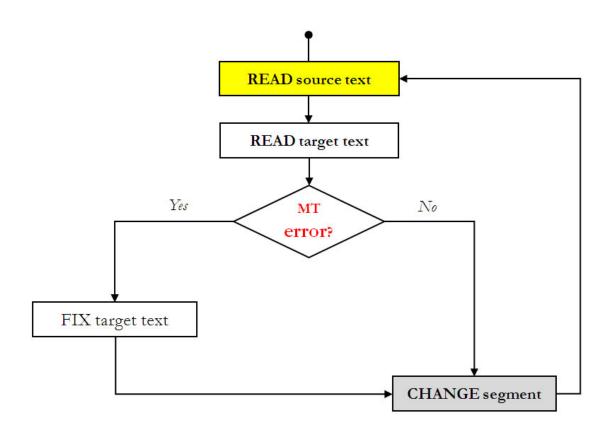
Families hit with increase in cost of living
British families have to cough up an extra £31,300 a year as foot
in supermarkets have climbed at an alarming rate over the past—
still, making it hard for the Bank of England to cult interest rates
control. To make matters worse, escalating prices are racing abe
healthcare professionals, who have suffered from the government below-inflation salary increases. In addition to fuel and food, electing the professionals are increases. In addition to fuel and food, electing the professionals are increases.

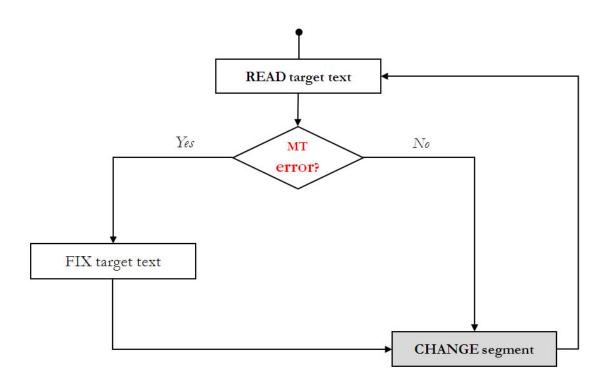

Left eye gaze samples

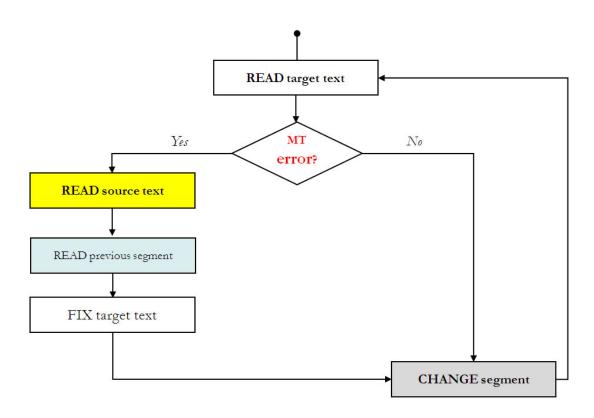
Gaze-to-word mapping

Families hit with increase in cost of living
British families have to cough up an extra £31,300 a year as food
in supermarkets have climbed at an alarming rate over the past y
still, making it hard for the Bank of England to cut interest rates
control. To make matters werse, escalating prices are racing ahe
healthcare professionals, who have suffered from the government
below-inflation salary increases. In addition to fuel and food elec-


Logging and Eye Tracking


focus on target word (green) or source word (blue) at position *x*


• User style 1: Verifies translation just based on the target text, reads source text to fix it


• User style 2: Reads source text first, then target text

• User style 3: Makes corrections based on target text only

• User style 4: As style 1, but also considers previous segment for corrections

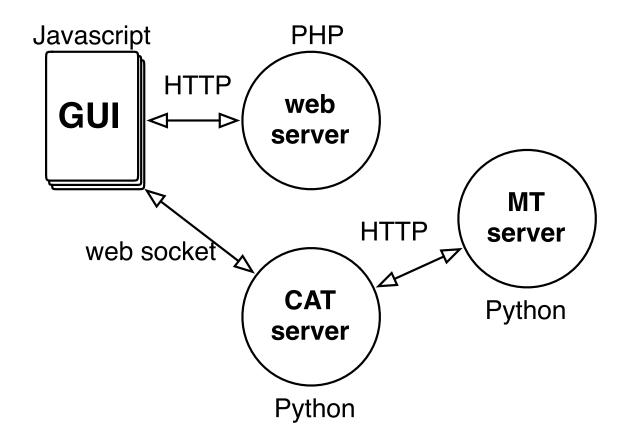
Users and User Styles

	Sty	le 1		Style 2			Style 3			Style 4		
	target / source-fix			sou	source-target		targ	target only		wider con		ntext
	P	PI	PIA	P	PI	PIA	Р	PI	PIA	P	PI	PIA
P02	*	*	*	•	•	•	•			•	•	•
P03												
P04	•	*	*				*	•	•	•	•	•
P05	•	•	•				*	*	*	•	•	•
P07	*	*	*				•	•	•	•	•	•
P08	*	*	*	•	•	•				•	•	•
P09	•	•	•				*	*	*	•	•	•

- Individual users employ different user styles
- But: consistently across different types of assitance (P = post-editing, PI = interactive post-editing, PIA = interactive post-editing with additional annotations)

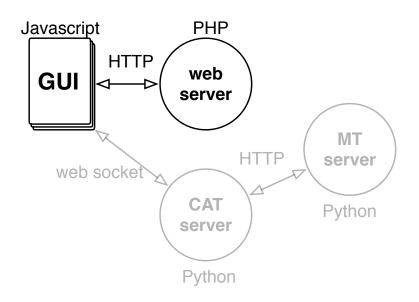
Backtracking

- Local backtracking
 - **Immediate repetition**: the user immediately returns to the same segment (e.g. AAAA)
 - Local alternation: user switches between adjacent segments, often singly (e.g. ABAB) but also for longer stretches (e.g. ABC-ABC).
 - Local orientation: very brief reading of a number of segments, then returning to each one and editing them (e.g. ABCDE-ABCDE).
- Long-distance backtracking
 - Long-distance alternation: user switches between the current segment and different previous segments (e.g. JCJDJFJG)
 - Text final backtracking: user backtracks to specific segments after having edited all the segments at least once
 - **In-text long distance backtracking**: instances of long distance backtracking as the user proceeds in order through the text.



part III

CASMACAT workbench implementation


Components

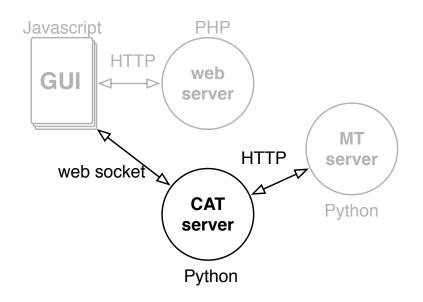
Web Server

- Builds on Matecat open source implementation
- Typical web application: LAMP (Linux, Apache, MySQL, PHP)
- Uses model, view, controller breakdown

Model

- Relevant data is stored in MySQL database matecat_sandbox
- Major database tables
 - Projects are stored in projects
 - They have a corresponding entry in jobs
 - Raw files (XLIFF) are stored in files
 - Segments are stored in segments
 - Translations of segments are stored in segment_translations
 - Log events are stored in *_event
 - etc.
- The major change from Matecat is the logging

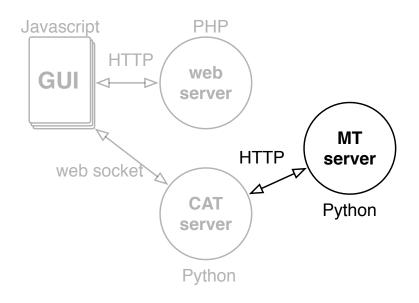
Controller



- Typical request: get information about a segment:

 POST http://192.168.56.2:8000/?action=getSegments&time=1446185242727
- Script index.php selects corresponding action in lib/controller e.g., getSegmentsController.php
- Response is HTML or JSON
- The main action is really in the Javascript GUI public/js
 - core functionality from Matecat public/js/cat.js
 - CASMACAT extensions public/js/casmacat

CAT Server



- To a large degree middleware
- Calls external services such as
 - MT server
 - word aligner
 - interactive translation prediction
- Caches information about a sentence translation

MT Server

- Google-style API to MT Server
- Python wrapper for Moses
 - basic translation request
 - includes pre and post processing pipeline
 - other functions: word alignment, incremental updating, etc.
- Uses mosesserver XMLRPC server

server.py

- Requires mosesserver to run as a service
 mosesserver -config \$MODELDIR/moses.ini --server-port 9010
- Script server.py requires a lot of parameters
 - preprocessing tools (tokenizer, truecaser, etc.)
 - IP address and port
 - URL of the mosesserver API
 - etc.
- Request to the script http://127.0.0.1:9000//translate?q=Un+test&key=0&source=xx&target=xx

Response

```
{"data": {"translations": [{"translatedText": "A test",

"translatedTextRaw": "a test",

"annotatedSource": "un test",

"tokenization": {"src": [[0, 1], [3, 6]], "tgt": [[0, 0], [2, 5]]}}]}}
```

Home Edition

- Moses is installed in /opt/moses
- CASMACAT is installed in /opt/casmacat
 - web server / GUI in /opt/casmacat/web-server
 - MT server (server.py) in /opt/casmacat/mt-server
 - CAT server in /opt/casmacat/cat-server
 - installation scripts in /opt/casmacat/install
 - log files in /opt/casmacat/logs
- Home Edition
 - admin web server in /opt/casmacat/admin
 - corpus data in /opt/casmacat/data
 - prototype training in /opt/casmacat/experiment
 - engines stored in /opt/casmacat/engines

Home Edition MT Engine

- Demo engine in /opt/casmacat/engines/fr-en-upload-1
- Files

```
biconcor.1
biconcor.1.align
biconcor.1.src-vcb
biconcor.1.tgt
biconcor.1.tgt-vcb
corpus-1.binlm.1
fast-align.1
fast-align.1.log
fast-align.1.parameters
fast-align-inverse.1
fast-align-inverse.1.log
fast-align-inverse.1.parameters
info
moses.tuned.ini.1
phrase-table-mmsapt.1
reordering-table.1.wbe-msd-bidirectional-fe.minlexr
RUN
truecase-model.1.en
truecase-model.1.fr
```

• The script RUN starts the engine

Thank You

questions?