Reinforcement Learning

Philipp Koehn

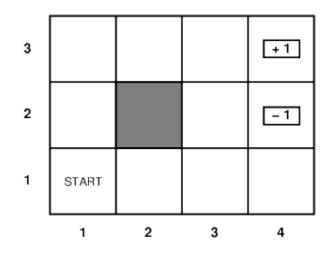
25 April 2017

Rewards

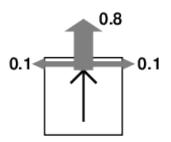
- Agent takes actions
- Agent occasionally receives reward
- Maybe just at the end of the process, e.g., Chess:
 - agent has to decide on individual moves
 - reward only at end: win/lose
- Maybe more frequently
 - ping pong: any point scored
 - baby learning to crawl: any forward movement

Markov Decision Process

State Map



Stochastic Movement



- States $s \in S$, actions $a \in A$
- Model $T(s, a, s') \equiv P(s'|s, a)$ = probability that a in s leads to s'
- Reward function R(s) (or R(s, a), R(s, a, s')) $= \begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{cases}$

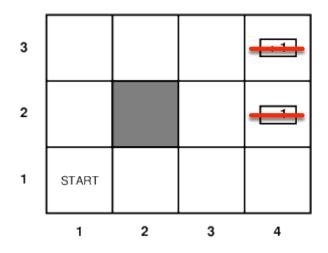
Agent Designs

- Utility based agent
 - needs model of environment
 - learns utility function on states
 - selects action that maximize expected outcome utility
- Q-learning
 - learns action-utility function (Q(s, a) function)
 - does not need to model outcomes of actions
 - function provides expected utility of taken a given action at a given step
- Reflex agent
 - learns policy that maps states to actions

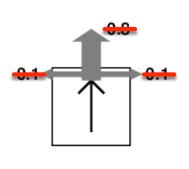
passive reinforcement learning

Setup

State Map



Stochastic Movement



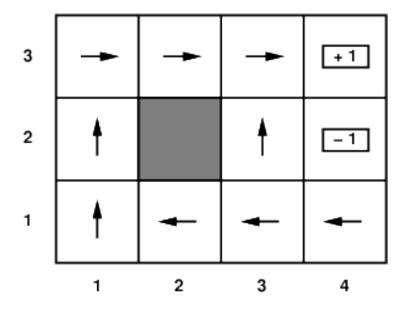
Reward Function

$$R(s) = \begin{cases} +1 & \text{for goal} \\ -1 & \text{for pit} \\ -0.04 & \text{for other} \end{cases}$$

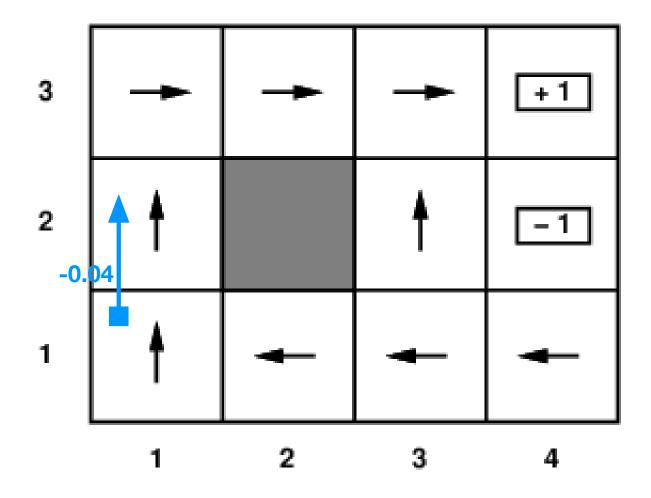
- We know which state we are in (= partially observable environment)
- We know which actions we can take
- But only after taking an action
 - → new state becomes known
 - → reward becomes known

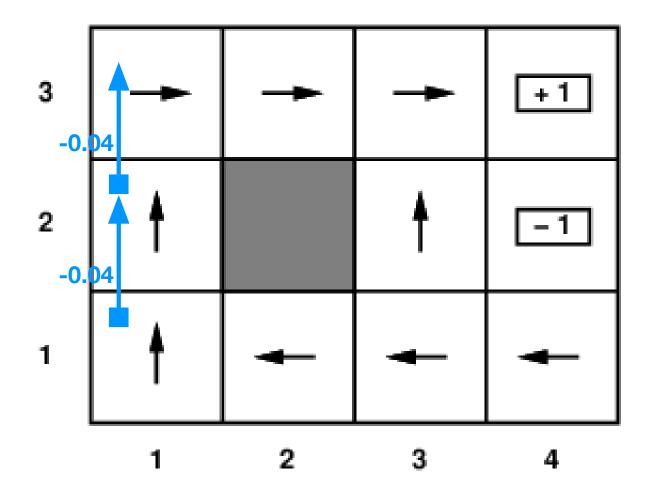
Passive Reinforcement Learning

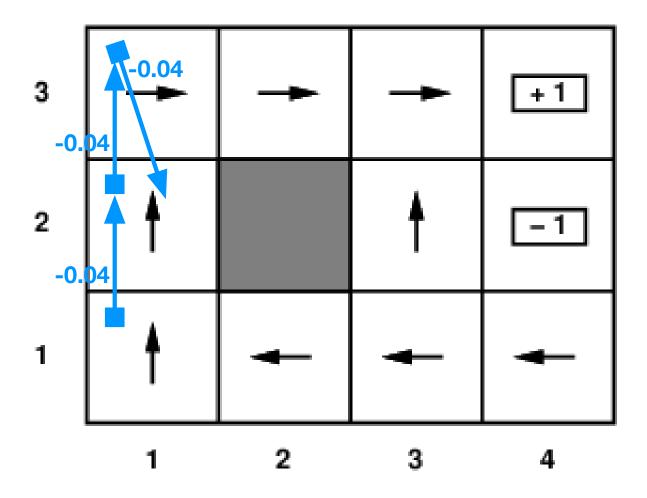
• Given a policy

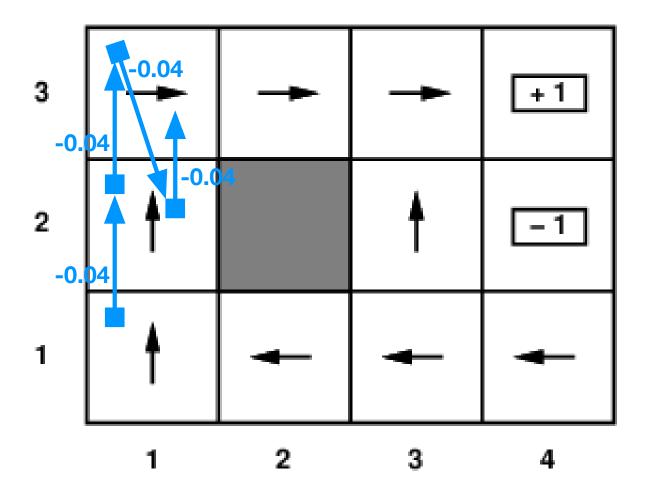


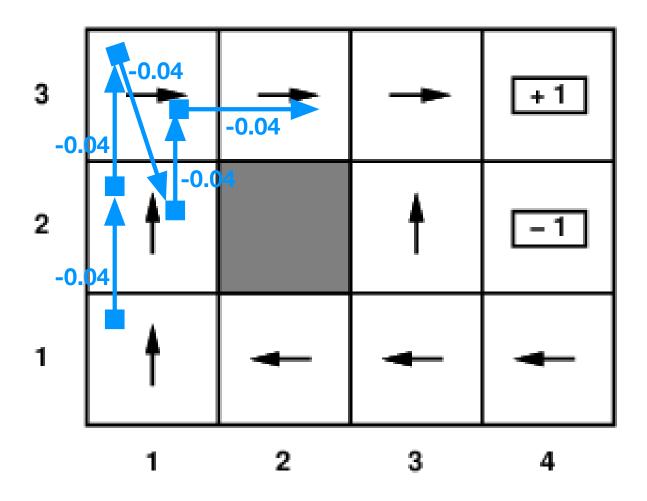
- Task: compute utility of policy
- We will extend this later to **active** reinforcement learning
 (⇒ policy needs to be learned)

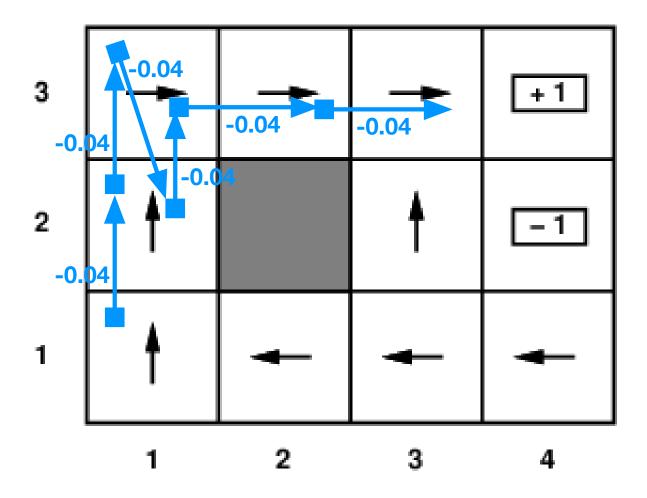


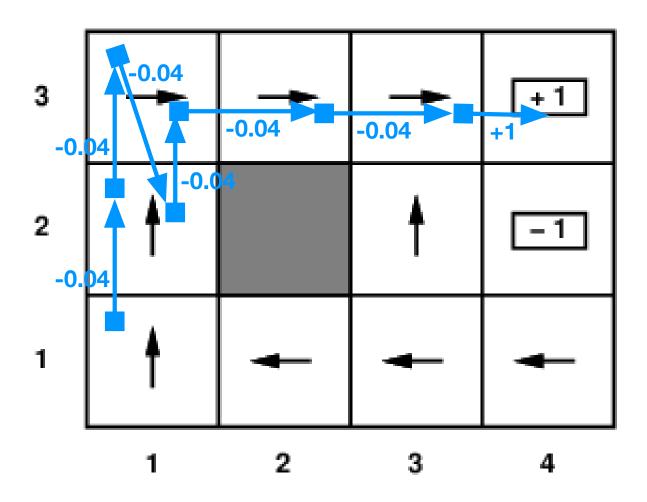


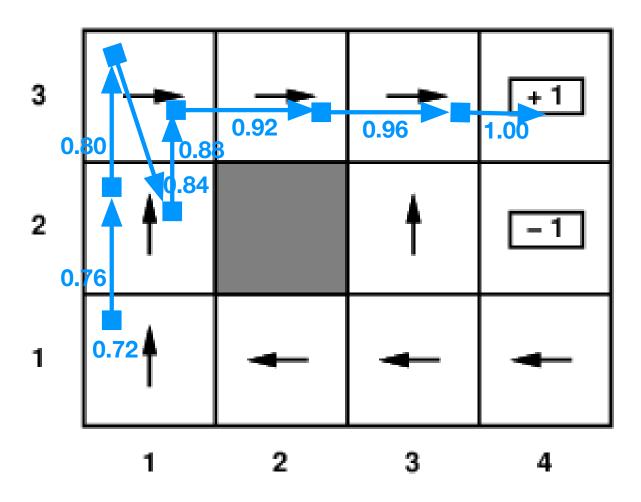




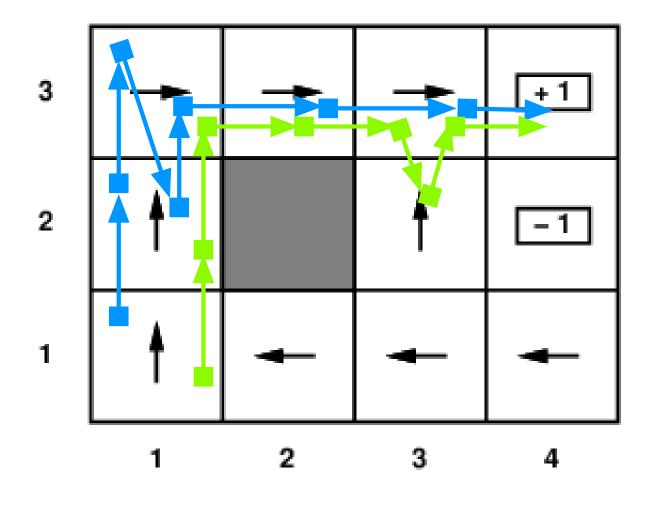


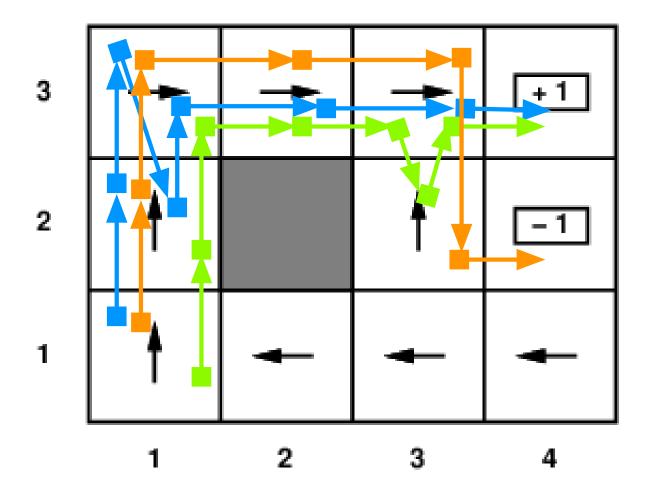






• Sample of reward to go





Utility of Policy

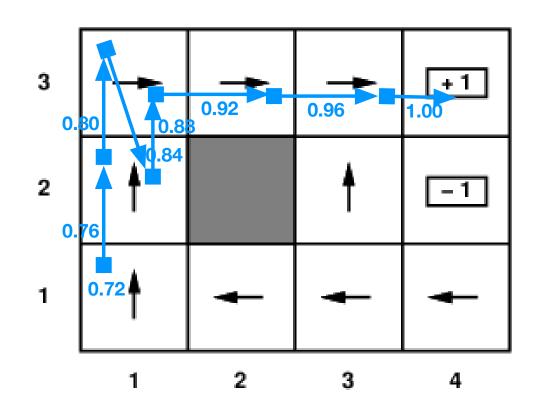
• Definition of utility U of the policy π for state s

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(S_{t})\right]$$

- Start at state $S_0 = s$
- Reward for state is R(s)
- Discount factor γ (we use γ = 1 in our examples)

Direct Utility Estimation

- Learning from the samples
- Reward to go:
 - (1,1) one sample: 0.72
 - **–** (1,2) two samples: 0.76, 0.84
 - (1,3) two samples: 0.80, 0.88
- Reward to go
 will converge to utility of state
- But very slowly can we do better?



Bellman Equation

- Direct utility estimation ignores dependency between states
- Given by Bellman equation

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) \ U^{\pi(s')}$$

 $(\gamma = \text{reward decay})$

- Use of this known dependence can speed up learning
- Requires learning of transition probabilities $P(s'|s,\pi(s))$

Adaptive Dynamic Programming

Need to learn:

- State rewards R(s)
 - whenever a state is visited, record award (deterministic)
- Outcome of action $\pi(s)$ at state s according to policy π
 - collect statistic count(s, s') that s' is reached from s
 - estimate probability distribution

$$P(s'|s,\pi(s)) = \frac{\operatorname{count}(s,s')}{\sum_{s''} \operatorname{count}(s,s'')}$$

⇒ Ingredients for policy evaluation algorithm

Adaptive Dynamic Programming

function Passive-ADP-AGENT(percept) returns an action

inputs: percept, a percept indicating the current state s' and reward signal r'

static: π , a fixed policy

mdp, an MDP with model T, rewards R, discount γ

U, a table of utilities, initially empty

 N_{sa} , a table of frequencies for state-action pairs, initially zero

 $N_{sas'}$, a table of frequencies for state-action-state triples, initially zero

s, a, the previous state and action, initially null

```
if s is new then do U[s] \leftarrow r; R[s] \leftarrow r'

if s is not null then do

increment N_{sa}[s, \mathbf{a}] and N_{sas'}[s, \mathbf{a}, s]

for each t such that N_{sas'}[s, \mathbf{a}, t] is nonzero do

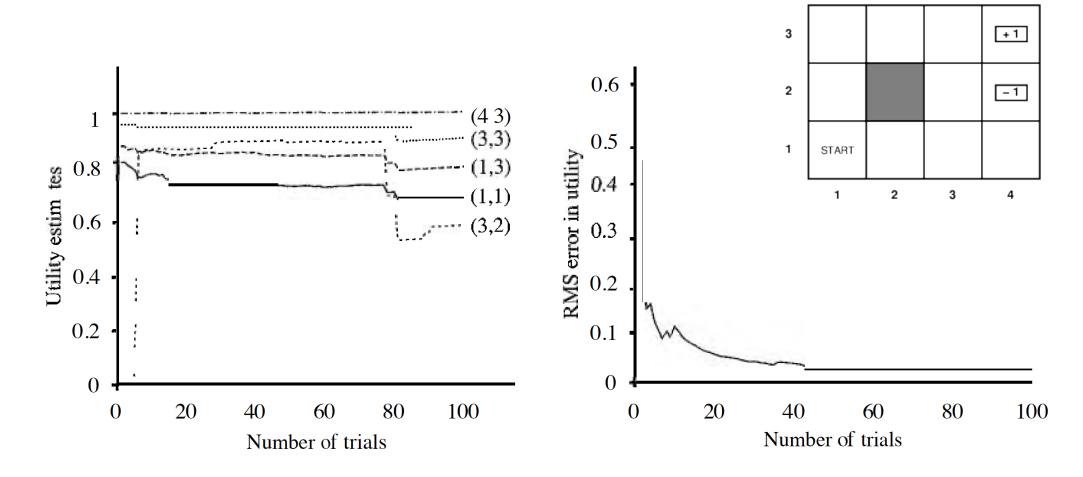
T[s, a, t] \leftarrow N_{sas'}[s, a, t] / N_{sa}[s, a]

U \leftarrow POLICY-EVALUATION(^{\wedge}, U, mdp)

if TERMINAL?[s'] then s, a \leftarrow null else s, \mathbf{a} \leftarrow s, \pi[s']

return a
```

Learning Curve



• Major change at 78th trial: first time terminated in –1 state at (4,2)

Temporal Difference Learning

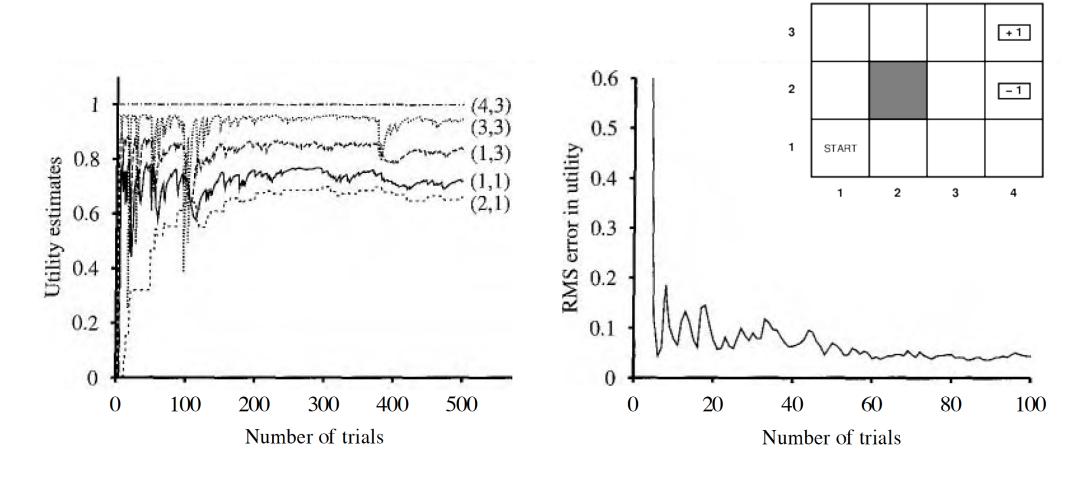
- Idea: do not model $P(s'|s,\pi(s))$, directly adjust utilities U(s) for all visited states
- Estimate of current utility: $U^{\pi}(s)$
- Estimate of utility after action: $R(s) + \gamma U^{\pi}(s')$
- Adjust utility of current state $U^{\pi}(s)$ if they differ

$$\Delta U^{\pi}(s) = \alpha \left(R(s) + \gamma U^{\pi}(s') - U^{\pi}(s) \right)$$

(α = learning rate)

• Learning rate may decrease when state has been visited often

Learning Curve



• Noisier, converging more slowly

Comparison

- Both eventually converge to correct values
- Adaptive dynamic programming (ADP) faster than temporal difference learning (TD)
 - both make adjustments to make successors agree
 - but: ADP adjusts all possible successors, TD only observed successor
- ADP computationally more expensive due to policy evaluation algorithm

active reinforcement learning

Active Reinforcement Learning

- Previously: passive agent follows prescribed policy
- Now: active agent decides which action to take
 - following optimal policy (as currently viewed)
 - exploration

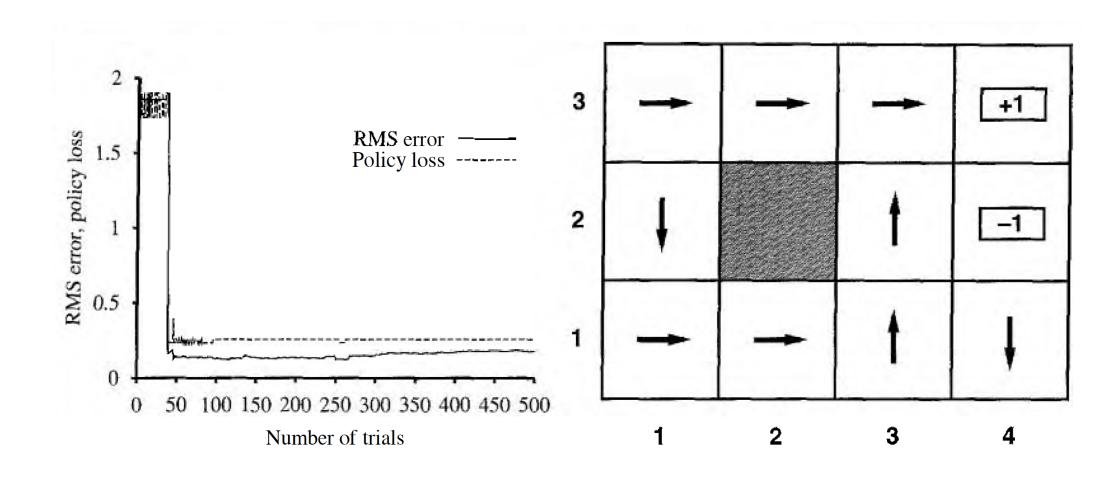
• Goal: optimize rewards for a given time frame

Greedy Agent

- 1. Start with initial policy
- 2. Compute utilities (using ADP)
- 3. Optimize policy
- 4. Go to Step 2

• This *very seldom* converges to global optimal policy

Learning Curve



• Greedy agent stuck in local optimum

Bandit Problems

- Bandit: slot machine
- N-armed bandit: *n* levers
- Each has different probability distribution over payoffs
- Spend coin on
 - presume optimal payoff
 - exploration (new lever)
- If independent
 - **Gittins index**: formula for solution
 - uses payoff / number of times used

Greedy in the Limit of Infinite Exploration 31

- Explore any action in any state unbounded number of times
- Eventually has to become greedy
 - carry out optimal policy
 - ⇒ maximize reward
- Simple strategy
 - with probability p(1/t) take random action
 - initially (*t* small) focus on exploration
 - later (t big) focus on optimal policy

Extension of Adaptive Dynamic Programming 32

• Previous definition of utility calculation

$$U(s) \leftarrow R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) U(s')$$

• New utility calculation

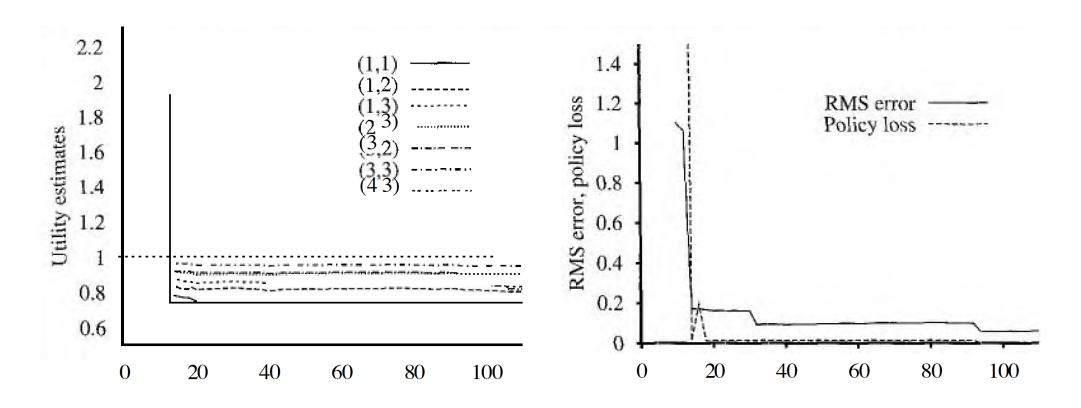
$$U^+(s) \leftarrow R(s) + \gamma \max_a f\left(\sum_{s'} P(s'|s,a) \ U^+(s'), N(s,a)\right)$$

• One possible definition of f(u, n)

$$f(u,n) = \begin{cases} R^+ & \text{if } n < N_c \\ u & \text{otherwise} \end{cases}$$

 R^+ is optimistic estimate, best possible award in any state

Learning Curve



- Performance of exploratory ADP agent
- Parameter settings R^+ = 2 and N_e = 5
- Fairly quick convergence to optimal policy

Q-Learning

- Learning an action utility function Q(s, a)
- Allows computation of utilities $U(s) = \max_a Q(s, a)$
- Model-free: no explicit transition model P(s'|s,a)
- Theoretically correct Q values

$$Q(s,a) = R(s) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q(s',a')$$

Update formula inspired by temporal difference learning

$$\Delta Q(s,a) = \alpha(R(s) + \gamma \max_{a'} Q(s'a') - Q(s,a))$$

• For our example, Q-learning slower, but successful applications (TD-GAMMON)

generalization in reinforcement learning

Large Scale Reinforcement Learning

- Adaptive dynamic programming (ASP) scalable to maybe 10,000 states
 - Backgammon has 10^{20} states
 - Chess has 10^{40} states
- It is not possible to visit all these states multiple times
- ⇒ Generalization of states needed

Function Approximation

• Define state utility function as linear combination of features

$$\hat{U}_{\theta}(s) = \theta_1 f_1(s) + \theta_2 f_2(s) + \dots + \theta_n f_n(s)$$

- Recall: features to assess Chess state
 - $f_1(s)$ = (number of white pawns) (number of black pawns)
 - $f_2(s)$ = (number of white rooks) (number of black rooks)
 - $f_3(s)$ = (number of white queens) (number of black queens)
 - $f_4(s)$ = king safety
 - $f_5(s)$ = good pawn position
 - etc.
- \Rightarrow Reduction from 10^{40} to, say, 20 parameters
 - Main benefit: ability to assess unseen states

Learning Feature Weights

• Example: 2 features: *x* and *y*

$$\hat{U}_{\theta}(f_1, f_2) = \theta_0 + \theta_1 f_1 + \theta_2 f_2$$

- Current feature weights $\theta_0, \theta_1, \theta_2 = (0.5, 0.2, 0.1)$
- Model's prediction of utility of specific state, e.g., $\hat{U}_{\theta}(1,1) = 0.8$
- Sample set of trials, found value $u_{\theta}(1,1) = 0.4$
- Error $E_{\theta} = \frac{1}{2}(\hat{U}_{\theta}(f_1, f_2) u_{\theta}(f_1, f_2))^2$
- How do you update the weights θ_i ?

Gradient Descent Training

• Compute gradient of error

$$\frac{dE_{\theta}}{d\theta_i} = (\hat{U}_{\theta}(f_1, f_2) - u_{\theta}(f_1, f_2)) f_i$$

• Update against gradient

$$\Delta \theta_i = -\mu \, \frac{dE_\theta}{d\theta_i}$$

Our example

$$-\Delta\theta_1 = -\mu(\hat{U}_{\theta}(f_1, f_2) - u_{\theta}(f_1, f_2)) f_i = -\mu(0.8 - 0.4) 1 = -0.4\mu$$

$$-\Delta\theta_2 = -\mu(\hat{U}_{\theta}(f_1, f_2) - u_{\theta}(f_1, f_2)) f_i = -\mu(0.8 - 0.4) 1 = -0.4\mu$$

Additional Remarks

- If we know something about the problem
 - \Rightarrow we may want to use more complex features
- Our toy example: utility related to Manhattan distance from goal (x_{goal}, y_{goal})

$$f_3(s) = (x - x_{\text{goal}}) + (y - y_{\text{goal}})$$

• Gradient descent training can also be used for temporal distance learning

policy search

Policy Search

- Idea: directly optimize policy
- Policy may be parameterized Q functions, hence:

$$\pi(s) = \operatorname{argmax}_a \hat{Q}_{\theta}(s, a)$$

• Stochastic policy, e.g., given by softmax function

$$\pi_{\theta}(s,a) = \frac{1}{Z_s} e^{\hat{Q}_{\theta}(s,a)}$$

• Policy value $\rho(\theta)$: expected reward if π_{θ} is carried out

Hillclimbing

- Deterministic policy, deterministic environment
 - \Rightarrow optimizing policy value $\rho(\theta)$ may be done in closed form
- If $\rho(\theta)$ differentiable
 - ⇒ gradient descent by following policy gradient
- Make small changes to parameters
 - \Rightarrow hillclimb if $\rho(\theta)$ improves
- More complex for stochastic environment

examples

Game Playing

• Backgammon: TD-GAMMON (1992)

• Reward only at end of game

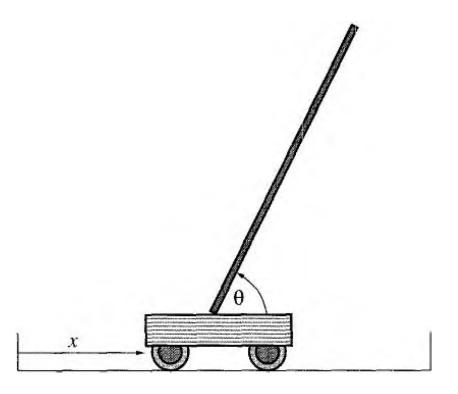
• Training with self-play

• 200,000 training games needed

Competitive with top human players

• Better positional play, worse end game

Robot Control



- Observe position x, vertical speed \hat{x} , angle θ , angle speed $\hat{\theta}$
- Action: jerk left or right
- Reward: time balanced until pole falls, or cart out of bounce
- More complex: multiple stacked poles, helicopter flight, walking

Summary

- Building on Markov decision processes and machine learning
- Passive reinforcement learning (fixed policy, partially observable environment, stochastic outcomes of actions)
 - sampling (carrying out trials)
 - adaptive dynamic programming
 - temporal difference learning
- Active reinforcement learning
 - greedy in the limit of infinite exploration
 - following optimal policy vs. exploration
 - exploratory adaptive dynamic programming
- Generalization: representing utility function with small set of parameters
- Policy search