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● Uncertainty

● Probability

● Inference

● Independence and Bayes’ Rule
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uncertainty
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3Uncertainty

● Let action At = leave for airport t minutes before flight
Will At get me there on time?

● Problems
– partial observability (road state, other drivers’ plans, etc.)
– noisy sensors (WBAL traffic reports)
– uncertainty in action outcomes (flat tire, etc.)
– immense complexity of modelling and predicting traffic

● Hence a purely logical approach either
1. risks falsehood: “A25 will get me there on time”
2. leads to conclusions that are too weak for decision making:

“A25 will get me there on time if there’s no accident on the bridge
and it doesn’t rain and my tires remain intact etc etc.”
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4Methods for Handling Uncertainty

● Default or nonmonotonic logic:
Assume my car does not have a flat tire
Assume A25 works unless contradicted by evidence

Issues: What assumptions are reasonable? How to handle contradiction?

● Rules with fudge factors:
A25 ↦0.3 AtAirportOnTime
Sprinkler ↦0.99 WetGrass
WetGrass↦0.7 Rain

Issues: Problems with combination, e.g., Sprinkler causes Rain?

● Probability
Given the available evidence,

A25 will get me there on time with probability 0.04
Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

● (Fuzzy logic handles degree of truth NOT uncertainty e.g.,
WetGrass is true to degree 0.2)
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probability
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6Probability

● Probabilistic assertions summarize effects of
laziness: failure to enumerate exceptions, qualifications, etc.
ignorance: lack of relevant facts, initial conditions, etc.

● Subjective or Bayesian probability:
Probabilities relate propositions to one’s own state of knowledge

e.g., P (A25∣no reported accidents) = 0.06

● Might be learned from past experience of similar situations

● Probabilities of propositions change with new evidence:
e.g., P (A25∣no reported accidents, 5 a.m.) = 0.15

● Analogous to logical entailment status KB ⊧ α, not truth.
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7Making Decisions under Uncertainty

● Suppose I believe the following:

P (A25 gets me there on time∣ . . .) = 0.04

P (A90 gets me there on time∣ . . .) = 0.70

P (A120 gets me there on time∣ . . .) = 0.95

P (A1440 gets me there on time∣ . . .) = 0.9999

● Which action to choose?

● Depends on my preferences for missing flight vs. airport cuisine, etc.

● Utility theory is used to represent and infer preferences

● Decision theory = utility theory + probability theory
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8Probability Basics

● Begin with a set Ω—the sample space
e.g., 6 possible rolls of a die.
ω ∈ Ω is a sample point/possible world/atomic event

● A probability space or probability model is a sample space
with an assignment P (ω) for every ω ∈ Ω s.t.

0 ≤ P (ω) ≤ 1

∑ω P (ω) = 1
e.g., P (1)=P (2)=P (3)=P (4)=P (5)=P (6)=1/6.

● An event A is any subset of Ω

P (A) = ∑
{ω∈A}

P (ω)

● E.g., P (die roll ≤ 3) = P (1) + P (2) + P (3) = 1/6 + 1/6 + 1/6 = 1/2
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9Random Variables

● A random variable is a function from sample points to some range, e.g., the reals
or Booleans

e.g., Odd(1)= true.

● P induces a probability distribution for any r.v. X :

P (X =xi) = ∑
{ω∶X(ω)=xi}

P (ω)

● E.g., P (Odd= true) = P (1) + P (3) + P (5) = 1/6 + 1/6 + 1/6 = 1/2
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10Propositions

● Think of a proposition as the event (set of sample points)
where the proposition is true

● Given Boolean random variables A and B:
event a = set of sample points where A(ω)= true
event ¬a = set of sample points where A(ω)=false
event a ∧ b = points where A(ω)= true and B(ω)= true

● Often in AI applications, the sample points are defined
by the values of a set of random variables, i.e., the
sample space is the Cartesian product of the ranges of the variables

● With Boolean variables, sample point = propositional logic model
e.g., A= true, B =false, or a ∧ ¬b.

Proposition = disjunction of atomic events in which it is true
e.g., (a ∨ b) ≡ (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ b)
Ô⇒ P (a ∨ b) = P (¬a ∧ b) + P (a ∧ ¬b) + P (a ∧ b)
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11Why use Probability?

● The definitions imply that certain logically related events must have related
probabilities

● E.g., P (a ∨ b) = P (a) + P (b) − P (a ∧ b)
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12Syntax for Propositions

● Propositional or Boolean random variables
e.g., Cavity (do I have a cavity?)
Cavity = true is a proposition, also written cavity

● Discrete random variables (finite or infinite)
e.g., Weather is one of ⟨sunny, rain, cloudy, snow⟩
Weather = rain is a proposition
Values must be exhaustive and mutually exclusive

● Continuous random variables (bounded or unbounded)
e.g., Temp=21.6; also allow, e.g., Temp < 22.0.

● Arbitrary Boolean combinations of basic propositions
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13Prior Probability

● Prior or unconditional probabilities of propositions
e.g., P (Cavity = true) = 0.1 and P (Weather = sunny) = 0.72

correspond to belief prior to arrival of any (new) evidence

● Probability distribution gives values for all possible assignments:
P(Weather) = ⟨0.72,0.1,0.08,0.1⟩ (normalized, i.e., sums to 1)

● Joint probability distribution for a set of r.v.s gives the
probability of every atomic event on those r.v.s (i.e., every sample point)

P(Weather,Cavity) = a 4 × 2 matrix of values:

Weather = sunny rain cloudy snow
Cavity = true 0.144 0.02 0.016 0.02
Cavity =false 0.576 0.08 0.064 0.08

● Every question about a domain can be answered by the joint
distribution because every event is a sum of sample points
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14Probability for Continuous Variables

● Express distribution as a parameterized function of value:
P (X =x) = U[18,26](x) = uniform density between 18 and 26

● Here P is a density; integrates to 1.
P (X =20.5) = 0.125 really means

lim
dx→0

P (20.5 ≤X ≤ 20.5 + dx)/dx = 0.125
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15Gaussian Density

P (x) = 1√
2πσ

e−(x−µ)
2/2σ2
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inference
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19Conditional Probability

● Conditional or posterior probabilities
e.g., P (cavity∣toothache) = 0.8
i.e., given that toothache is all I know
NOT “if toothache then 80% chance of cavity”

● (Notation for conditional distributions:
P(Cavity∣Toothache) = 2-element vector of 2-element vectors)

● If we know more, e.g., cavity is also given, then we have
P (cavity∣toothache, cavity) = 1

Note: the less specific belief remains valid after more evidence arrives, but is
not always useful

● New evidence may be irrelevant, allowing simplification, e.g.,
P (cavity∣toothache,RavensWin) = P (cavity∣toothache) = 0.8

This kind of inference, sanctioned by domain knowledge, is crucial
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20Conditional Probability

● Definition of conditional probability:

P (a∣b) = P (a ∧ b)
P (b) if P (b) ≠ 0

● Product rule gives an alternative formulation:
P (a ∧ b) = P (a∣b)P (b) = P (b∣a)P (a)

● A general version holds for whole distributions, e.g.,
P(Weather,Cavity) = P(Weather∣Cavity)P(Cavity)

(View as a 4 × 2 set of equations, not matrix multiplication)

● Chain rule is derived by successive application of product rule:
P(X1, . . . ,Xn) = P(X1, . . . ,Xn−1) P(Xn∣X1, . . . ,Xn−1)

= P(X1, . . . ,Xn−2) P(Xn−1∣X1, . . . ,Xn−2) P(Xn∣X1, . . . ,Xn−1)
= . . .
=∏ni=1 P(Xi∣X1, . . . ,Xi−1)
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21Inference by Enumeration

● Start with the joint distribution:

● For any proposition φ, sum the atomic events where it is true:

P (φ) = ∑ω∶ω⊧φP (ω)

(catch = dentist’s steel probe gets caught in cavity)
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22Inference by Enumeration

● Start with the joint distribution:

● For any proposition φ, sum the atomic events where it is true

P (φ) = ∑ω∶ω⊧φP (ω)

P (toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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23Inference by Enumeration

● Start with the joint distribution:

● For any proposition φ, sum the atomic events where it is true:

P (φ) = ∑ω∶ω⊧φP (ω)

P (cavity ∨ toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28
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24Inference by Enumeration

● Start with the joint distribution:

● Can also compute conditional probabilities:

P (¬cavity∣toothache) = P (¬cavity ∧ toothache)
P (toothache)

= 0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4

Philipp Koehn Artificial Intelligence: Probabilistic Reasoning 28 March 2019



25Normalization

● Denominator can be viewed as a normalization constant α

P(Cavity∣toothache) = αP(Cavity, toothache)
= α [P(Cavity, toothache, catch) +P(Cavity, toothache,¬catch)]
= α [⟨0.108,0.016⟩ + ⟨0.012,0.064⟩]
= α ⟨0.12,0.08⟩ = ⟨0.6,0.4⟩

● General idea: compute distribution on query variable
by fixing evidence variables and summing over hidden variables
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26Inference by Enumeration

● Let X be all the variables.
Typically, we want the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E

● Let the hidden variables be H = X −Y −E

● Then the required summation of joint entries is done by summing out the hidden
variables:

P(Y∣E=e) = αP(Y,E=e) = α∑
h

P(Y,E=e,H=h)

● The terms in the summation are joint entries because Y, E, and H together
exhaust the set of random variables

● Obvious problems

– Worst-case time complexity O(dn) where d is the largest arity
– Space complexity O(dn) to store the joint distribution
– How to find the numbers for O(dn) entries???
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independence
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28Independence

● A and B are independent iff
P(A∣B)=P(A) or P(B∣A)=P(B) or P(A,B)=P(A)P(B)

● P(Toothache,Catch,Cavity,Weather)
= P(Toothache,Catch,Cavity)P(Weather)

● 32 entries reduced to 12; for n independent biased coins, 2n → n

● Absolute independence powerful but rare

● Dentistry is a large field with hundreds of variables,
none of which are independent. What to do?
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29Conditional Independence

● P(Toothache,Cavity,Catch) has 23 − 1 = 7 independent entries

● If I have a cavity, the probability that the probe catches in it doesn’t depend on
whether I have a toothache:

(1) P (catch∣toothache, cavity) = P (catch∣cavity)

● The same independence holds if I haven’t got a cavity:
(2) P (catch∣toothache,¬cavity) = P (catch∣¬cavity)

● Catch is conditionally independent of Toothache given Cavity:
P(Catch∣Toothache,Cavity) = P(Catch∣Cavity)

● Equivalent statements:
P(Toothache∣Catch,Cavity) = P(Toothache∣Cavity)
P(Toothache,Catch∣Cavity) = P(Toothache∣Cavity)P(Catch∣Cavity)
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30Conditional Independence

● Write out full joint distribution using chain rule:
P(Toothache,Catch,Cavity)
= P(Toothache∣Catch,Cavity)P(Catch,Cavity)
= P(Toothache∣Catch,Cavity)P(Catch∣Cavity)P(Cavity)
= P(Toothache∣Cavity)P(Catch∣Cavity)P(Cavity)

● I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

● In most cases, the use of conditional independence reduces the size of the
representation of the joint distribution from exponential in n to linear in n.

● Conditional independence is our most basic and robust
form of knowledge about uncertain environments.
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bayes rule
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32Bayes’ Rule

● Product rule P (a ∧ b) = P (a∣b)P (b) = P (b∣a)P (a)

Ô⇒ Bayes’ rule P (a∣b) = P (b∣a)P (a)
P (b)

● Or in distribution form

P(Y ∣X) = P(X ∣Y )P(Y )
P(X) = αP(X ∣Y )P(Y )
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33Bayes’ Rule

● Useful for assessing diagnostic probability from causal probability

P (Cause∣Effect) = P (Effect∣Cause)P (Cause)
P (Effect)

● E.g., let M be meningitis, S be stiff neck:

P (m∣s) = P (s∣m)P (m)
P (s) = 0.8 × 0.0001

0.1
= 0.0008

● Note: posterior probability of meningitis still very small!
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34Bayes’ Rule and Conditional Independence

● Example of a naive Bayes model

P(Cavity∣toothache ∧ catch)
= αP(toothache ∧ catch∣Cavity)P(Cavity)
= αP(toothache∣Cavity)P(catch∣Cavity)P(Cavity)

● Generally:

P(Cause,Effect1, . . . ,Effectn) = P(Cause)∏
i

P(Effecti∣Cause)

● Total number of parameters is linear in n
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wampus world
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36Wumpus World

● Pij = true iff [i, j] contains a pit

● Bij = true iff [i, j] is breezy

Include only B1,1,B1,2,B2,1 in the probability model
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37Specifying the Probability Model

● The full joint distribution is P(P1,1, . . . , P4,4,B1,1,B1,2,B2,1)

● Apply product rule: P(B1,1,B1,2,B2,1 ∣P1,1, . . . , P4,4)P(P1,1, . . . , P4,4)

This gives us: P (Effect∣Cause)

● First term: 1 if pits are adjacent to breezes, 0 otherwise

● Second term: pits are placed randomly, probability 0.2 per square:

P(P1,1, . . . , P4,4) =Π
4,4

i,j =1,1P(Pi,j) = 0.2n×0.816−n

for n pits.
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38Observations and Query

● We know the following facts:
b = ¬b1,1 ∧ b1,2 ∧ b2,1
known = ¬p1,1 ∧ ¬p1,2 ∧ ¬p2,1

● Query is P(P1,3∣known, b)

● Define Unknown = Pijs other than P1,3 and Known

● For inference by enumeration, we have

P(P1,3∣known, b) = α ∑
unknown

P(P1,3, unknown, known, b)

● Grows exponentially with number of squares!

Philipp Koehn Artificial Intelligence: Probabilistic Reasoning 28 March 2019



39Using Conditional Independence

● Basic insight: observations are conditionally independent of other hidden
squares given neighbouring hidden squares

● Define Unknown = Fringe ∪Other
P(b∣P1,3,Known,Unknown) = P(b∣P1,3,Known,Fringe)

● Manipulate query into a form where we can use this!
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40Using Conditional Independence

P(P1,3∣known, b) = α ∑
unknown

P(P1,3, unknown, known, b)

= α ∑
unknown

P(b∣P1,3, known,unknown)P(P1,3, known,unknown)

= α ∑
fringe

∑
other

P(b∣known,P1,3, fringe, other)P(P1,3, known, fringe, other)

= α ∑
fringe

∑
other

P(b∣known,P1,3, fringe)P(P1,3, known, fringe, other)

= α ∑
fringe

P(b∣known,P1,3, fringe) ∑
other

P(P1,3, known, fringe, other)

= α ∑
fringe

P(b∣known,P1,3, fringe) ∑
other

P(P1,3)P (known)P (fringe)P (other)

= αP (known)P(P1,3) ∑
fringe

P(b∣known,P1,3, fringe)P (fringe) ∑
other

P (other)

= α′P(P1,3) ∑
fringe

P(b∣known,P1,3, fringe)P (fringe)
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41Using Conditional Independence

P(P1,3∣known, b) = α′ ⟨0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16)⟩
≈ ⟨0.31,0.69⟩

P(P2,2∣known, b) ≈ ⟨0.86,0.14⟩
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42Summary

● Probability is a rigorous formalism for uncertain knowledge

● Joint probability distribution specifies probability of every atomic event

● Queries can be answered by summing over atomic events

● For nontrivial domains, we must find a way to reduce the joint size

● Independence and conditional independence provide the tools
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