Neural Networks

Philipp Koehn

11 April 2019

Supervised Learning

- Examples described by attribute values (Boolean, discrete, continuous, etc.)
- E.g., situations where I will/won't wait for a table:

| Example | Attributes | | | | | | | | | | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type | Est | WillWait |
| X_{1} | T | F | F | T | Some | $\$ \$ \$$ | F | T | French | $0-10$ | T |
| X_{2} | T | F | F | T | Full | $\$$ | F | F | Thai | $30-60$ | F |
| X_{3} | F | T | F | F | Some | $\$$ | F | F | Burger | $0-10$ | T |
| X_{4} | T | F | T | T | Full | $\$$ | F | F | Thai | $10-30$ | T |
| X_{5} | T | F | T | F | Full | $\$ \$ \$$ | F | T | French | >60 | F |
| X_{6} | F | T | F | T | Some | $\$ \$$ | T | T | Italian | $0-10$ | T |
| X_{7} | F | T | F | F | None | $\$$ | T | F | Burger | $0-10$ | F |
| X_{8} | F | F | F | T | Some | $\$ \$$ | T | T | Thai | $0-10$ | T |
| X_{9} | F | T | T | F | Full | $\$$ | T | F | Burger | >60 | F |
| X_{10} | T | T | T | T | Full | $\$ \$ \$$ | F | T | Italian | $10-30$ | F |
| X_{11} | F | F | F | F | None | $\$$ | F | F | Thai | $0-10$ | F |
| X_{12} | T | T | T | T | Full | $\$$ | F | F | Burger | $30-60$ | T |

- Classification of examples is positive (T) or negative (F)

Naive Bayes Models

- Bayes rule

$$
p(C \mid \mathbf{A})=\frac{1}{Z} p(\mathbf{A} \mid C) p(C)
$$

- Independence assumption

$$
\begin{aligned}
p(\mathbf{A} \mid C) & =p\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n} \mid C\right) \\
& \simeq \prod_{i} p\left(a_{i} \mid C\right)
\end{aligned}
$$

- Weights

$$
p(\mathbf{A} \mid C)=\prod_{i} p\left(a_{i} \mid C\right)^{\lambda_{i}}
$$

Naive Bayes Models

- Linear model

$$
p(\mathbf{A} \mid C)=\exp \prod_{i} p\left(a_{i} \mid C\right)^{\lambda_{i}}
$$

- Probability distribution as features

$$
\begin{aligned}
h_{i}(\mathbf{A}, C) & =\log p\left(a_{i} \mid C\right) \\
h_{0}(\mathbf{A}, C) & =\log p(C)
\end{aligned}
$$

- Linear model with features

$$
p(C \mid \mathbf{A}) \propto \sum_{i} \lambda_{i} h_{i}(\mathbf{A}, C)
$$

Linear Model

- Weighted linear combination of feature values h_{j} and weights λ_{j} for example \mathbf{d}_{i}

$$
\operatorname{score}\left(\lambda, \mathbf{d}_{i}\right)=\sum_{j} \lambda_{j} h_{j}\left(\mathbf{d}_{i}\right)
$$

- Such models can be illustrated as a "network"

Limits of Linearity

- We can give each feature a weight
- But not more complex value relationships, e.g,
- any value in the range [0;5] is equally good
- values over 8 are bad
- higher than 10 is not worse

XOR

- Linear models cannot model XOR

Multiple Layers

- Add an intermediate ("hidden") layer of processing (each arrow is a weight)

- Have we gained anything so far?

Non-Linearity

- Instead of computing a linear combination

$$
\operatorname{score}\left(\lambda, \mathbf{d}_{i}\right)=\sum_{j} \lambda_{j} h_{j}\left(\mathbf{d}_{i}\right)
$$

- Add a non-linear function

$$
\operatorname{score}\left(\lambda, \mathbf{d}_{i}\right)=f\left(\sum_{j} \lambda_{j} h_{j}\left(\mathbf{d}_{i}\right)\right)
$$

- Popular choices

(sigmoid is also called the "logistic function")

Deep Learning

- More layers = deep learning

example

Simple Neural Network

- One innovation: bias units (no inputs, always value 1)

Sample Input

- Try out two input values
- Hidden unit computation

$$
\begin{aligned}
& \operatorname{sigmoid}(1.0 \times 3.7+0.0 \times 3.7+1 \times-1.5)=\operatorname{sigmoid}(2.2)=\frac{1}{1+e^{-2.2}}=0.90 \\
& \operatorname{sigmoid}(1.0 \times 2.9+0.0 \times 2.9+1 \times-4.5)=\operatorname{sigmoid}(-1.6)=\frac{1}{1+e^{1.6}}=0.17
\end{aligned}
$$

Computed Hidden

- Try out two input values
- Hidden unit computation

$$
\begin{aligned}
& \operatorname{sigmoid}(1.0 \times 3.7+0.0 \times 3.7+1 \times-1.5)=\operatorname{sigmoid}(2.2)=\frac{1}{1+e^{-2.2}}=0.90 \\
& \operatorname{sigmoid}(1.0 \times 2.9+0.0 \times 2.9+1 \times-4.5)=\operatorname{sigmoid}(-1.6)=\frac{1}{1+e^{1.6}}=0.17
\end{aligned}
$$

Compute Output

- Output unit computation

$$
\operatorname{sigmoid}(.90 \times 4.5+.17 \times-5.2+1 \times-2.0)=\operatorname{sigmoid}(1.17)=\frac{1}{1+e^{-1.17}}=0.76
$$

Computed Output

- Output unit computation

$$
\operatorname{sigmoid}(.90 \times 4.5+.17 \times-5.2+1 \times-2.0)=\operatorname{sigmoid}(1.17)=\frac{1}{1+e^{-1.17}}=0.76
$$

why "neural" networks?

Neuron in the Brain

- The human brain is made up of about 100 billion neurons

- Neurons receive electric signals at the dendrites and send them to the axon

Neural Communication

- The axon of the neuron is connected to the dendrites of many other neurons

The Brain vs. Artificial Neural Networks

- Similarities
- Neurons, connections between neurons
- Learning = change of connections, not change of neurons
- Massive parallel processing
- But artificial neural networks are much simpler
- computation within neuron vastly simplified
- discrete time steps
- typically some form of supervised learning with massive number of stimuli

back-propagation training

Error

- Computed output: $y=.76$
- Correct output: $t=1.0$
\Rightarrow How do we adjust the weights?

Key Concepts

- Gradient descent
- error is a function of the weights
- we want to reduce the error
- gradient descent: move towards the error minimum
- compute gradient \rightarrow get direction to the error minimum
- adjust weights towards direction of lower error
- Back-propagation
- first adjust last set of weights
- propagate error back to each previous layer
- adjust their weights

Derivative of Sigmoid

- Sigmoid

$$
\operatorname{sigmoid}(x)=\frac{1}{1+e^{-x}}
$$

- Reminder: quotient rule

$$
\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
$$

- Derivative

$$
\begin{aligned}
\frac{d \operatorname{sigmoid}(x)}{d x} & =\frac{d}{d x} \frac{1}{1+e^{-x}} \\
& =\frac{0 \times\left(1-e^{-x}\right)-\left(-e^{-x}\right)}{\left(1+e^{-x}\right)^{2}} \\
& =\frac{1}{1+e^{-x}}\left(\frac{e^{-x}}{1+e^{-x}}\right) \\
& =\frac{1}{1+e^{-x}}\left(1-\frac{1}{1+e^{-x}}\right) \\
& =\operatorname{sigmoid}(x)(1-\operatorname{sigmoid}(x))
\end{aligned}
$$

Final Layer Update

- Linear combination of weights $s=\sum_{k} w_{k} h_{k}$
- Activation function $y=\operatorname{sigmoid}(s)$
- $\operatorname{Error}(\mathrm{L} 2$ norm $) E=\frac{1}{2}(t-y)^{2}$
- Derivative of error with regard to one weight w_{k}

$$
\frac{d E}{d w_{k}}=\frac{d E}{d y} \frac{d y}{d s} \frac{d s}{d w_{k}}
$$

Final Layer Update (1)

- Linear combination of weights $s=\sum_{k} w_{k} h_{k}$
- Activation function $y=\operatorname{sigmoid}(s)$
- $\operatorname{Error}(\mathrm{L} 2$ norm $) E=\frac{1}{2}(t-y)^{2}$
- Derivative of error with regard to one weight w_{k}

$$
\frac{d E}{d w_{k}}=\frac{d E}{d y} \frac{d y}{d s} \frac{d s}{d w_{k}}
$$

- Error E is defined with respect to y

$$
\frac{d E}{d y}=\frac{d}{d y} \frac{1}{2}(t-y)^{2}=-(t-y)
$$

Final Layer Update (2)

- Linear combination of weights $s=\sum_{k} w_{k} h_{k}$
- Activation function $y=\operatorname{sigmoid}(s)$
- $\operatorname{Error}(\mathrm{L} 2$ norm $) E=\frac{1}{2}(t-y)^{2}$
- Derivative of error with regard to one weight w_{k}

$$
\frac{d E}{d w_{k}}=\frac{d E}{d y} \frac{d y}{d s} \frac{d s}{d w_{k}}
$$

- y with respect to x is $\operatorname{sigmoid}(s)$

$$
\frac{d y}{d s}=\frac{d \operatorname{sigmoid}(s)}{d s}=\operatorname{sigmoid}(s)(1-\operatorname{sigmoid}(s))=y(1-y)
$$

Final Layer Update (3)

- Linear combination of weights $s=\sum_{k} w_{k} h_{k}$
- Activation function $y=\operatorname{sigmoid}(s)$
- $\operatorname{Error}(\mathrm{L} 2$ norm $) E=\frac{1}{2}(t-y)^{2}$
- Derivative of error with regard to one weight w_{k}

$$
\frac{d E}{d w_{k}}=\frac{d E}{d y} \frac{d y}{d s} \frac{d s}{d w_{k}}
$$

- x is weighted linear combination of hidden node values h_{k}

$$
\frac{d s}{d w_{k}}=\frac{d}{d w_{k}} \sum_{k} w_{k} h_{k}=h_{k}
$$

Putting it All Together

- Derivative of error with regard to one weight w_{k}

$$
\begin{aligned}
\frac{d E}{d w_{k}} & =\frac{d E}{d y} \frac{d y}{d s} \frac{d s}{d w_{k}} \\
& =-(t-y) \quad y(1-y) \quad h_{k}
\end{aligned}
$$

- error
- derivative of sigmoid: y^{\prime}
- Weight adjustment will be scaled by a fixed learning rate μ

$$
\Delta w_{k}=\mu(t-y) y^{\prime} h_{k}
$$

Multiple Output Nodes

- Our example only had one output node
- Typically neural networks have multiple output nodes
- Error is computed over all j output nodes

$$
E=\sum_{j} \frac{1}{2}\left(t_{j}-y_{j}\right)^{2}
$$

- Weights $k \rightarrow j$ are adjusted according to the node they point to

$$
\Delta w_{j \leftarrow k}=\mu\left(t_{j}-y_{j}\right) y_{j}^{\prime} h_{k}
$$

Hidden Layer Update

- In a hidden layer, we do not have a target output value
- But we can compute how much each node contributed to downstream error
- Definition of error term of each node

$$
\delta_{j}=\left(t_{j}-y_{j}\right) y_{j}^{\prime}
$$

- Back-propagate the error term (why this way? there is math to back it up...)

$$
\delta_{i}=\left(\sum_{j} w_{j \leftarrow i} \delta_{j}\right) y_{i}^{\prime}
$$

- Universal update formula

$$
\Delta w_{j \leftarrow k}=\mu \delta_{j} h_{k}
$$

Our Example

- Computed output: $y=.76$
- Correct output: $t=1.0$
- Final layer weight updates (learning rate $\mu=10$)
- $\delta_{\mathrm{G}}=(t-y) y^{\prime}=(1-.76) 0.181=.0434$
$-\Delta w_{\mathrm{GD}}=\mu \delta_{\mathrm{G}} h_{\mathrm{D}}=10 \times .0434 \times .90=.391$
$-\Delta w_{\mathrm{GE}}=\mu \delta_{\mathrm{G}} h_{\mathrm{E}}=10 \times .0434 \times .17=.074$
$-\Delta w_{\mathrm{GF}}=\mu \delta_{\mathrm{G}} h_{\mathrm{F}}=10 \times .0434 \times 1=.434$

Our Example

- Computed output: $y=.76$
- Correct output: $t=1.0$
- Final layer weight updates (learning rate $\mu=10$)
- $\delta_{\mathrm{G}}=(t-y) y^{\prime}=(1-.76) 0.181=.0434$
$-\Delta w_{\mathrm{GD}}=\mu \delta_{\mathrm{G}} h_{\mathrm{D}}=10 \times .0434 \times .90=.391$
$-\Delta w_{\mathrm{GE}}=\mu \delta_{\mathrm{G}} h_{\mathrm{E}}=10 \times .0434 \times .17=.074$
$-\Delta w_{\mathrm{GF}}=\mu \delta_{\mathrm{G}} h_{\mathrm{F}}=10 \times .0434 \times 1=.434$

Hidden Layer Updates

- Hidden node D
$-\delta_{\mathrm{D}}=\left(\sum_{j} w_{j \leftarrow i} \delta_{j}\right) y_{\mathrm{D}}^{\prime}=w_{\mathrm{GD}} \delta_{\mathrm{G}} y_{\mathrm{D}}^{\prime}=4.5 \times .0434 \times .0898=.0175$
$-\Delta w_{\mathrm{DA}}=\mu \delta_{\mathrm{D}} h_{\mathrm{A}}=10 \times .0175 \times 1.0=.175$
$-\Delta w_{\mathrm{DB}}=\mu \delta_{\mathrm{D}} h_{\mathrm{B}}=10 \times .0175 \times 0.0=0$
$-\Delta w_{\mathrm{DC}}=\mu \delta_{\mathrm{D}} h_{\mathrm{C}}=10 \times .0175 \times 1=.175$
- Hidden node E
$-\delta_{\mathrm{E}}=\left(\sum_{j} w_{j \leftarrow i} \delta_{j}\right) y_{\mathrm{E}}^{\prime}=w_{\mathrm{GE}} \delta_{\mathrm{G}} y_{\mathrm{E}}^{\prime}=-5.2 \times .0434 \times 0.1411=-.0318$
$-\Delta w_{\text {EA }}=\mu \delta_{\mathrm{E}} h_{\mathrm{A}}=10 \times-.0318 \times 1.0=-.318$
- etc.

Connectionist Semantic Cognition

- Hidden layer representations for concepts and concept relationships

some additional aspects

Initialization of Weights

- Weights are initialized randomly e.g., uniformly from interval [-0.01, 0.01]
- Glorot and Bengio (2010) suggest
- for shallow neural networks

$$
\left[-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right]
$$

n is the size of the previous layer

- for deep neural networks

$$
\left[-\frac{\sqrt{6}}{\sqrt{n_{j}+n_{j+1}}}, \frac{\sqrt{6}}{\sqrt{n_{j}+n_{j+1}}}\right]
$$

n_{j} is the size of the previous layer, n_{j} size of next layer

Neural Networks for Classification

- Predict class: one output node per class
- Training data output: "One-hot vector", e.g., $\vec{y}=(0,0,1)^{T}$
- Prediction
- predicted class is output node y_{i} with highest value
- obtain posterior probability distribution by soft-max

$$
\operatorname{softmax}\left(y_{i}\right)=\frac{e^{y_{i}}}{\sum_{j} e^{y_{j}}}
$$

Speedup: Momentum Term

- Updates may move a weight slowly in one direction
- To speed this up, we can keep a memory of prior updates

$$
\Delta w_{j \leftarrow k}(n-1)
$$

- ... and add these to any new updates (with decay factor ρ)

$$
\Delta w_{j \leftarrow k}(n)=\mu \delta_{j} h_{k}+\rho \Delta w_{j \leftarrow k}(n-1)
$$

computational aspects

Vector and Matrix Multiplications

- Forward computation: $\vec{s}=W \vec{h}$
- Activation function: $\vec{y}=\operatorname{sigmoid}(\vec{h})$
- Error term: $\vec{\delta}=(\vec{t}-\vec{y}) \operatorname{sigmoid}^{\prime}(\vec{s})$
- Propagation of error term: $\vec{\delta}_{i}=W \vec{\delta}_{i+1} \cdot \operatorname{sigmoid}^{\prime}(\vec{s})$
- Weight updates: $\Delta W=\mu \vec{\delta} \vec{h}^{T}$

GPU

- Neural network layers may have, say, 200 nodes
- Computations such as $W \vec{h}$ require $200 \times 200=40,000$ multiplications
- Graphics Processing Units (GPU) are designed for such computations
- image rendering requires such vector and matrix operations
- massively mulit-core but lean processing units
- example: NVIDIA Tesla K20c GPU provides 2496 thread processors
- Extensions to C to support programming of GPUs, such as CUDA

Toolkits

- Tensorflow (Google)
- PyTorch (Facebook)
- MXNet (Amazon)

