Markov Decision Processes

Philipp Koehn

4 April 2019

Outline

- Hidden Markov models
- Inference: filtering, smoothing, best sequence
- Dynamic Bayesian networks
- Speech recognition

Time and Uncertainty

- The world changes; we need to track and predict it
- Diabetes management vs vehicle diagnosis
- Basic idea: sequence of state and evidence variables.
- $X_{t}=$ set of unobservable state variables at time t e.g., BloodSugar ${ }_{t}$, StomachContents ${ }_{t}$, etc.
- $\mathrm{E}_{t}=$ set of observable evidence variables at time t e.g., MeasuredBloodSugar ${ }_{t}$, PulseRate ${ }_{t}$, FoodEaten ${ }_{t}$
- This assumes discrete time; step size depends on problem
- Notation: $\mathbf{X}_{a: b}=\mathbf{X}_{a}, \mathbf{X}_{a+1}, \ldots, \mathbf{X}_{b-1}, \mathbf{X}_{b}$

Markov Processes (Markov Chains)

- Construct a Bayes net from these variables: parents?
- Markov assumption: \mathbf{X}_{t} depends on bounded subset of $\mathbf{X}_{0: t-1}$
- First-order Markov process: $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)$ Second-order Markov process: $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-2}, \mathbf{X}_{t-1}\right)$

First-order

Second-order

- Sensor Markov assumption: $\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{0: t}, \mathbf{E}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{t}\right)$
- Stationary process: transition model $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)$ and sensor model $\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{t}\right)$ fixed for all t

Example

- First-order Markov assumption not exactly true in real world!
- Possible fixes:

1. Increase order of Markov process
2. Augment state, e.g., add $T e m p_{t}$, Pressure $_{t}$
inference

Inference Tasks

- Filtering: $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)$
belief state-input to the decision process of a rational agentl
- Smoothing: $\mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: t}\right)$ for $0 \leq k<t$
better estimate of past states, essential for learningl
- Most likely explanation: $\arg \max _{\mathbf{x}_{1: t}} P\left(\mathbf{x}_{1: t} \mid \mathbf{e}_{1: t}\right)$ speech recognition, decoding with a noisy channel

Filtering

- Aim: devise a recursive state estimation algorithm

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}, \mathbf{e}_{t+1}\right) \\
& \quad=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}, \mathbf{e}_{1: t}\right) \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right) \quad \text { (Bayes rule) } \\
& \\
& =\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right) \quad \text { (Sensor Markov assumption) } \\
& \\
& =\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \sum_{\mathbf{x}_{t}} \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}, \mathbf{e}_{1: t}\right) P\left(\mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right) \quad \text { (multiplying out) } \\
& \\
& \\
& =\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \sum_{\mathbf{x}_{t}} \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}\right) P\left(\mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right) \quad \text { (first order Markov model) }
\end{aligned}
$$

- Summary: $\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=\alpha \underbrace{\mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right)}_{\text {emission }} \sum_{\mathbf{X}_{t}} \underbrace{\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}\right)}_{\text {transition }} \underbrace{P\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)}_{\text {recursive call }}$
- $\mathbf{f}_{1: t+1}=\operatorname{FORWARD}\left(\mathbf{f}_{1: t}, \mathbf{e}_{t+1}\right)$ where $\mathbf{f}_{1: t}=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)$

Time and space constant (independent of t)

Filtering Example

Smoothing

- If full sequence is known
\Rightarrow what is the state probability $\mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: t}\right)$ including future evidence?
- Smoothing: sum over all paths

Smoothing

- Divide evidence $\mathbf{e}_{1: t}$ into $\mathbf{e}_{1: k}, \mathbf{e}_{k+1: t}$:

$$
\begin{aligned}
\mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: t}\right) & =\mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: k}, \mathbf{e}_{k+1: t}\right) \\
& =\alpha \mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: k}\right) \mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}, \mathbf{e}_{1: k}\right) \\
& =\alpha \mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: k}\right) \mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}\right) \\
& =\alpha \mathbf{f}_{1: k} \mathbf{b}_{k+1: t}
\end{aligned}
$$

- Backward message $\mathbf{b}_{k+1: t}$ computed by a backwards recursion

$$
\begin{aligned}
\mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}\right) & =\sum_{\mathbf{x}_{k+1}} \mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}, \mathbf{x}_{k+1}\right) \mathbf{P}\left(\mathbf{x}_{k+1} \mid \mathbf{X}_{k}\right) \\
& =\sum_{\mathbf{x}_{k+1}} P\left(\mathbf{e}_{k+1: t} \mid \mathbf{x}_{k+1}\right) \mathbf{P}\left(\mathbf{x}_{k+1} \mid \mathbf{X}_{k}\right) \\
& =\sum_{\mathbf{x}_{k+1}} P\left(\mathbf{e}_{k+1} \mid \mathbf{x}_{k+1}\right) P\left(\mathbf{e}_{k+2: t} \mid \mathbf{x}_{k+1}\right) \mathbf{P}\left(\mathbf{x}_{k+1} \mid \mathbf{X}_{k}\right)
\end{aligned}
$$

Smoothing Example

Forward-backward algorithm: cache forward messages along the way Time linear in t (polytree inference), space $O(t|\mathbf{f}|)$

Most Likely Explanation

- Most likely sequence $=$ sequence of most likely states
- Most likely path to each \mathbf{x}_{t+1}
$=$ most likely path to some \mathbf{x}_{t} plus one more step

$$
\begin{aligned}
& \max _{\mathbf{x}_{1} \ldots \mathbf{x}_{t}} \mathbf{P}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{t}, \mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right) \\
& \quad=\mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \max _{\mathbf{x}_{t}}\left(\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}\right) \max _{\mathbf{x}_{1} \ldots \mathbf{x}_{t-1}} P\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{t-1}, \mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right)\right)
\end{aligned}
$$

- Identical to filtering, except $\mathrm{f}_{1: t}$ replaced by

$$
\mathbf{m}_{1: t}=\max _{\mathbf{x}_{1} \ldots \mathbf{x}_{t-1}} \mathbf{P}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{t-1}, \mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)
$$

i.e., $\mathbf{m}_{1: t}(i)$ gives the probability of the most likely path to state $i . I$

- Update has sum replaced by max, giving the Viterbi algorithm:

$$
\mathbf{m}_{1: t+1}=\mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \max _{\mathbf{x}_{t}}\left(\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}\right) \mathbf{m}_{1: t}\right)
$$

Also requires back-pointers for backward pass to retrieve best sequence

$$
{ }^{\mathbf{b}} \mathbf{X}_{t+1, t+1}=\operatorname{argmax}_{\mathbf{x}_{t}}\left(\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}\right) \mathbf{m}_{1: t}\right)
$$

Viterbi Example

Hidden Markov Models

- X_{t} is a single, discrete variable (usually E_{t} is too)

Domain of X_{t} is $\{1, \ldots, S\}$

- Transition matrix $\mathbf{T}_{i j}=P\left(X_{t}=j \mid X_{t-1}=i\right)$, e.g., $\left(\begin{array}{ll}0.7 & 0.3 \\ 0.3 & 0.7\end{array}\right)$
- Sensor matrix \mathbf{O}_{t} for each time step, diagonal elements $P\left(e_{t} \mid X_{t}=i\right)$
e.g., with $U_{1}=$ true, $\mathbf{O}_{1}=\left(\begin{array}{ll}0.9 & 0.1 \\ 0.8 & 0.2\end{array}\right)$
- Forward and backward messages as column vectors:

$$
\begin{aligned}
\mathbf{f}_{1: t+1} & =\alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\mathbf{b}_{k+1: t} & =\mathbf{T} \mathbf{O}_{k+1} \mathbf{b}_{k+2: t}
\end{aligned}
$$

- Forward-backward algorithm needs time $O\left(S^{2} t\right)$ and space $O(S t)$

dynamic baysian networks

Dynamic Bayesian Networks

- X_{t}, E_{t} contain arbitrarily many variables in a sequentialized Bayes net

DBNs vs. HMMs

- Every HMM is a single-variable DBN; every discrete DBN is an HMM

- Sparse dependencies \Rightarrow exponentially fewer parameters;
e.g., 20 state variables, three parents each

DBN has $20 \times 2^{3}=160$ parameters, HMM has $2^{20} \times 2^{20} \approx 10^{12}$

speech recognition

Speech as Probabilistic Inference

It's not easy to wreck a nice beach

- Speech signals are noisy, variable, ambiguous
- What is the most likely word sequence, given the speech signal?
I.e., choose W ords to maximize P (Words \mid signal $)$
- Use Bayes' rule:

$$
P(\text { Words } \mid \text { signal })=\alpha P(\text { signal } \mid W \text { ords }) P(\text { Words })
$$

i.e., decomposes into acoustic model + language model

- Words are the hidden state sequence, signal is the observation sequence

Phones

- All human speech is composed from 40-50 phones, determined by the configuration of articulators (lips, teeth, tongue, vocal cords, air flow)
- Form an intermediate level of hidden states between words and signal
\Rightarrow acoustic model $=$ pronunciation model + phone model
- ARPAbet designed for American English

[iy]	beat	[b]	bet	[p]	pet
[ih]	bit	[ch]	Chet	[r]	$\underline{\text { rat }}$
[ey]	bet	[d]	debt	[s]	set
[ao]	bought	[hh]	hat	[th]	thick
[ow]	boat	[hv]	$\underline{\text { high }}$	[dh]	$\underline{\text { that }}$
[er]	Bert	[1]	let	[w]	$\underline{\text { wet }}$
[ix]	roses	[ng]	sing	[en]	button
:	:	\vdots	\vdots	\vdots	\vdots

e.g., "ceiling" is [s iy lih ng] / [s iy lix ng] / [s iy l en]

Speech Sounds

- Raw signal is the microphone displacement as a function of time; processed into overlapping 30ms frames, each described by features

- Frame features are typically formants-peaks in the power spectrum

Speech Spectrogram

Wideband Spectrogram for mdwh0 sx305.wav [dft $=16 \mathrm{mS}(256 \mathrm{~s})$, hop $=64$]

Phone Models

- Frame features in P (features \mid phone) summarized by
- an integer in [0 . . 255] (using vector quantization); or
- the parameters of a mixture of Gaussians!
- Three-state phones: each phone has three phases (Onset, Mid, End)
E.g., $[\mathrm{t}]$ has silent Onset, explosive Mid, hissing End
$\Rightarrow P($ features|phone, phase)
- Triphone context: each phone becomes n^{2} distinct phones, depending on the phones to its left and right
E.g., $[\mathrm{t}]$ in "star" is written [$\mathrm{t}(\mathrm{s}, \mathrm{aa})$] (different from "tar"!)
- Triphones useful for handling coarticulation effects: the articulators have inertia and cannot switch instantaneously between positions
E.g., $[\mathrm{t}]$ in "eighth" has tongue against front teeth

Phone Model Example

Phone HMM for [m]:

Output probabilities for the phone HMM:

Onset:	Mid:	End:
C1:0.5	C3:0.2	C4:0.1
C2:0.2	C4:0.7	C6:0.5
C3:0.3	C5:0.1	C7:0.4

Word Pronunciation Models

- Each word is described as a distribution over phone sequences
- Distribution represented as an HMM transition model

- Structure is created manually, transition probabilities learned from data

Recognition of Isolated Words

- Phone models + word models fix likelihood $P\left(e_{1: t} \mid\right.$ word $)$ for isolated word

$$
P\left(\text { word } \mid e_{1: t}\right)=\alpha P\left(e_{1: t} \mid \text { word }\right) P(\text { word })
$$

- Prior probability $P($ word $)$ obtained simply by counting word frequencies $P\left(e_{1: t} \mid\right.$ word $)$ can be computed recursively: define

$$
\boldsymbol{A}_{1: t}=\mathbf{P}\left(\mathbf{X}_{t}, \mathbf{e}_{1: t}\right)
$$

and use the recursive update

$$
\boldsymbol{A}_{1: t+1}=\operatorname{FORWARD}\left(\ell_{1: t}, \mathbf{e}_{t+1}\right)
$$

and then $P\left(e_{1: t} \mid\right.$ word $)=\sum_{\mathbf{x}_{t}{ }_{1: t}}\left(\mathbf{x}_{t}\right)$

- Isolated-word dictation systems with training reach 95-99\% accuracy

Continuous Speech

- Not just a sequence of isolated-word recognition problems!
- adjacent words highly correlated
- sequence of most likely words \neq most likely sequence of words
- segmentation: there are few gaps in speech
- cross-word coarticulation-e.g., "next thing"
- Complications
- mismatch between speaker in training and test
- noise
- crosstalk
- bad microphone position
- Continuous speech systems manage over 90% accuracy on a good day

Language Model

- Prior probability of a word sequence is given by chain rule:

$$
P\left(w_{1} \cdots w_{n}\right)=\prod_{i=1}^{n} P\left(w_{i} \mid w_{1} \cdots w_{i-1}\right)
$$

- Bigram model:

$$
P\left(w_{i} \mid w_{1} \cdots w_{i-1}\right) \approx P\left(w_{i} \mid w_{i-1}\right)
$$

- Train by counting all word pairs in a large text corpus
- More sophisticated models (trigrams, grammars, etc.) help a little bit

Combined HMM

- States of the combined language+word+phone model are labelled by the word we're in + the phone in that word + the phone state in that phone
- Viterbi algorithm finds the most likely phone state sequence
- Does segmentation by considering all possible word sequences and boundaries
- Doesn't always give the most likely word sequence because each word sequence is the sum over many state sequences
- Jelinek invented A* in 1969 a way to find most likely word sequence where "step cost" is $-\log P\left(w_{i} \mid w_{i-1}\right)$

DBNs for Speech Recognition

- Also easy to add variables for, e.g., gender, accent, speed
- Zweig and Russell (1998) show up to 40% error reduction over HMMs

Progress

NIST STT Benchmark Test History - May. '09

Progress

Summary

- Temporal models use state and sensor variables replicated over time
- Markov assumptions and stationarity assumption, so we need
- transition modelP $\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)$
- sensor model $\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{t}\right)$
- Tasks are filtering, smoothing, most likely sequence; all done recursively with constant cost per time step
- Hidden Markov models have a single discrete state variable; used for speech recognition
- Dynamic Bayes nets subsume HMMs
- Speech recognition

