Logical Agents

Philipp Koehn

27 February 2024

The world is everything that is the case.

Wittgenstein, Tractatus

Outline

- Knowledge-based agents
- Logic in general-models and entailment
- Propositional (Boolean) logic
- Equivalence, validity, satisfiability
- Inference rules and theorem proving
- forward chaining
- backward chaining
- resolution

knowledge-based agents

Knowledge-Based Agent

- Knowledge base $=$ set of sentences in a formal languagel
- Declarative approach to building an agent (or other system):

TELL it what it needs to know

- Then it can ASK itself what to do-answers should follow from the KB
- Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented
- Or at the implementation level
i.e., data structures in KB and algorithms that manipulate them

A Simple Knowledge-Based Agent

function KB-AGENT(percept) returns an action
static: $K B$, a knowledge base
t, a counter, initially 0 , indicating time
Tell(KB, Make-Percept-Sentence(percept, t))
action $\leftarrow \operatorname{AsK}(K B$, MAKE-Action-QUERY $(t))$
Tell(KB, Make-Action-Sentence(action, $t)$)
$t \leftarrow t+1$
return action

- The agent must be able to
- represent states, actions, etc.
- incorporate new percepts
- update internal representations of the world
- deduce hidden properties of the world
- deduce appropriate actions

example

Hunt the Wumpus


```
You are in room 3.
Tummels lead to 2, 4,12.
Shoot or Hove (S-H)? H
Where to? }1
You are in room 12
    I smell a Humpus
Tunmels lead to 3, 11, 13
Shoot or Hove (S-H)? S
lo. of Roons (1-5)? 1
{oom -1. 13
pHat You got the mumpus!
HEE HEE HEE - The Humpus'11 get you next time!!
Same setup (Y-N)? Y
You are in room
    I feel a draft.
Tunnels lead to 1, 3. 10.
Shoot or Move (S-H)?'M
there to? 3
You are in roow 3
Tunnels lead to 2, 4, 12.
lunmels lead to (2,4,12.
```

Computer game from 1972

Wumpus World PEAS Description

- Performance measure
- gold +1000 , death -1000
- -1 per step, -10 for using the arrowl
- Environment
- squares adjacent to wumpus are smelly
- squares adjacent to pit are breezy
- glitter iff gold is in the same square
- shooting kills wumpus if you are facing it 2
- shooting uses up the only arrow
- grabbing picks up gold if in same square
- releasing drops the gold in same squarell 1
- Actuators Left turn, Right turn, Forward, Grab, Release, Shoot

- Sensors Breeze, Glitter, Smell

Wumpus World Characterization

- Observable? I No-only local perception
- Deterministic? ${ }^{\text {I Yes-outcomes exactly specified }}$
- Episodic? No—sequential at the level of actions
- Static? \|Yes-Wumpus and Pits do not move
- Discrete? 1 Yes
- Single-agent? Yes-Wumpus is essentially a natural feature

Exploring a Wumpus World

Tight Spot

- Breeze in $(1,2)$ and $(2,1)$ \Longrightarrow no safe actions
- Assuming pits uniformly distributed, $(2,2)$ has pit w/ prob 0.86, vs. 0.31

Tight Spot

- Smell in $(1,1)$
\Longrightarrow cannot move
- Can use a strategy of coercion: shoot straight ahead
- wumpus was there \Longrightarrow dead \Longrightarrow safe
- wumpus wasn't there \Longrightarrow safe

logic in general

Logic in General

- Logics are formal languages for representing information such that conclusions can be drawn
- Syntax defines the sentences in the language
- Semantics define the "meaning" of sentences;
i.e., define truth of a sentence in a world
- E.g., the language of arithmetic
$-x+2 \geq y$ is a sentence; $x 2+y>$ is not a sentence
$-x+2 \geq y$ is true iff the number $x+2$ is no less than the number y
$-x+2 \geq y$ is true in a world where $x=7, y=1$
$x+2 \geq y$ is false in a world where $x=0, y=6$

Entailment

- Entailment means that one thing follows from another:

$$
K B \vDash \alpha
$$

- Knowledge base $K B$ entails sentence α if and only if
α is true in all worlds where $K B$ is truel
- E.g., the KB containing "the Ravens won" and "the Jays won" entails "the Ravens won or the Jays won"ll
- E.g., $x+y=4$ entails $4=x+y \|$
- Entailment is a relationship between sentences (i.e., syntax) that is based on semantics
- Note: brains process syntax (of some sort)

Models

- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
- We say m is a model of a sentence α if α is true in m
- $M(\alpha)$ is the set of all models of α
$\Rightarrow K B \vDash \alpha$ if and only if $M(K B) \subseteq M(\alpha)$
- E.g. $K B=$ Ravens won and Jays won $\alpha=$ Ravens won

Entailment in the Wumpus World

- Situation after detecting nothing in [1,1], moving right, breeze in [2,1]
- Consider possible models for all ?, assuming only pits
- 3 Boolean choices $\Longrightarrow 8$ possible models

Possible Wumpus Models

Valid Wumpus Models

$K B=$ wumpus-world rules + observations

Entailment

$K B=$ wumpus-world rules + observations
$\alpha_{1}=$ " $[1,2]$ is safe", $K B \vDash \alpha_{1}$, proved by model checking

Valid Wumpus Models

$K B=$ wumpus-world rules + observations

$K B=$ wumpus-world rules + observations
$\alpha_{2}=$ " $[2,2]$ is safe", $K B \neq \alpha_{2}$

Inference

- $K B \vdash_{i} \alpha=$ sentence α can be derived from $K B$ by procedure $i l$
- Consequences of $K B$ are a haystack; α is a needle. Entailment $=$ needle in haystack; inference $=$ finding itI
- Soundness: i is sound if
whenever $K B \vdash_{i} \alpha$, it is also true that $K B \vDash \alpha$
- Completeness: i is complete if
whenever $K B \vDash \alpha$, it is also true that $K B \vdash_{i} \alpha \|$
- Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.
- That is, the procedure will answer any question whose answer follows from what is known by the $K B$.
propositional logic

Propositional Logic: Syntax

- Propositional logic is the simplest logic—illustrates basic ideas
- The proposition symbols P_{1}, P_{2} etc are sentences
- If P is a sentence, $\neg P$ is a sentence (negation)
- If P_{1} and P_{2} are sentences, $P_{1} \wedge P_{2}$ is a sentence (conjunction)
- If P_{1} and P_{2} are sentences, $P_{1} \vee P_{2}$ is a sentence (disjunction)
- If P_{1} and P_{2} are sentences, $P_{1} \Longrightarrow P_{2}$ is a sentence (implication)
- If P_{1} and P_{2} are sentences, $P_{1} \Leftrightarrow P_{2}$ is a sentence (biconditional)

Propositional Logic: Semantics

- Each model specifies true/false for each proposition symbol
E.g. $\quad P_{1,2} \quad P_{2,2} \quad P_{3,1}$ false true false
(with these symbols, 8 possible models, can be enumerated automatically)!
- Rules for evaluating truth with respect to a model m :

$\neg P$	is true iff	P	is false		
$P_{1} \wedge P_{2}$	is true iff	P_{1}	is true and	P_{2}	is true
$P_{1} \vee P_{2}$	is true iff	P_{1}	is true or	P_{2}	is true
$P_{1} \Longrightarrow P_{2}$	is true iff	P_{1}	is false or	P_{2}	is true
i.e.,	is false iff	P_{1}	is true and	P_{2}	is false
$P_{1} \Leftrightarrow P_{2}$	is true iff	$P_{1} \xrightarrow{\Longrightarrow} P_{2}$	is true and	$P_{2} \xrightarrow{\Longrightarrow} P_{1}$	is truell

- Simple recursive process evaluates an arbitrary sentence, e.g., $\neg P_{1,2} \wedge\left(P_{2,2} \vee P_{3,1}\right)=$ true $\wedge($ false \vee true $)=$ true \wedge true $=$ true

Truth Tables for Connectives

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Wumpus World Sentences

- Let $P_{i, j}$ be true if there is a pit in $[i, j]$
- observation $R_{1}: \neg P_{1,1}$
- Let $B_{i, j}$ be true if there is a breeze in $[i, j]$.
- "Pits cause breezes in adjacent squares"
- rule $R_{2}: B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)$
- rule $R_{3}: B_{2,1} \Leftrightarrow\left(P_{1,1} \vee P_{2,2} \vee P_{3,1}\right) \|$
- observation $R_{4}: \neg B_{1,1}$
- observation $R_{5}: B_{2,1}$
- What can we infer about $P_{1,2}, P_{2,1}, P_{2,2}$, etc.?

Truth Tables for Inference

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
\vdots												
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true						
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true							
false	true	false	false	true	false	false	true	false	false	true	true	false
\vdots												
true	false	true	true	false	true	false						

- Enumerate rows (different assignments to symbols $P_{i, j}$)
- Check if rules are satisfied $\left(R_{i}\right)$
- Valid model $(K B)$ if all rules satisfied

Inference by Enumeration

- Depth-first enumeration of all models is sound and complete
function TT-ENTAILS? $(K B, \alpha)$ returns true or false
inputs: $K B$, the knowledge base, a sentence in propositional logic α, the query, a sentence in propositional logic
symbols \leftarrow a list of the proposition symbols in $K B$ and α
return TT-CHECK-ALL(KB, α, symbols, [])
function TT-CHECK-ALL(KB, α, symbols, model) returns true or false
if Empty? (symbols) then
if PL-TRUE?(KB, model) then return PL-TRUE? (α, mode)
else return true
else do
$P \leftarrow$ FIRST(symbols); rest \leftarrow Rest(symbols)
return TT-CHECK-ALL(KB, α, rest, $\operatorname{ExTEND}(P$, true, model)) and TT-CHECK-ALL(KB, α, rest, EXTEND $(P$, false, model) $)$
- $O\left(2^{n}\right)$ for n symbols; problem is co-NP-complete

equivalence, validity, satisfiability

Logical Equivalence

- Two sentences are logically equivalent iff true in same models:
$\alpha \equiv \beta$ if and only if $\alpha \vDash \beta$ and $\beta \vDash \alpha$

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \text { double-negation elimination } \\
(\alpha \Longrightarrow \beta) & \equiv(\neg \beta \Longrightarrow \neg) \text { contraposition } \\
(\alpha \Longrightarrow \beta) & \equiv(\neg \alpha \vee \beta) \text { implication elimination } \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Longrightarrow \beta) \wedge(\beta \Longrightarrow \alpha)) \text { biconditional elimination } \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \text { De Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \text { De Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

Validity and Satisfiability

- A sentence is valid if it is true in all models,

$$
\text { e.g., True, } \quad A \vee \neg A, \quad A \Longrightarrow A, \quad(A \wedge(A \Longrightarrow B)) \Longrightarrow B \|
$$

- A sentence is satisfiable if it is true in some model

$$
\text { e.g., } A \vee B \text {, }
$$

- A sentence is unsatisfiable if it is true in no models

$$
\text { e.g., } A \wedge \neg A \|
$$

- Satisfiability is connected to inference via the following:
$K B \vDash \alpha$ if and only if $(K B \wedge \neg \alpha)$ is unsatisfiable i.e., prove α by reductio ad absurdum

inference

Proof Methods

- Proof methods divide into (roughly) two kinds
- Application of inference rules
- Legitimate (sound) generation of new sentences from old
- Proof = a sequence of inference rule applications

Can use inference rules as operators in a standard search alg.

- Typically require translation of sentences into a normal form
- Model checking
- truth table enumeration (always exponential in n)
- improved backtracking
- heuristic search in model space (sound but incomplete) e.g., min-conflicts-like hill-climbing algorithms

Forward and Backward Chaining

- Horn Form (restricted)

$$
K B=\text { conjunction of Horn clauses }
$$

- Horn clause =
- proposition symbol; or
- (conjunction of symbols) \Longrightarrow symbol
e.g., $C, \quad B \Longrightarrow A, \quad C \wedge D \Longrightarrow B \|$
- Modus Ponens (for Horn Form): complete for Horn KBs

- Can be used with forward chaining or backward chaining
- These algorithms are very natural and run in linear time

Example

- Idea: fire any rule whose premises are satisfied in the $K B$, add its conclusion to the $K B$, until query is found
$P \Longrightarrow Q$
$L \wedge M \Longrightarrow P$
$B \wedge L \Longrightarrow M$
$A \wedge P \Longrightarrow L$
$A \wedge B \Longrightarrow L$
A
BI

forward chaining

Forward Chaining

- Start with given proposition symbols (atomic sentence) e.g., A and B
- Iteratively try to infer truth of additional proposition symbols e.g., $A \wedge B \Longrightarrow C$, therefor we establish C is true
- Continue until
- no more inference can be carried out, or
- goal is reached

Forward Chaining Example

- Given

$$
\begin{aligned}
& P \Longrightarrow Q \\
& L \wedge M \Longrightarrow P \\
& B \wedge L \Longrightarrow M \\
& A \wedge P \Longrightarrow L \\
& A \wedge B \Longrightarrow L \\
& A \\
& B
\end{aligned}
$$

- Agenda: A, B
- Annotate horn clauses with number of premises

Forward Chaining Example

- Process agenda item A
- Decrease count for horn clauses in which A is premise

Forward Chaining Example

- Process agenda item B
- Decrease count for horn clauses in which B is premise
- $A \wedge B \Longrightarrow L$ has now fulfilled premise
- Add L to agenda

Forward Chaining Example

- Process agenda item L
- Decrease count for horn clauses in which L is premise
- $B \wedge L \Longrightarrow M$ has now fulfilled premise
- Add M to agenda

Forward Chaining Example

- Process agenda item M
- Decrease count for horn clauses in which M is premise
- $L \wedge M \Longrightarrow P$ has now fulfilled premise
- Add P to agenda

Forward Chaining Example

- Process agenda item P
- Decrease count for horn clauses in which P is premise
- $P \Longrightarrow Q$ has now fulfilled premise
- Add Q to agenda
- $A \wedge P \Longrightarrow L$ has now fulfilled premise

Forward Chaining Example

- Process agenda item P
- Decrease count for horn clauses in which P is premise
- $P \Longrightarrow Q$ has now fulfilled premise
- Add Q to agenda
- $A \wedge P \Longrightarrow L$ has now fulfilled premise
- But L is already inferred

Forward Chaining Example

Forward Chaining Algorithm

function PL-FC-ENTAILS? $(K B, q)$ returns true or false
inputs: $K B$, the knowledge base, a set of propositional Horn clauses
q, the query, a proposition symbol
local variables: count, a table, indexed by clause, init. number of premises inferred, a table, indexed by symbol, each entry initially false agenda, a list of symbols, initially the symbols known in $K B$
while agenda is not empty do

$$
p \leftarrow \mathrm{POP}(\text { agenda })
$$

unless inferred[p] do
inferred $[p] \leftarrow$ true
for each Horn clause c in whose premise p appears do decrement count[c] if count $[c]=0$ then do if $\mathrm{HEAD}[c]=q$ then return true Push(HEAd[c], agenda)
return false

backward chaining

Backward Chaining

- Idea: work backwards from the query Q :
to prove Q by BC,
check if Q is known already, or prove by BC all premises of some rule concluding q
- Avoid loops: check if new subgoal is already on the goal stack
- Avoid repeated work: check if new subgoal

1. has already been proved true, or
2. has already failed

Backward Chaining Example

Backward Chaining Example

- Current goal: Q
- Q can be inferred by $P \Longrightarrow Q$
- P needs to be proven

Backward Chaining Example

- Current goal: P
- P can be inferred by $L \wedge M \Longrightarrow P$
- L and M need to be proven

Backward Chaining Example

- Current goal: L
- L can be inferred by $A \wedge P \Longrightarrow L$
- A is already true
- P is already a goal
\Rightarrow repeated subgoal

Backward Chaining Example

- Current goal: L

Backward Chaining Example

- Current goal: L
- L can be inferred by $A \wedge B \Longrightarrow L$
- Both are true

Backward Chaining Example

- Current goal: L
- L can be inferred by $A \wedge B \Longrightarrow L$
- Both are true
$\Rightarrow L$ is true

Backward Chaining Example

- Current goal: M

Backward Chaining Example

- Current goal: M
- M can be inferred by $B \wedge L \Longrightarrow M$

Backward Chaining Example

- Current goal: M
- M can be inferred by $B \wedge L \Longrightarrow M$
- Both are true
$\Rightarrow M$ is true

Backward Chaining Example

- Current goal: P
- P can be inferred by $L \wedge M \Longrightarrow P$
- Both are true
$\Rightarrow P$ is true

Backward Chaining Example

- Current goal: Q
- Q can be inferred by $P \Longrightarrow Q$
- P is true
$\Rightarrow Q$ is true

Forward vs. Backward Chaining

- FC is data-driven, cf. automatic, unconscious processing, e.g., object recognition, routine decisions
- May do lots of work that is irrelevant to the goall
- BC is goal-driven, appropriate for problem-solving, e.g., Where are my keys? How do I get into a PhD program?
- Complexity of $B C$ can be much less than linear in size of $K B$

resolution

Resolution

- Conjunctive Normal Form (CNF—universal) conjunction of disjunctions of literals
clauses

$$
\text { E.g., }(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D) \text {. }
$$

- Resolution inference rule (for CNF): complete for propositional logic

$$
\frac{\ell_{1} \vee \cdots \vee \ell_{k}, \quad m_{1} \vee \cdots \vee m_{n}}{\ell_{1} \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}}
$$

where ℓ_{i} and m_{j} are complementary literals. E.g.,

$$
\frac{P_{1,3} \vee P_{2,2}, \quad \neg P_{2,2}}{P_{1,3}}
$$

- Resolution is sound and complete for propositional logic

Wampus World

- Rules such as: "If breeze, then a pit adjacent."

$$
B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)
$$

Conversion to CNF

$$
B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)
$$

1. Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Longrightarrow \beta) \wedge(\beta \Longrightarrow \alpha)$.

$$
\left(B_{1,1} \Longrightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Longrightarrow B_{1,1}\right) \|
$$

2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$.

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right) \text {) }
$$

3. Move \neg inwards using de Morgan's rules and double-negation:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)
$$

4. Apply distributivity law (\vee over \wedge) and flatten:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)
$$

Resolution Example

- $K B=\left(B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)\right)$
reformulated as:
$\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)$
- Observation: $\neg B_{1,1}$
- Goal: disprove: $\alpha=\neg P_{1,2}$ (we add $P_{1,2}$ to the KB and check for contraction)

- Resolution

$$
\frac{\neg P_{1,2} \vee B_{1,1} \quad \neg B_{1,1}}{\neg P_{1,2}}
$$

- Resolution

$$
\frac{\neg P_{1,2} \quad P_{1,2}}{\text { false }}
$$

Resolution Example

- In practice: all resolvable pairs of clauses are combined

Resolution Algorithm

- Proof by contradiction, i.e., show $K B \wedge \neg \alpha$ unsatisfiable
function PL-RESOLUTION $(K B, \alpha)$ returns true or false
inputs: $K B$, the knowledge base, a sentence in propositional logic α, the query, a sentence in propositional logic
clauses \leftarrow the set of clauses in the CNF representation of $K B \wedge \neg \alpha$ new $\leftarrow\}$
loop do
for each C_{i}, C_{j} in clauses do
resolvents $\leftarrow \operatorname{PL}-\operatorname{ResOLVE}\left(C_{i}, C_{j}\right)$
if resolvents contains the empty clause then return true new \leftarrow new \cup resolvents
if new \subseteq clauses then return false
clauses \leftarrow clauses \cup new

Logical Agent

- Logical agent for Wumpus world explores actions
- observe glitter \rightarrow done
- unexplored safe spot \rightarrow plan route to it
- if Wampus in possible spot \rightarrow shoot arrow
- take a risk to go possibly risky spot
- Propositional logic to infer state of the world
- Heuristic search to decide which action to take

Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
- syntax: formal structure of sentences
- semantics: truth of sentences wrt models
- entailment: necessary truth of one sentence given another
- inference: deriving sentences from other sentences
- soundess: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences
- Wumpus world requires the ability to represent partial and negated information, inference to determine state of the world, etc.
- Forward, backward chaining are linear-time, complete for Horn clauses
- Resolution is complete for propositional logic

