Probabilistic Reasoning

Philipp Koehn

28 March 2019

Outline

- Uncertainty
- Probability
- Inference
- Independence and Bayes' Rule

uncertainty

Uncertainty

- Let action $A_{t}=$ leave for airport t minutes before flight Will A_{t} get me there on time?
- Problems
- partial observability (road state, other drivers' plans, etc.)
- noisy sensors (WBAL traffic reports)
- uncertainty in action outcomes (flat tire, etc.)
- immense complexity of modelling and predicting trafficl
- Hence a purely logical approach either

1. risks falsehood: " A_{25} will get me there on time"
2. leads to conclusions that are too weak for decision making:
" A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

Methods for Handling Uncertainty

- Default or nonmonotonic logic:

Assume my car does not have a flat tire
Assume A_{25} works unless contradicted by evidence
Issues: What assumptions are reasonable? How to handle contradiction?

- Rules with fudge factors:
$A_{25} \mapsto_{0.3}$ AtAirportOnTime
Sprinkler $\mapsto_{0.99}$ WetGrass
WetGrass $\mapsto_{0.7}$ Rain
Issues: Problems with combination, e.g., Sprinkler causes Rain?
- Probability

Given the available evidence,
A_{25} will get me there on time with probability 0.04 Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

- (Fuzzy logic handles degree of truth NOT uncertainty e.g.,

WetGrass is true to degree 0.2)

probability

Probability

- Probabilistic assertions summarize effects of laziness: failure to enumerate exceptions, qualifications, etc. ignorance: lack of relevant facts, initial conditions, etc.
- Subjective or Bayesian probability:

Probabilities relate propositions to one's own state of knowledge e.g., $P\left(A_{25} \mid\right.$ no reported accidents $)=0.06$

- Might be learned from past experience of similar situations
- Probabilities of propositions change with new evidence:

$$
\text { e.g., } P\left(A_{25} \mid \text { no reported accidents, } 5 \text { a.m. }\right)=0.15
$$

- Analogous to logical entailment status $K B \vDash \alpha$, not truth.

Making Decisions under Uncertainty

- Suppose I believe the following:

$$
\begin{aligned}
P\left(A_{25} \text { gets me there on time } \mid \ldots\right) & =0.04 \\
P\left(A_{90} \text { gets me there on time } \mid \ldots\right) & =0.70 \\
P\left(A_{120} \text { gets me there on time } \ldots\right) & =0.95 \\
P\left(A_{1440} \text { gets me there on time } \mid \ldots\right) & =0.9999
\end{aligned}
$$

- Which action to choose?
- Depends on my preferences for missing flight vs. airport cuisine, etc.
- Utility theory is used to represent and infer preferences
- Decision theory $=$ utility theory + probability theory

Probability Basics

- Begin with a set Ω-the sample space
e.g., 6 possible rolls of a die.
$\omega \in \Omega$ is a sample point/possible world/atomic eventll
- A probability space or probability model is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t.

$$
\begin{aligned}
& 0 \leq P(\omega) \leq 1 \\
& \sum_{\omega} P(\omega)=1
\end{aligned}
$$

e.g., $P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1 / 6$.

- An event A is any subset of Ω

$$
P(A)=\sum_{\{\omega \in A\}} P(\omega)
$$

- E.g., $P($ die roll $\leq 3)=P(1)+P(2)+P(3)=1 / 6+1 / 6+1 / 6=1 / 2$

Random Variables

- A random variable is a function from sample points to some range, e.g., the reals or Booleans

$$
\text { e.g., } O d d(1)=\text { true. }
$$

- P induces a probability distribution for any r.v. X :

$$
P\left(X=x_{i}\right)=\sum_{\left\{\omega: X(\omega)=x_{i}\right\}} P(\omega)
$$

- E.g., $P(O d d=$ true $)=P(1)+P(3)+P(5)=1 / 6+1 / 6+1 / 6=1 / 2$

Propositions

- Think of a proposition as the event (set of sample points) where the proposition is true
- Given Boolean random variables A and B :
event $a=$ set of sample points where $A(\omega)=$ true event $\neg a=$ set of sample points where $A(\omega)=$ false event $a \wedge b=$ points where $A(\omega)=$ true and $B(\omega)=$ truell
- Often in AI applications, the sample points are defined by the values of a set of random variables, i.e., the sample space is the Cartesian product of the ranges of the variablesl
- With Boolean variables, sample point = propositional logic model

$$
\text { e.g., } A=\operatorname{true}, B=\text { false, or } a \wedge \neg b \text {. }
$$

Proposition $=$ disjunction of atomic events in which it is true

$$
\begin{aligned}
& \text { e.g., }(a \vee b) \equiv(\neg a \wedge b) \vee(a \wedge \neg b) \vee(a \wedge b) \\
& \Longrightarrow P(a \vee b)=P(\neg a \wedge b)+P(a \wedge \neg b)+P(a \wedge b)
\end{aligned}
$$

Why use Probability?

- The definitions imply that certain logically related events must have related probabilities
- E.g., $P(a \vee b)=P(a)+P(b)-P(a \wedge b)$

True

Syntax for Propositions

- Propositional or Boolean random variables
e.g., Cavity (do I have a cavity?)

Cavity $=$ true is a proposition, also written cavity

- Discrete random variables (finite or infinite)
e.g., Weather is one of \langle sunny, rain, cloudy, snow \rangle

Weather = rain is a proposition
Values must be exhaustive and mutually exclusive

- Continuous random variables (bounded or unbounded)
e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.
- Arbitrary Boolean combinations of basic propositions

Prior Probability

- Prior or unconditional probabilities of propositions

$$
\text { e.g., } P(\text { Cavity }=\text { true })=0.1 \text { and } P(\text { Weather }=\text { sunny })=0.72
$$ correspond to belief prior to arrival of any (new) evidence

- Probability distribution gives values for all possible assignments:
$\mathbf{P}($ Weather $)=\langle 0.72,0.1,0.08,0.1\rangle$ (normalized, i.e., sums to 1$) \|$
- Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s (i.e., every sample point)
$\mathbf{P}($ Weather, Cavity $)=\mathbf{a} 4 \times 2$ matrix of values:

Weather $=$	sunny	rain	cloudy	snow
Cavity $=$ true	0.144	0.02	0.016	0.02
Cavity $=$ false	0.576	0.08	0.064	0.08

- Every question about a domain can be answered by the joint distribution because every event is a sum of sample points

Probability for Continuous Variables

- Express distribution as a parameterized function of value: $P(X=x)=U[18,26](x)=$ uniform density between 18 and 26

- Here P is a density; integrates to 1 .
$P(X=20.5)=0.125$ really means

$$
\lim _{d x \rightarrow 0} P(20.5 \leq X \leq 20.5+d x) / d x=0.125
$$

Gaussian Density

$$
P(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

GN4480100S8

ZEHN DEUTSCHE MARK

Deutsche Bundesbank

 Welkhe tac

inference

Conditional Probability

- Conditional or posterior probabilities
e.g., $P($ cavity \mid toothache $)=0.8$
i.e., given that toothache is all I know

NOT "if toothache then 80% chance of cavity"

- (Notation for conditional distributions:
$\mathbf{P}($ Cavity \mid Toothache $)=2$-element vector of 2-element vectors)
- If we know more, e.g., cavity is also given, then we have

$$
P(\text { cavity|toothache }, \text { cavity })=1
$$

Note: the less specific belief remains valid after more evidence arrives, but is not always useful

- New evidence may be irrelevant, allowing simplification, e.g.,
$P($ cavity \mid toothache, RavensWin $)=P($ cavity \mid toothache $)=0.8$
This kind of inference, sanctioned by domain knowledge, is crucial

Conditional Probability

- Definition of conditional probability:

$$
P(a \mid b)=\frac{P(a \wedge b)}{P(b)} \text { if } P(b) \neq 0
$$

- Product rule gives an alternative formulation:

$$
P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)
$$

- A general version holds for whole distributions, e.g.,

$$
\mathbf{P}(\text { Weather }, \text { Cavity })=\mathbf{P}(\text { Weather } \mid \text { Cavity }) \mathbf{P}(\text { Cavity })
$$

(View as a 4×2 set of equations, not matrix multiplication)

- Chain rule is derived by successive application of product rule:

$$
\begin{aligned}
& \mathbf{P}\left(X_{1}, \ldots, X_{n}\right)=\mathbf{P}\left(X_{1}, \ldots, X_{n-1}\right) \mathbf{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& \quad=\mathbf{P}\left(X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n-1} \mid X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& \quad=\ldots \\
& \quad=\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

Inference by Enumeration

- Start with the joint distribution:

	toothache		ᄀtoothache	
	catch	ᄀcatch	catch	ᄀ catch
cavity	.108	.012	.072	.008
ᄀ cavity	.016	.064	.144	.576

- For any proposition ϕ, sum the atomic events where it is true:
$P(\phi)=\sum_{\omega: \omega \vDash \phi} P(\omega)$
(catch $=$ dentist's steel probe gets caught in cavity)

Inference by Enumeration

- Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- For any proposition ϕ, sum the atomic events where it is true

$$
\begin{aligned}
& P(\phi)=\sum_{\omega: \omega \vDash \phi} P(\omega) \\
& P(\text { toothache })=0.108+0.012+0.016+0.064=0.2
\end{aligned}
$$

Inference by Enumeration

- Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- For any proposition ϕ, sum the atomic events where it is true:

```
\(P(\phi)=\sum_{\omega: \omega \vDash \phi} P(\omega)\)
\(P(\) cavity \(\vee\) toothache \()=0.108+0.012+0.072+0.008+0.016+0.064=0.28\)
```


Inference by Enumeration

- Start with the joint distribution:

	toothache		ᄀtoothache	
	catch	ᄀ catch	catch	ᄀ catch
cavity	.108	.012	.072	.008
ᄀ cavity	.016	.064	.144	.576

- Can also compute conditional probabilities:

$$
\begin{aligned}
P(\neg \text { cavity } \mid \text { toothache }) & =\frac{P(\neg \text { cavity } \wedge \text { toothache })}{P(\text { toothache })} \\
& =\frac{0.016+0.064}{0.108+0.012+0.016+0.064}=0.4
\end{aligned}
$$

Normalization

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- Denominator can be viewed as a normalization constant α

$$
\begin{aligned}
& \mathbf{P}(\text { Cavity } \mid \text { toothache })=\alpha \mathbf{P}(\text { Cavity }, \text { toothache }) \\
& \quad=\alpha[\mathbf{P}(\text { Cavity }, \text { toothache, catch })+\mathbf{P}(\text { Cavity, toothache, } \neg \text { catch })] \\
& \quad=\alpha[\langle 0.108,0.016\rangle+\langle 0.012,0.064\rangle] \\
& \quad=\alpha\langle 0.12,0.08\rangle=\langle 0.6,0.4\rangle
\end{aligned}
$$

- General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Inference by Enumeration

- Let X be all the variables.

Typically, we want the posterior joint distribution of the query variables Y given specific values e for the evidence variables Ell

- Let the hidden variables be $\mathbf{H}=\mathbf{X}-\mathbf{Y}-\mathbf{E}$
- Then the required summation of joint entries is done by summing out the hidden variables:

$$
\mathbf{P}(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})=\alpha \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e})=\alpha \sum_{\mathbf{h}} \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e}, \mathbf{H}=\mathbf{h})
$$

- The terms in the summation are joint entries because Y, E, and H together exhaust the set of random variablesl
- Obvious problems
- Worst-case time complexity $O\left(d^{n}\right)$ where d is the largest arity
- Space complexity $O\left(d^{n}\right)$ to store the joint distribution
- How to find the numbers for $O\left(d^{n}\right)$ entries???

independence

Independence

- A and B are independent iff

$$
\mathbf{P}(A \mid B)=\mathbf{P}(A) \quad \text { or } \quad \mathbf{P}(B \mid A)=\mathbf{P}(B) \quad \text { or } \quad \mathbf{P}(A, B)=\mathbf{P}(A) \mathbf{P}(B)
$$

- $\mathbf{P}($ Toothache, Catch, Cavity, Weather $)$

$$
=\mathbf{P}(\text { Toothache }, \text { Catch }, \text { Cavity }) \mathbf{P}(\text { Weather })
$$

- 32 entries reduced to 12 ; for n independent biased coins, $2^{n} \rightarrow n$
- Absolute independence powerful but rare
- Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional Independence

- $\mathbf{P}($ Toothache, Cavity, Catch $)$ has $2^{3}-1=7$ independent entries
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
(1) $P($ catch \mid toothache, cavity $)=P($ catch \mid cavity $)$
- The same independence holds if I haven't got a cavity:
(2) $P($ catch \mid toothache,\neg cavity $)=P($ catch $\mid \neg$ cavity $)$
- Catch is conditionally independent of Toothache given Cavity:

$$
\mathbf{P}(\text { Catch } \mid \text { Toothache }, \text { Cavity })=\mathbf{P}(\text { Catch } \mid \text { Cavity })
$$

- Equivalent statements:

$$
\begin{aligned}
& \mathbf{P}(\text { Toothache } \mid \text { Catch, Cavity })=\mathbf{P}(\text { Toothache } \mid \text { Cavity }) \\
& \mathbf{P}(\text { Toothache }, \text { Catch } \mid \text { Cavity })=\mathbf{P}(\text { Toothache } \mid \text { Cavity }) \mathbf{P}(\text { Catch } \mid \text { Cavity })
\end{aligned}
$$

Conditional Independence

- Write out full joint distribution using chain rule:

$$
\begin{aligned}
& \mathbf{P}(\text { Toothache, Catch, Cavity }) \\
& =\mathbf{P}(\text { Toothache } \mid \text { Catch, Cavity }) \mathbf{P}(\text { Catch }, \text { Cavity }) \\
& =\mathbf{P}(\text { Toothache } \mid \text { Catch, Cavity }) \mathbf{P}(\text { Catch } \mid \text { Cavity }) \mathbf{P}(\text { Cavity }) \\
& =\mathbf{P}(\text { Toothache } \mid \text { Cavity }) \mathbf{P}(\text { Catch } \mid \text { Cavity }) \mathbf{P}(\text { Cavity })
\end{aligned}
$$

- I.e., $2+2+1=5$ independent numbers (equations 1 and 2 remove 2)
- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

bayes rule

Bayes' Rule

- Product rule $P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)$ \Longrightarrow Bayes' rule $P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}$
- Or in distribution form

$$
\mathbf{P}(Y \mid X)=\frac{\mathbf{P}(X \mid Y) \mathbf{P}(Y)}{\mathbf{P}(X)}=\alpha \mathbf{P}(X \mid Y) \mathbf{P}(Y)
$$

Bayes' Rule

- Useful for assessing diagnostic probability from causal probability

$$
P(\text { Cause } \mid \text { Effect })=\frac{P(\text { Effect } \mid \text { Cause }) P(\text { Cause })}{P(\text { Effect })}
$$

- E.g., let M be meningitis, S be stiff neck:

$$
P(m \mid s)=\frac{P(s \mid m) P(m)}{P(s)}=\frac{0.8 \times 0.0001}{0.1}=0.0008
$$

- Note: posterior probability of meningitis still very small!

Bayes' Rule and Conditional Independence

- Example of a naive Bayes model

$$
\begin{aligned}
& \mathbf{P}(\text { Cavity } \mid \text { toothache } \wedge \text { catch }) \\
& \quad=\alpha \mathbf{P}(\text { toothache } \wedge \text { catch } \mid \text { Cavity }) \mathbf{P}(\text { Cavity }) \\
& \quad=\alpha \mathbf{P}(\text { toothache } \mid \text { Cavity }) \mathbf{P}(\text { catch } \mid \text { Cavity }) \mathbf{P}(\text { Cavity })
\end{aligned}
$$

- Generally:

$$
P\left(\text { Cause, Effect } 1, \ldots, \text { Effect }_{n}\right)=P\left(\text { Cause } \prod_{i} P\left(\text { Effect }_{i} \mid \text { Cause }\right)\right.
$$

- Total number of parameters is linear in n

wampus world

Wumpus World

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
OK B	2,2	3,2	4,2
OK	OK OK		
1,1	2,1	4,1	

- $P_{i j}=$ true iff $[i, j]$ contains a pit
- $B_{i j}=$ true iff $[i, j]$ is breezy

Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model

Specifying the Probability Model

- The full joint distribution is $\mathbf{P}\left(P_{1,1}, \ldots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1}\right) \|$
- Apply product rule: $\mathbf{P}\left(B_{1,1}, B_{1,2}, B_{2,1} \mid P_{1,1}, \ldots, P_{4,4}\right) \mathbf{P}\left(P_{1,1}, \ldots, P_{4,4}\right)$

This gives us: $P($ Effect \mid Cause $)$

- First term: 1 if pits are adjacent to breezes, 0 otherwisel
- Second term: pits are placed randomly, probability 0.2 per square:

$$
\mathbf{P}\left(P_{1,1}, \ldots, P_{4,4}\right)=\prod_{i, j=1,1}^{4,4} \mathbf{P}\left(P_{i, j}\right)=0.2^{n} \times 0.8^{16-n}
$$

for n pits.

Observations and Query

- We know the following facts:

$$
\begin{aligned}
& b=\neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1} \\
& \text { known }=\neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}
\end{aligned}
$$

- Query is $\mathbf{P}\left(P_{1,3} \mid\right.$ known,$\left.b\right)$
- Define U nknown $=P_{i j}$ s other than $P_{1,3}$ and Known
- For inference by enumeration, we have

$$
\mathbf{P}\left(P_{1,3} \mid k n o w n, b\right)=\alpha \sum_{\text {unknown }} \mathbf{P}\left(P_{1,3}, \text { unknown, known, } b\right)
$$

- Grows exponentially with number of squares!

Using Conditional Independence

- Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

- Define Unknown $=$ Fringe \cup Other
$\mathbf{P}\left(b \mid P_{1,3}\right.$, Known, Unknown $)=\mathbf{P}\left(b \mid P_{1,3}\right.$, Known, Fringe $)$
- Manipulate query into a form where we can use this!

Using Conditional Independence

$$
\begin{aligned}
& \mathbf{P}\left(P_{1,3} \mid \text { known }, b\right)=\alpha \sum_{\text {unknown }} \mathbf{P}\left(P_{1,3} \text {, unknown, known, } b\right) \\
& =\alpha \sum_{\text {unknown }} \mathbf{P}\left(b \mid P_{1,3}, \text { known, unknown }\right) \mathbf{P}\left(P_{1,3}, \text { known, unknown }\right) \boldsymbol{\square}
\end{aligned}
$$

$$
\begin{aligned}
& =\alpha \sum_{\text {fringe }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) \sum_{\text {other }} \mathbf{P}\left(P_{1,3}, \text { known, fringe, other }\right) \\
& =\alpha \sum_{\text {fringe }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) \sum_{\text {other }} \mathbf{P}\left(P_{1,3}\right) P(\text { known }) P(\text { fringe }) P(\text { other }) \llbracket \\
& =\alpha P(\text { known }) \mathbf{P}\left(P_{1,3}\right) \sum_{\text {fringe }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) P(\text { fringe }) \sum_{\text {other }} P(\text { other }) \rrbracket \\
& =\alpha^{\prime} \mathbf{P}\left(P_{1,3}\right) \sum_{\text {fringe }} \mathbf{P}\left(b \mid \text { known }, P_{1,3}, \text { fringe }\right) P(\text { fringe })
\end{aligned}
$$

Using Conditional Independence

$$
\begin{aligned}
\mathbf{P}\left(P_{1,3} \mid \text { known }, b\right) & =\alpha^{\prime}\langle 0.2(0.04+0.16+0.16), 0.8(0.04+0.16)\rangle \\
& \approx\langle 0.31,0.69\rangle
\end{aligned}
$$

$\mathbf{P}\left(P_{2,2} \mid\right.$ known,$\left.b\right) \approx\langle 0.86,0.14\rangle$

Summary

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the joint size
- Independence and conditional independence provide the tools

