Vision Models

Philipp Koehn

25 April 2024

Image Generation

2014

2017

2018

2016

• How does this work?

Textbook

O'REILLY'

Generative Deep Learning

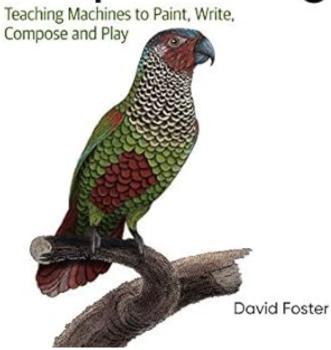
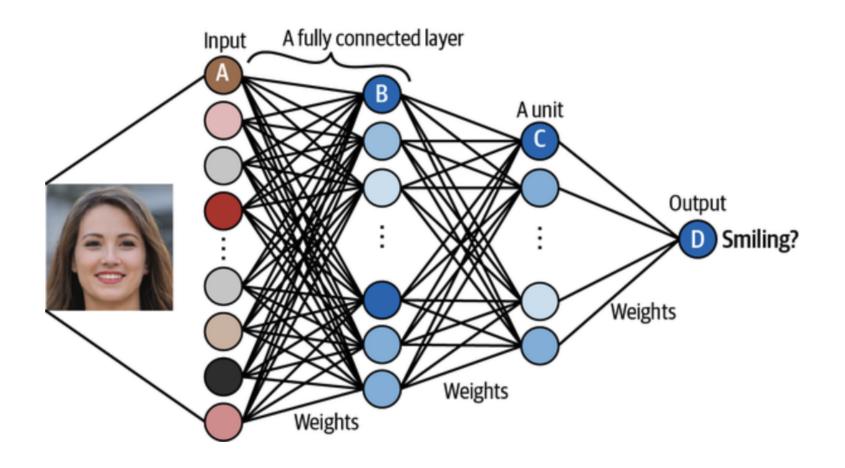


image classification

Image Classification

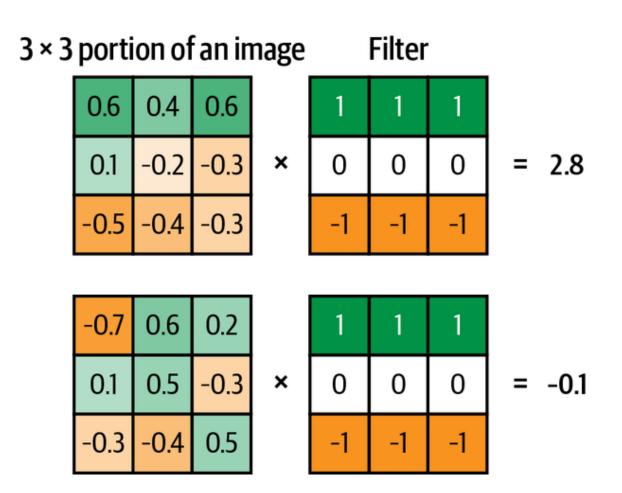


• Input: Image, Output: Class

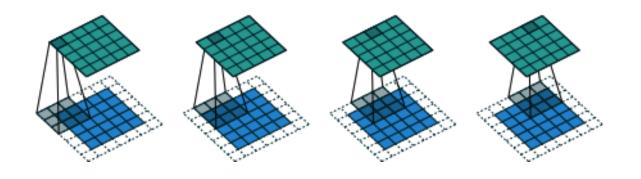
CIFAR-10

- 60,000 images
- 32x32 resolution
- 10 classes

Simple Convolution

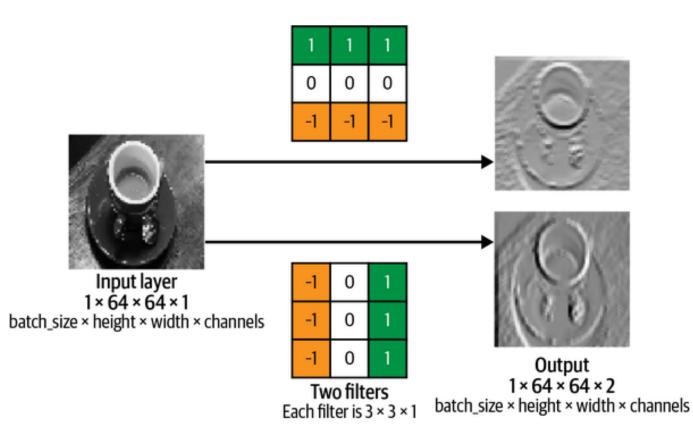


Processing Image with Convolution



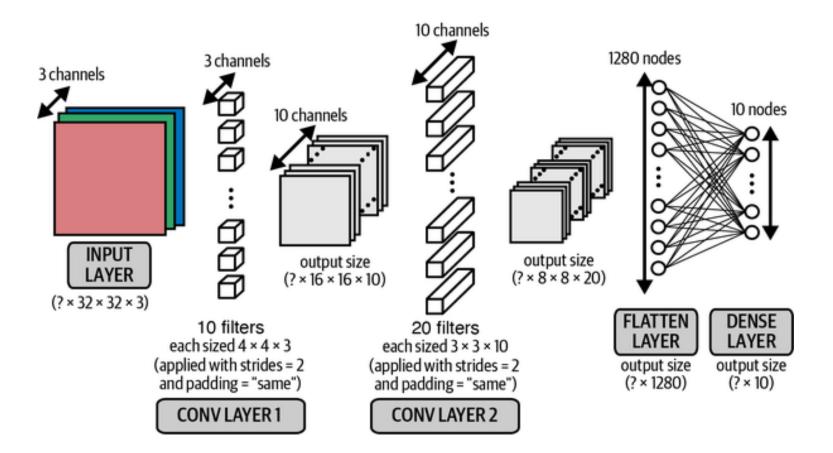
- Passing a 3x3 kernel over a 5x5 image
- Using padding to preserve size of representation

Edge Detection

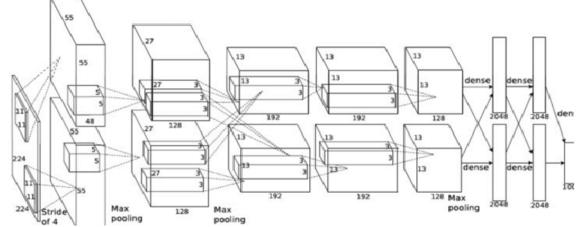


- Detecting large local color shifts: edges in image
- Two kernels: 2-dimensional vector for each point

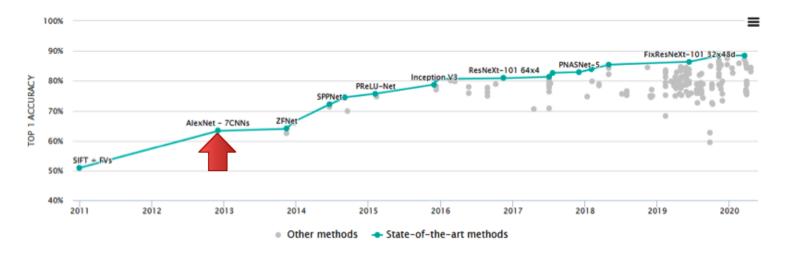
Convolutional Neural Network



ImageNet: 2012

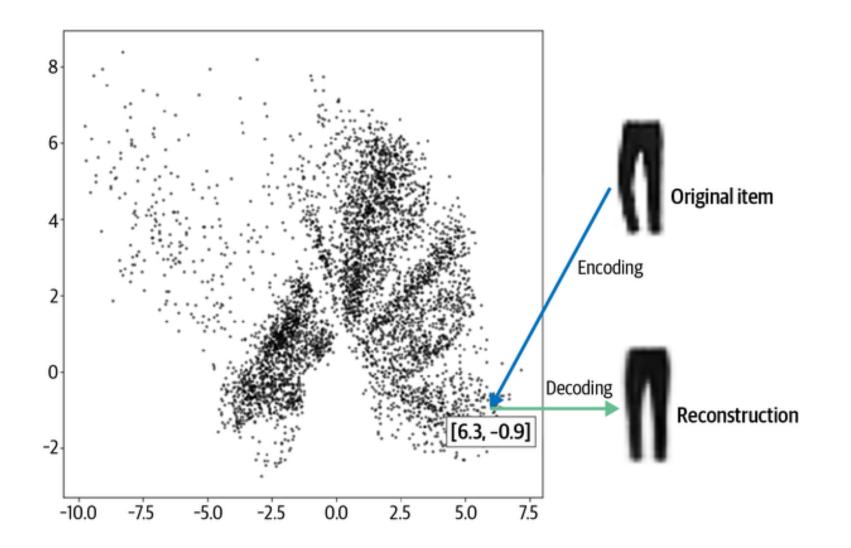


- ImageNet: Large scale competition for image classification (1.2 million labeled training examples, 1000 categories)
- Breakthrough for deep learning in 2012: large gains with CNN (AlexNet)

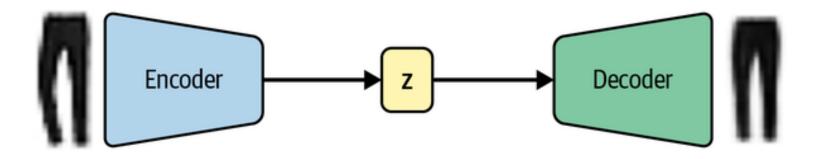


autoencoders

Autoencoders



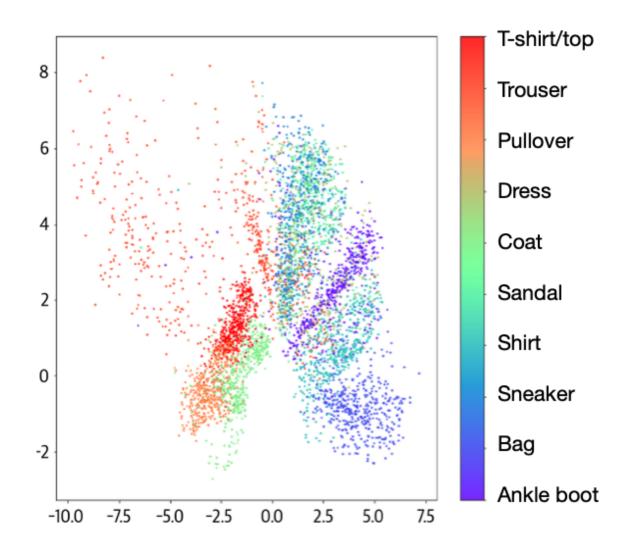
Encoder-Decoder Model



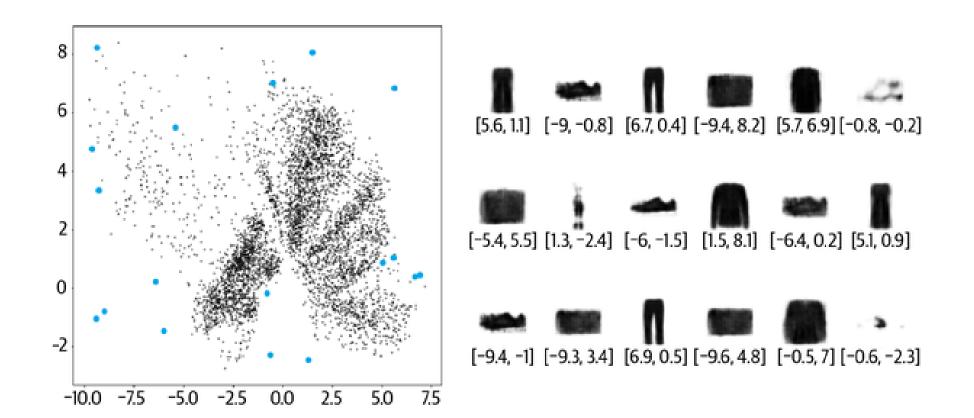
Example: Image to 2-dimensional vector



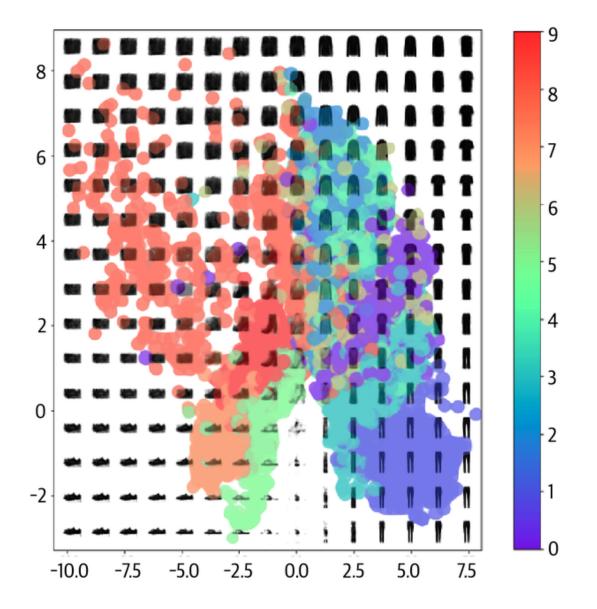
Visualization of Embeddings Space



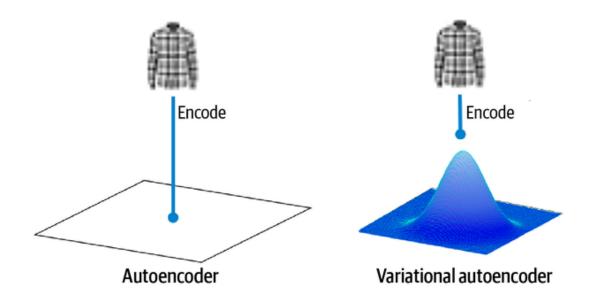
Generating Novel Items of Clothing



Generations from Full Embeddings Space 16



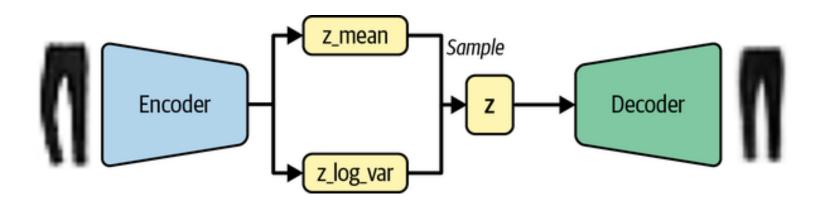
Variational Autoencoder



• Encoder predicts a normal distribution, specifically the **mean** μ and **variance** σ^2

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Variational Autoencoder



- Encoder (as before)
- Predicts mean z_mean and variance z_log_var of the distribution (note: predict 2-dimensional point → 2 means and 2 variances)
- We randomly draw a point z from the distribution
- Decoder predicts from that randomly drawn point z (as before)

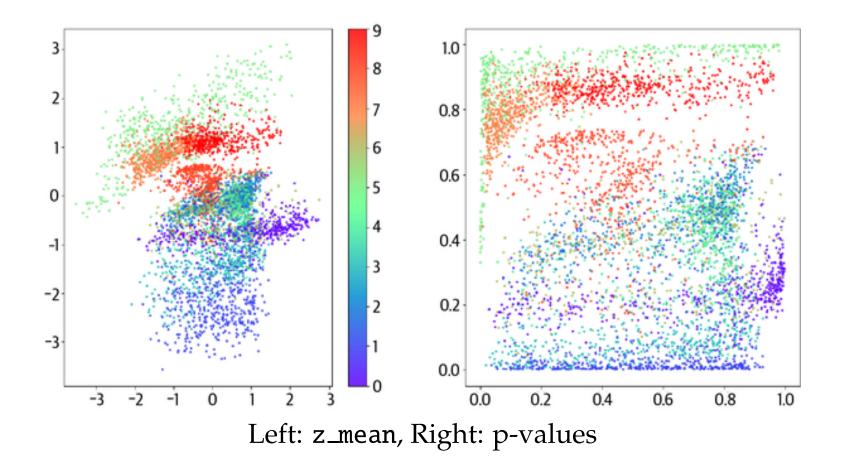
Additional Loss Term for Training

- Add preference that predicted mean and variance are normal distribution with mean 0 and variance 1: N(0, 1)
- Computed as KL-divergence between predicted values μ and σ^2

$$\mathcal{D}_{KL}[N(\mu,\sigma)||N(0,1)] = -\frac{1}{2}\sum \left(1 + \log(\sigma^2) - \mu^2 - \sigma^2\right)$$

What is it Good For?

- General principle: adding noise is good (here: random sampling of point z)
- Better use of embedding space (bias towards center)



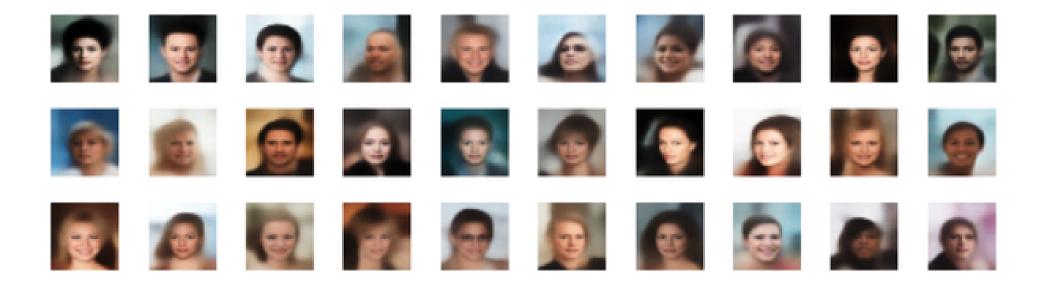
Variational Autoencoder for Images of Faces 21

- CelebA dataset of over 200,000 color images of celebrity faces
- We need a larger model (multiple convolutional layers, larger embedding sizes)

Example real faces

Generation of Faces

- Sample points (from a standard multivariate normal distribution)
- Decode the sampled points
- Plot the images

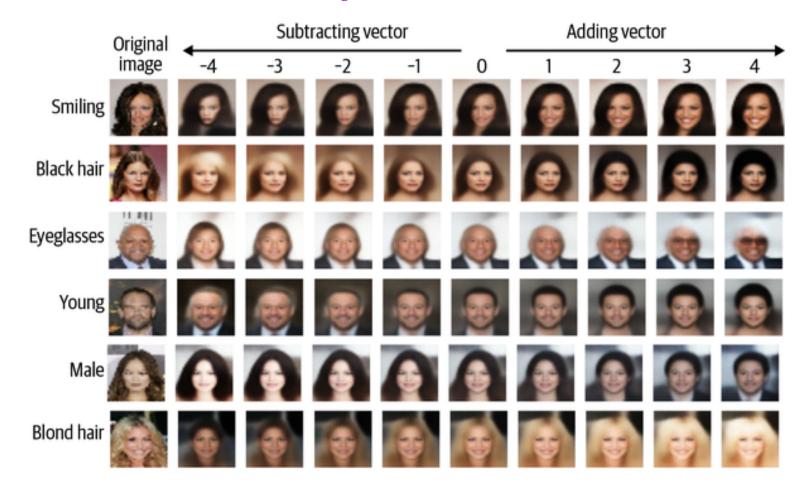


CelebA Dataset Labeled with Features

Vectors for Features

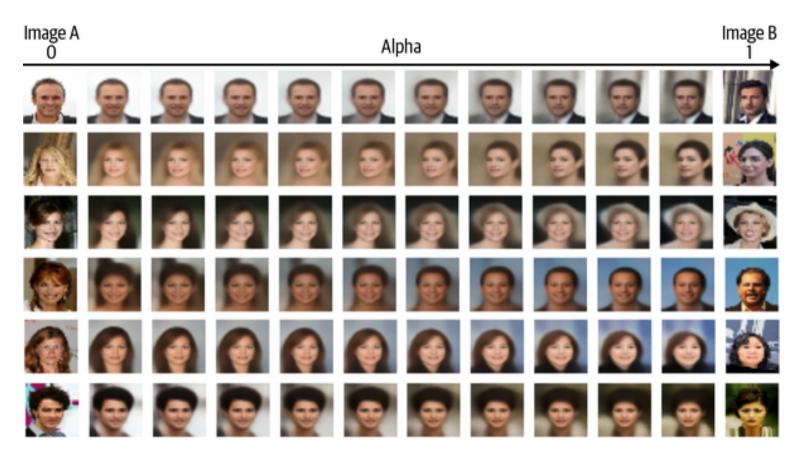
- We want to obtain a vector for one feature, e.g. Smiling
- Recall: encoder predicts vector representation for each image
- Vector that points in the direction of Smiling
 - take average of all vectors for images labelled Smiling: *a*_{smiling}
 - take average of all vectors for images not labelled Smiling: $a_{\overline{\text{smiling}}}$
 - subtract the two vectors: $v_{\text{smiling}} = a_{\text{smiling}} a_{\overline{\text{smiling}}}$

- Randomly sample point *z* (or use representation for existing image)
- Subtract and feature vector v_{smiling} with varying factor, generate



Combine Images

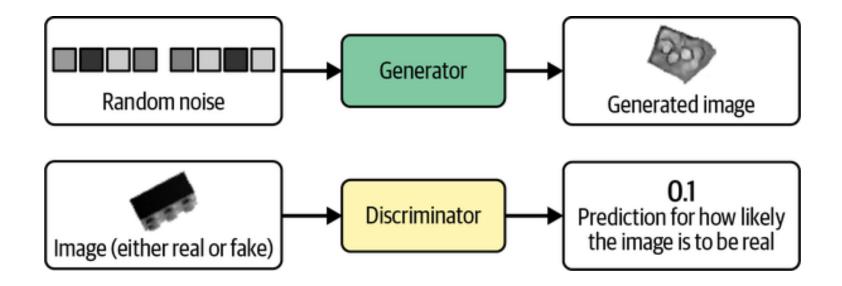
- Take representations of two images: z_A and z_B
- Combine them with weight $\alpha \in [0, 1]$ into new vector $z = \alpha z_A + (1 \alpha) z_B$



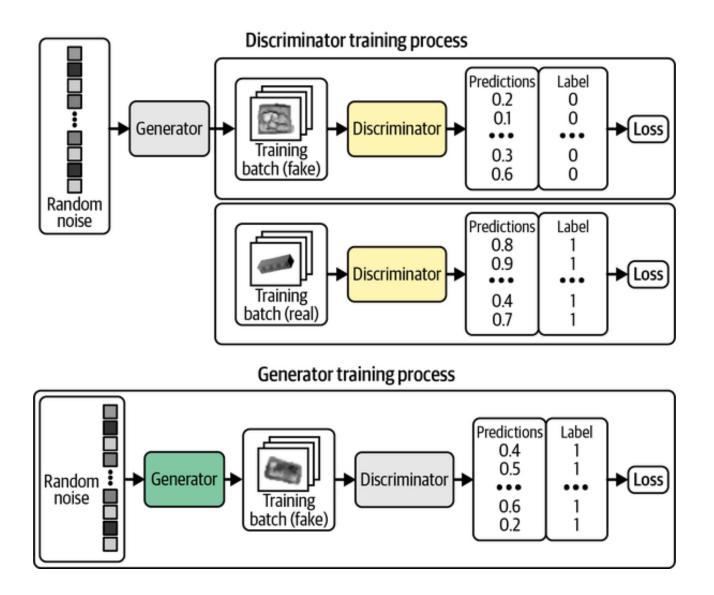
generative adversarial training

Discriminator

- The story so far: we can generate novel images
- New task: detect if image is generated or real



Training



Training Stages

- Train initial generator
- Iterate
 - train discriminator
 - train generator with additional discriminator loss
- Note: when training generator, leave discriminator parameters fixed (and vice versa)

Common Problems

- Discriminator overpowers generator
- Generator overpowers discriminator (for instance mode collapse: generates unique image that fools discriminator)
- Training loss of generator is not informative (mainly battles discriminator and not fitting the training data)
- Many hyperparameters

Extensions

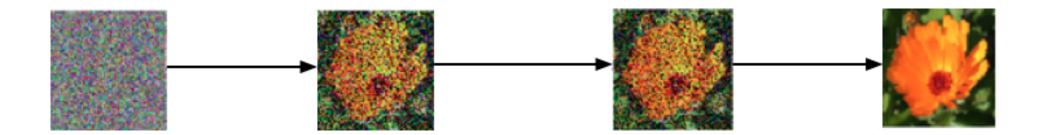
- Wasserstein GAN
- Lipschitz Constraint
- Gradient Penalty Loss
- Conditional GAN

diffusion models

Diffusion Models

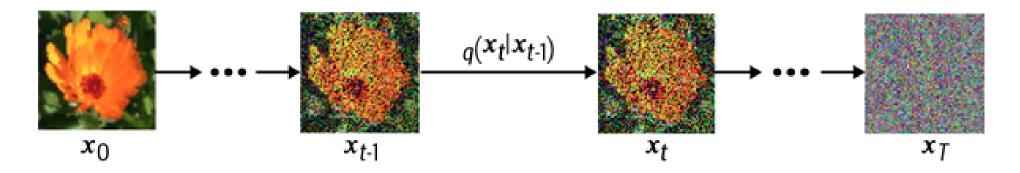
• Key idea

- create noise image
- generate image from noise
- repeat this for, say, 20 steps



Create Training Data

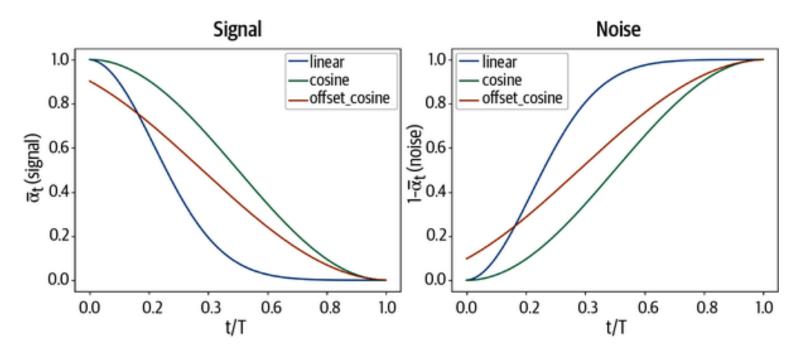
• Training data for this process can be creating by adding noise



- This is done in stages, each time adding Gaussian noise ϵ_t (mean 0 and unit variance, but then scaling to effective variance β_t below) $x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon_{t-1}$
- Or, written as a probability distribution from one image to the next $q(\boldsymbol{x}_t | \boldsymbol{x}_{t-1}) = \mathcal{N}\left(\boldsymbol{x}_t; \sqrt{1 \beta_t} \, \boldsymbol{x}_{t-1}, \beta_t \, \mathbf{I}\right)$
- After a large number of steps, this becomes indistinguishable from a noise image

Diffusion Schemes

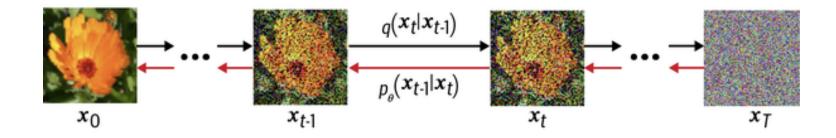
- The variance β_t is changed throughout the process
 - small changes to initial, original image
 - larger changes towards the end to ensure randomness
- Common options: linear, cosine, offset cosine



Effect of Diffusion Schemes

• Cosine diffusion scheme makes less changes initially

• Learn a model p_{θ} that maps a noisy image x_t back to a less noisy image x_{t-1}



Refinements

- We actually learn a model that maps back x_t to the original image x_o
- The accumated noise can be computed

$$q\left(\boldsymbol{x}_{t} \,|\, \boldsymbol{x}_{0}\right) = \mathcal{N}\left(\boldsymbol{x}_{t}; \sqrt{\overline{\alpha}_{t}} \,\boldsymbol{x}_{0}, \left(1 - \overline{\alpha}_{t}\right) \mathbf{I}\right)$$

• The model predicts the noise $\epsilon_{\theta}(x_t)$

Algorithm 1 Training

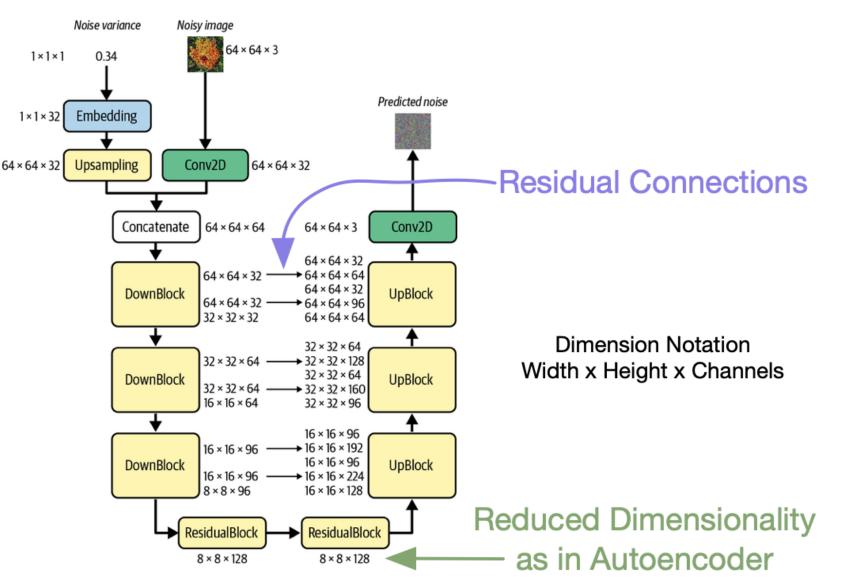
1: repeat

- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

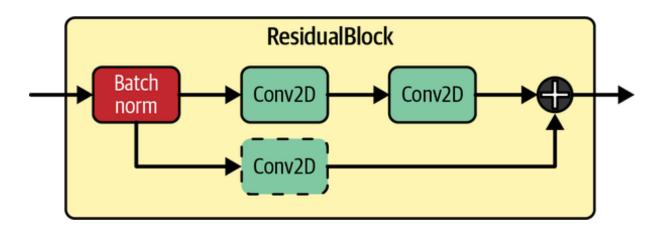
6: until converged

U-Net Model Overview



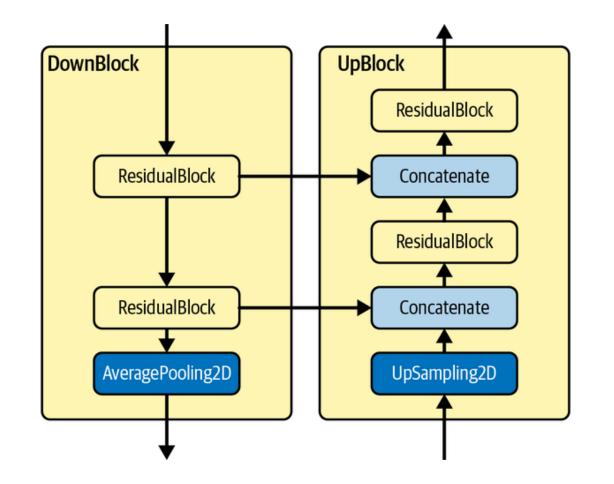
40

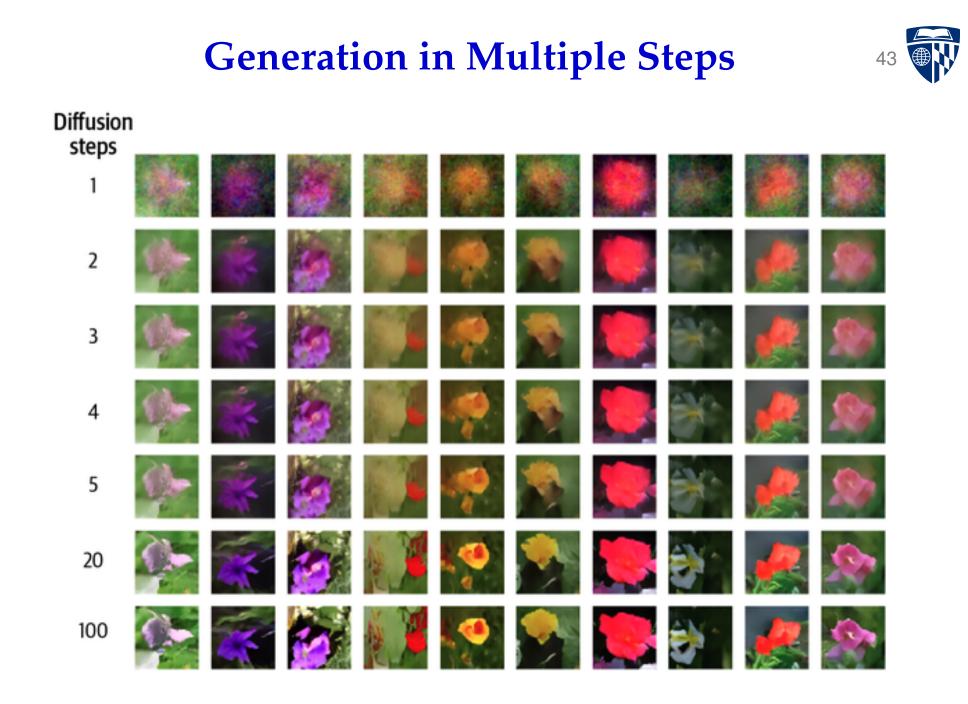
Residual Block



(may add convolution with kernel size 1 to residual connection to generate tensor with the right number of channels)

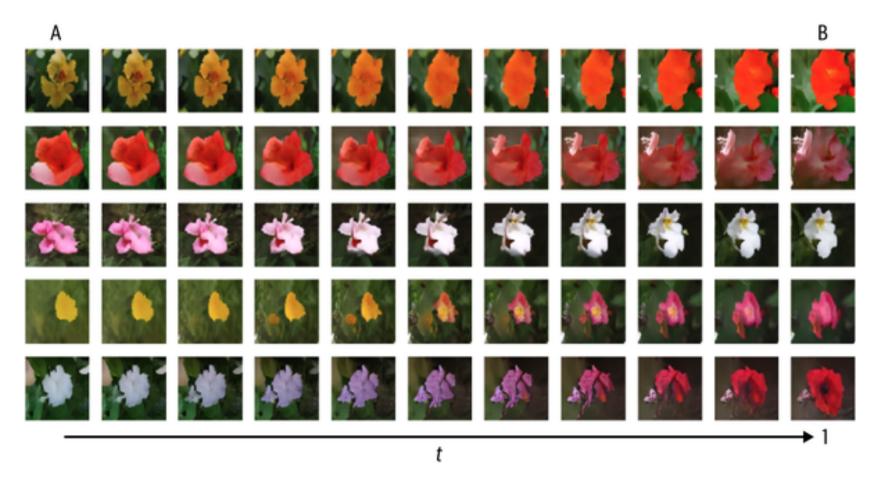
DownBlock and UpBlock





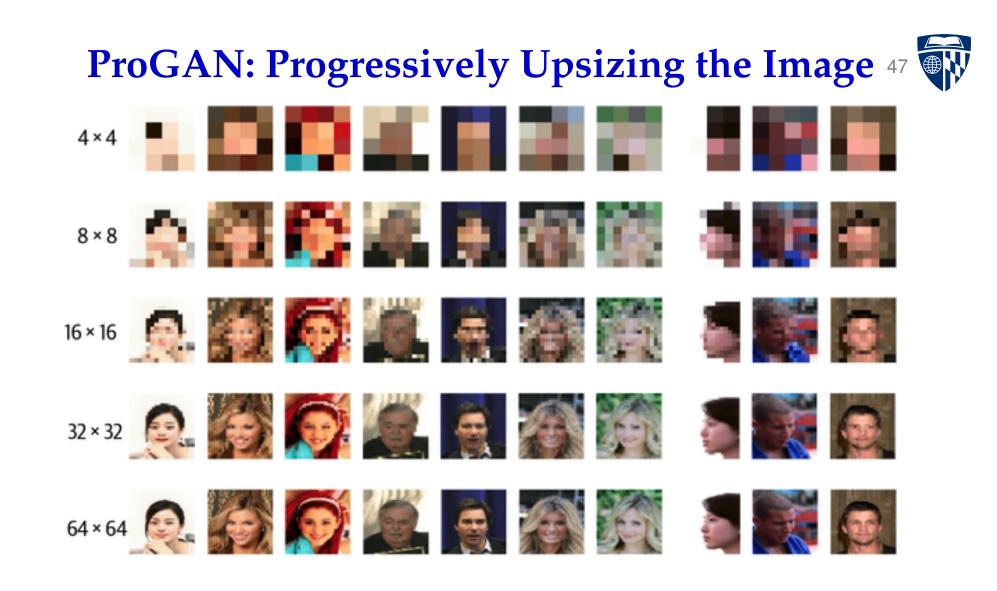
Interpolation

- Generation is deterministic given noise tensor *a* and *b*
- \Rightarrow We can interpolate between different noise images



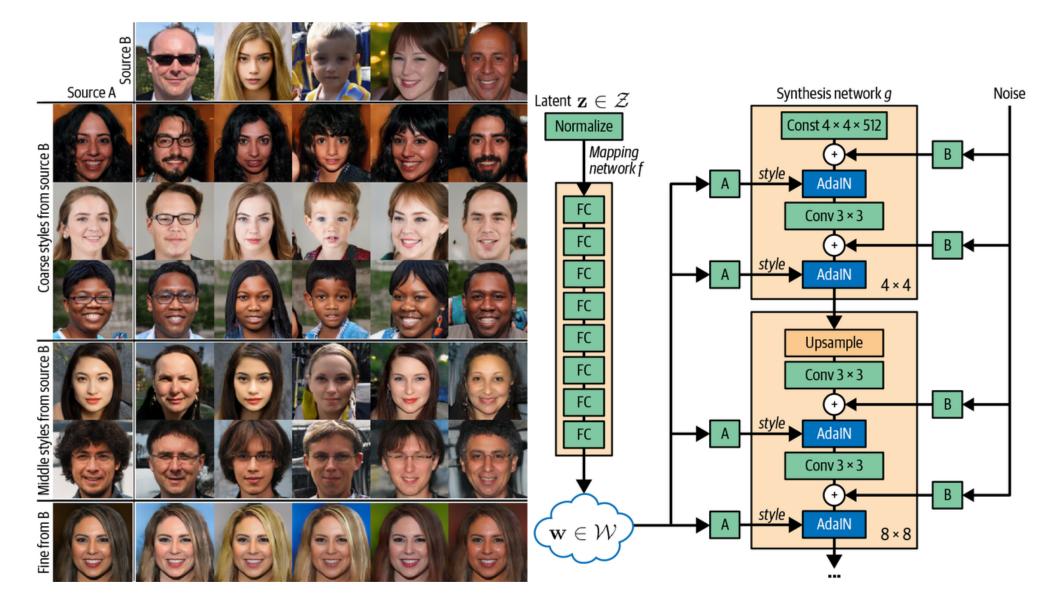
Common Failures

advanced gan



- First train a model for lower resolution images
- Upscale the image in stages

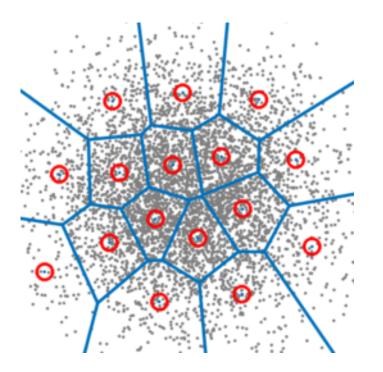
StyleGAN: Mixing Image Styles



48

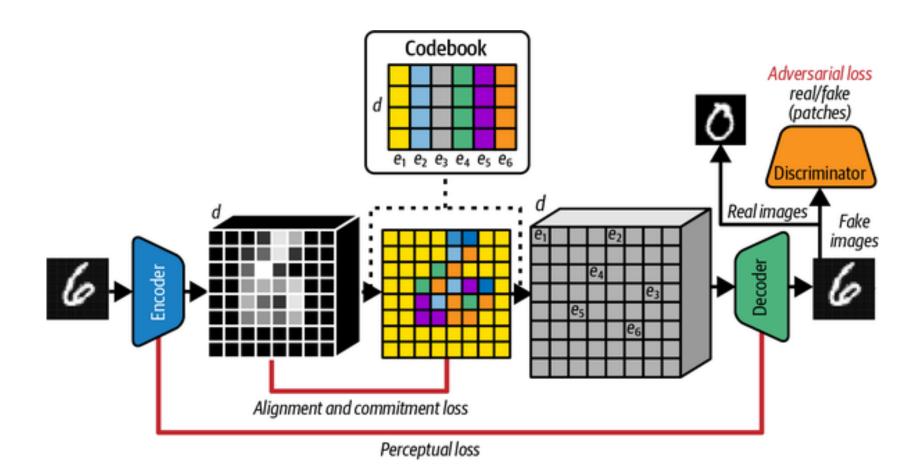
VQ-GAN: Vector Quantization

- Input: high dimensional vector
- K-Means Clustering



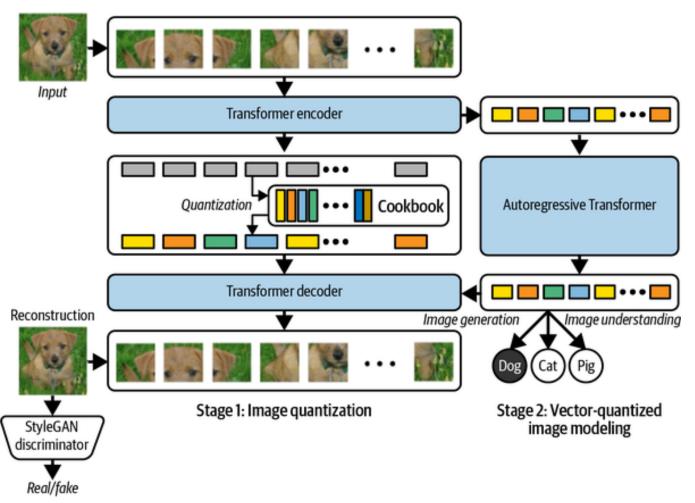
• Centroid vectors form a codebook, each vector is replaced with cluster ID

Discrete Latent Space



• Vectors are replaced by their nearest centroid

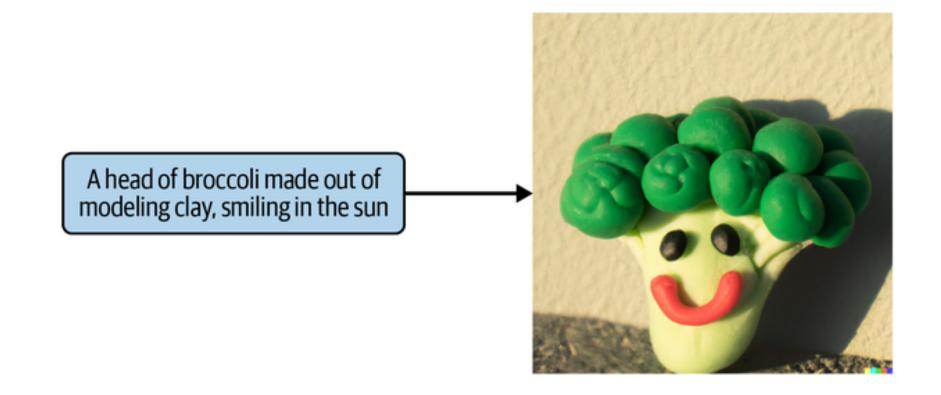
ViT VQ-GAN: Video Transformer



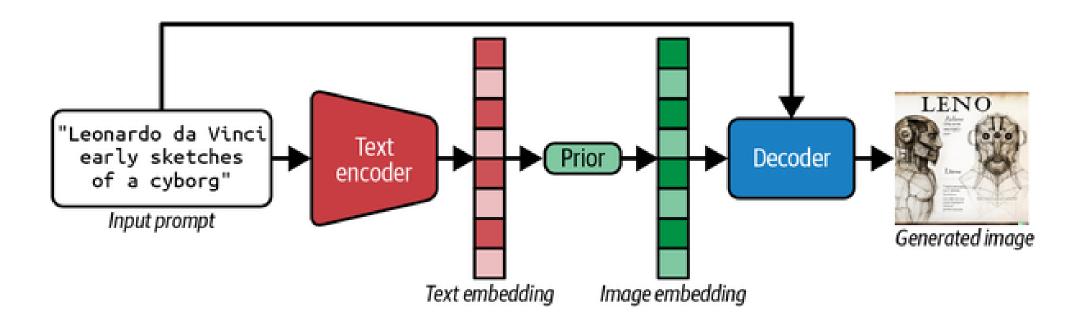
- Instead of using ConvNNs, Transformer model predicts sequence of patches
- This particular model also uses vector quantization

text to image generation

Text to Image

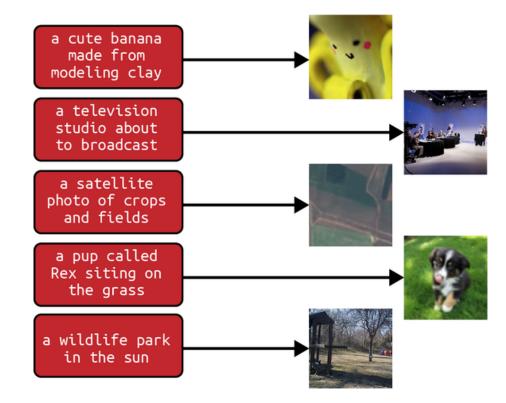


DALL.E 2



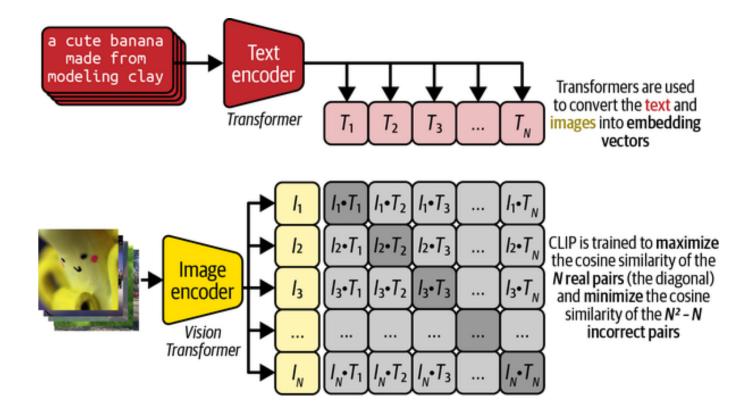
- Text is encoded as a prior to the image generation process
- Key training step: Contrastive Language-Image Pre-training (CLIP)

CLIP: Mapping Between Text and Images



- Given pairs of images and text (scraped from the Internet)
- Learn representations of text (using Transformer models)
- Learn representations of images (using ViT-VQ GAN)
- Learn mapping between them

Contrastive Learning



- Representation of text and image as a single vector, mapped to same size
- Training: minimize cosine similarity of real pairs
- Note: this is not a generative model

Generation

- Text embedding Start Encoder Decoder Decoder Decoder Predicted image embedding
- Image decoder is a Transformer model
- Predicts patches of the image at each step
- Generation is also conditioned on the text representation (the prior)
- Alternatively: diffusion decoder

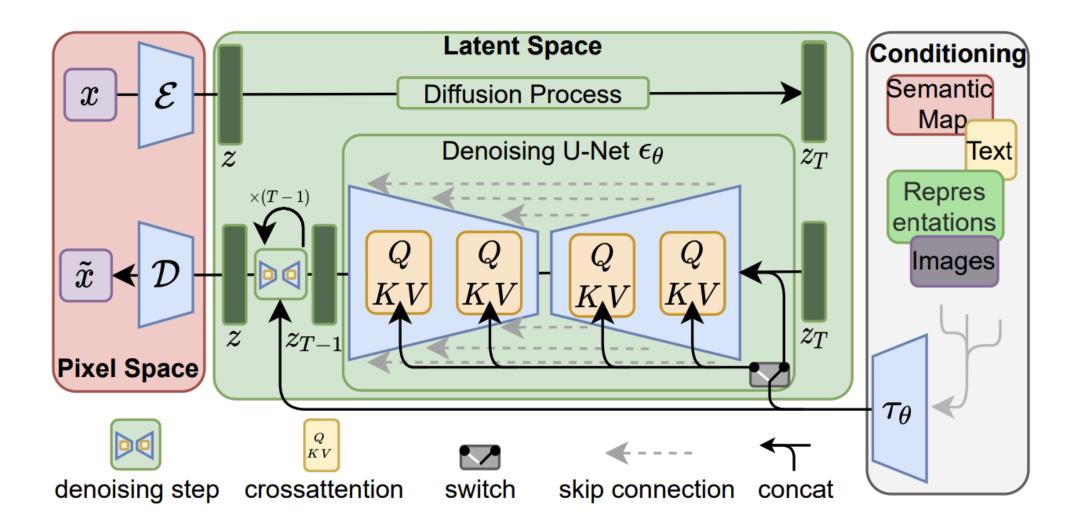
stable diffusion

Robach et al. (2022): High-Resolution Image Synthesis with Latent Diffusion Models

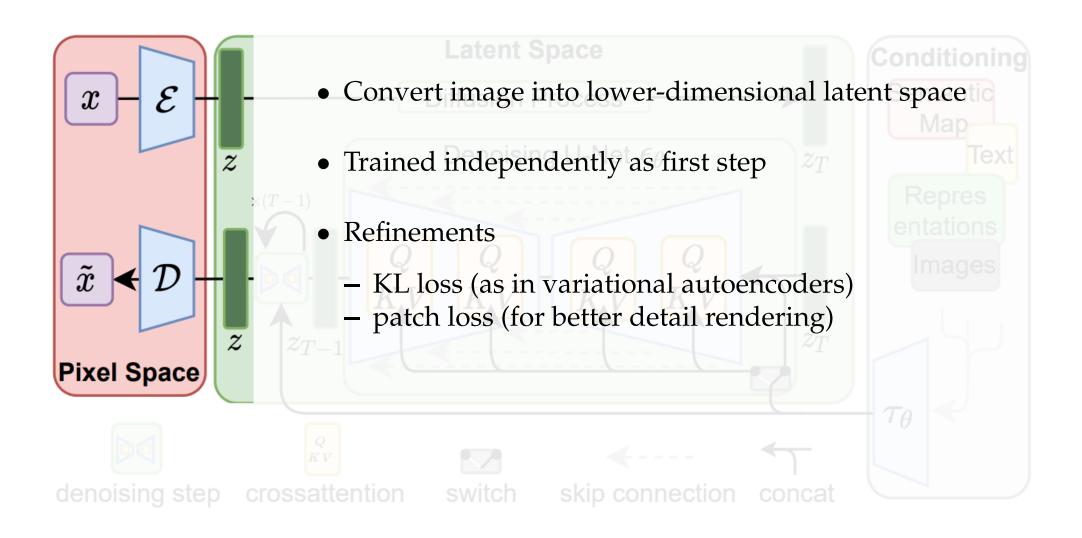
Stable Diffusion

Generated from prompt "a photograph of an astronaut riding a horse"

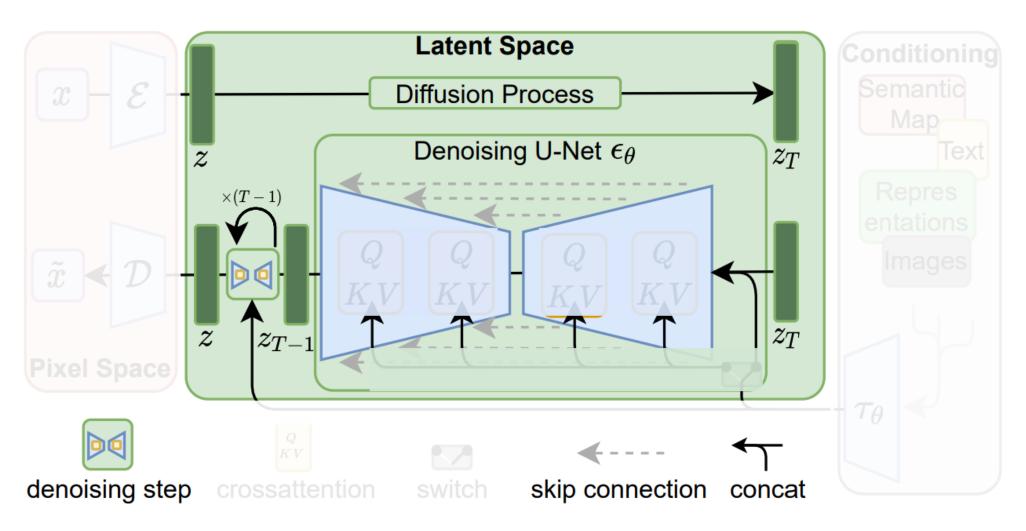
Latent Diffusion Model



Autoencoder

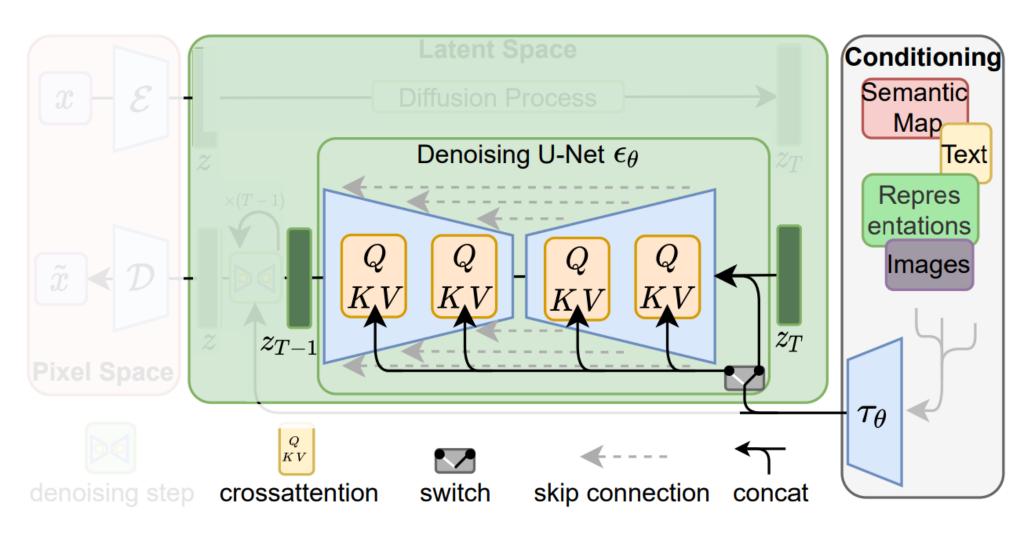


Diffusion Model



Operates in latent space — otherwise the same U-Net from before

Conditioning on External Information



Attention (Query, Key, Value) to representations of semantic maps, text, images

Conditioning on External Information

- External input y is converted into an intermediate representation $\tau_{\theta} \in \mathbb{R}^{M \times d_r}$
- For use in the attention model, the intermediate representations of the U-Net are also flattened to $\varphi_i(z_t) \in \mathbb{R}^{N \times d_{\epsilon}^i}$
- Attention is Attention $(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d}}\right) \cdot V$ with $Q = W_Q^{(i)} \cdot \varphi_i(z_t)$ $K = W_K^{(i)} \cdot \tau_\theta(y)$ $V = W_V^{(i)} \cdot \tau_\theta(y)$

that map to vectors of size d

• Parameters for τ_{θ} and ϵ_{θ} are jointly optimized using diffusion objective

Text to Image

'A zombie in the style of Picasso'

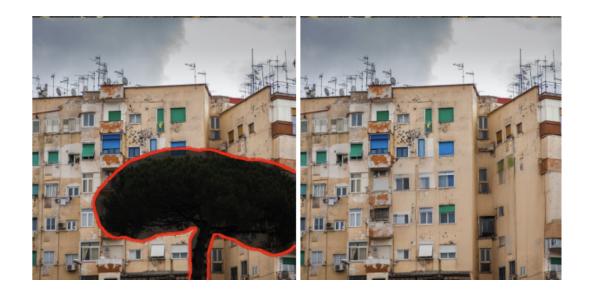
'An image of an animal half mouse half octopus'

- Text is represented as a sequence of words
- Transformer model generates $\tau_{\theta} \in \mathbb{R}^{M \times d_r}$
- Trained on language prompts
 - LAION-400M
 - 400 million text-image pairs
 - extracted from web pages with alt-text in HTML image tag
 - filtered in various ways

Semantic Maps

- Trained on Open Images dataset of images with labelled object detection
 - 9.2 million images collected from Flickr
 - bounding boxes with object labels
 - computer-assisted annotation: automatic labels vetted by humans

Inpainting

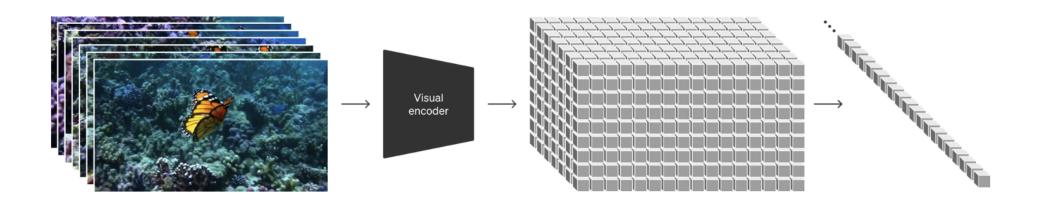


- Automatic generation of training data with synthetic masks
- Training aims to reconstruct the original image

video generation

OpenAI (2024): Video generation models as world simulators (Sora) https://openai.com/research/video-generation-models-as-world-simulators

Video Representation



- Up to a full minute of high definition video
- Compress image into lower dimensional latent space
- Decompose representation into spacetime patches

Diffusion Model

- Given noisy patches and conditioning text prompts
- Predict original clean patches using Transformer model
- Training data generated by re-captioning existing videos
 - first, train captioning model
 - use it to produce highly descriptive text captions for video

Beyond Text Prompting

- Prompting with images (maybe images generated by DALL-E)
- Extending existing video (forward or backward)
- Video-to-video editing (video + text prompt \rightarrow new video)
- Connecting videos

questions?