
Neural Networks

Philipp Koehn

20 April 2017

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

1Supervised Learning

● Examples described by attribute values (Boolean, discrete, continuous, etc.)

● E.g., situations where I will/won’t wait for a table:

Example Attributes Target
Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 T F F T Some $$$ F T French 0–10 T
X2 T F F T Full $ F F Thai 30–60 F
X3 F T F F Some $ F F Burger 0–10 T
X4 T F T T Full $ F F Thai 10–30 T
X5 T F T F Full $$$ F T French >60 F
X6 F T F T Some $$ T T Italian 0–10 T
X7 F T F F None $ T F Burger 0–10 F
X8 F F F T Some $$ T T Thai 0–10 T
X9 F T T F Full $ T F Burger >60 F
X10 T T T T Full $$$ F T Italian 10–30 F
X11 F F F F None $ F F Thai 0–10 F
X12 T T T T Full $ F F Burger 30–60 T

● Classification of examples is positive (T) or negative (F)

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

2Naive Bayes Models

● Bayes rule

p(C ∣A) =
1

Z
p(A∣C) p(C)

● Independence assumption

p(A∣C) = p(a1, a2, a3, ..., an∣C)

≃ ∏
i

p(ai∣C)

● Weights
p(A∣C) =∏

i

p(ai∣C)λi

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

3Naive Bayes Models

● Linear model
p(A∣C) = exp∏

i

p(ai∣C)λi

● Probability distribution as features

hi(A,C) = log p(ai∣C)

h0(A,C) = log p(C)

● Linear model with features

p(C ∣A)∝∑
i

λi hi(A,C)

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

4Linear Model

● Weighted linear combination of feature values hj and weights λj for example di

score(λ,di) =∑
j

λj hj(di)

● Such models can be illustrated as a ”network”

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

5Limits of Linearity

● We can give each feature a weight

● But not more complex value relationships, e.g,

– any value in the range [0;5] is equally good

– values over 8 are bad

– higher than 10 is not worse

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

6XOR

● Linear models cannot model XOR

bad good

good bad

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

7Multiple Layers

● Add an intermediate (”hidden”) layer of processing
(each arrow is a weight)

● Have we gained anything so far?

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

8Non-Linearity

● Instead of computing a linear combination

score(λ,di) =∑
j

λj hj(di)

● Add a non-linear function

score(λ,di) = f(∑
j

λj hj(di))

● Popular choices
tanh(x) sigmoid(x) = 1

1+e−x

-

6

-

6

(sigmoid is also called the ”logistic function”)

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

9Deep Learning

● More layers = deep learning

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

10

example

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

11Simple Neural Network

11

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

● One innovation: bias units (no inputs, always value 1)

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

12Sample Input

1

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

● Try out two input values

● Hidden unit computation

sigmoid(1.0 × 3.7 + 0.0 × 3.7 + 1 × −1.5) = sigmoid(2.2) =
1

1 + e−2.2
= 0.90

sigmoid(1.0 × 2.9 + 0.0 × 2.9 + 1 × −4.5) = sigmoid(−1.6) =
1

1 + e1.6
= 0.17

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

13Computed Hidden

.90

.17

1

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

● Try out two input values

● Hidden unit computation

sigmoid(1.0 × 3.7 + 0.0 × 3.7 + 1 × −1.5) = sigmoid(2.2) =
1

1 + e−2.2
= 0.90

sigmoid(1.0 × 2.9 + 0.0 × 2.9 + 1 × −4.5) = sigmoid(−1.6) =
1

1 + e1.6
= 0.17

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

14Compute Output

.90

.17

1

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

● Output unit computation

sigmoid(.90 × 4.5 + .17 × −5.2 + 1 × −2.0) = sigmoid(1.17) =
1

1 + e−1.17
= 0.76

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

15Computed Output

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

● Output unit computation

sigmoid(.90 × 4.5 + .17 × −5.2 + 1 × −2.0) = sigmoid(1.17) =
1

1 + e−1.17
= 0.76

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

16

why ”neural” networks?

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

17Neuron in the Brain

● The human brain is made up of about 100 billion neurons

Soma

Axon
Nucleus

Dendrite
Axon terminal

● Neurons receive electric signals at the dendrites and send them to the axon

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

18Neural Communication

● The axon of the neuron is connected to the dendrites of many other neurons

Neurotransmitter

Neurotransmitter
transporter Axon

terminal

Synaptic cleft

Dendrite

ReceptorPostsynaptic
density

Voltage
gated Ca++

channel

Synaptic
vesicle

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

19The Brain vs. Artificial Neural Networks

● Similarities

– Neurons, connections between neurons
– Learning = change of connections, not change of neurons
– Massive parallel processing

● But artificial neural networks are much simpler

– computation within neuron vastly simplified
– discrete time steps
– typically some form of supervised learning with massive number of stimuli

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

20

back-propagation training

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

21Error

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

● Computed output: y = .76

● Correct output: t = 1.0

⇒ How do we adjust the weights?

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

22Key Concepts

● Gradient descent

– error is a function of the weights
– we want to reduce the error
– gradient descent: move towards the error minimum
– compute gradient → get direction to the error minimum
– adjust weights towards direction of lower error

● Back-propagation

– first adjust last set of weights
– propagate error back to each previous layer
– adjust their weights

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

23Derivative of Sigmoid

● Sigmoid sigmoid(x) =
1

1 + e−x

● Reminder: quotient rule

(
f(x)

g(x)
)
′

=
g(x)f ′(x) − f(x)g′(x)

g(x)2

● Derivative d sigmoid(x)

dx
=
d

dx

1

1 + e−x

=
0 × (1 − e−x) − (−e−x)

(1 + e−x)2

=
1

1 + e−x
(
e−x

1 + e−x
)

=
1

1 + e−x
(1 −

1

1 + e−x
)

= sigmoid(x)(1 − sigmoid(x))

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

24Final Layer Update

● Linear combination of weights s = ∑kwkhk

● Activation function y = sigmoid(s)

● Error (L2 norm) E = 1
2(t − y)

2

● Derivative of error with regard to one weight wk

dE

dwk
=
dE

dy

dy

ds

ds

dwk

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

25Final Layer Update (1)

● Linear combination of weights s = ∑kwkhk

● Activation function y = sigmoid(s)

● Error (L2 norm) E = 1
2(t − y)

2

● Derivative of error with regard to one weight wk

dE

dwk
=
dE

dy

dy

ds

ds

dwk

● Error E is defined with respect to y

dE

dy
=
d

dy

1

2
(t − y)2 = −(t − y)

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

26Final Layer Update (2)

● Linear combination of weights s = ∑kwkhk

● Activation function y = sigmoid(s)

● Error (L2 norm) E = 1
2(t − y)

2

● Derivative of error with regard to one weight wk

dE

dwk
=
dE

dy

dy

ds

ds

dwk

● y with respect to x is sigmoid(s)

dy

ds
=
d sigmoid(s)

ds
= sigmoid(s)(1 − sigmoid(s)) = y(1 − y)

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

27Final Layer Update (3)

● Linear combination of weights s = ∑kwkhk

● Activation function y = sigmoid(s)

● Error (L2 norm) E = 1
2(t − y)

2

● Derivative of error with regard to one weight wk

dE

dwk
=
dE

dy

dy

ds

ds

dwk

● x is weighted linear combination of hidden node values hk

ds

dwk
=

d

dwk
∑
k

wkhk = hk

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

28Putting it All Together

● Derivative of error with regard to one weight wk

dE

dwk
=
dE

dy

dy

ds

ds

dwk

= −(t − y) y(1 − y) hk

– error
– derivative of sigmoid: y′

● Weight adjustment will be scaled by a fixed learning rate µ

∆wk = µ (t − y) y′ hk

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

29Multiple Output Nodes

● Our example only had one output node

● Typically neural networks have multiple output nodes

● Error is computed over all j output nodes

E =∑
j

1

2
(tj − yj)

2

● Weights k → j are adjusted according to the node they point to

∆wj←k = µ(tj − yj) y
′
j hk

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

30Hidden Layer Update

● In a hidden layer, we do not have a target output value

● But we can compute how much each node contributed to downstream error

● Definition of error term of each node

δj = (tj − yj) y
′
j

● Back-propagate the error term
(why this way? there is math to back it up...)

δi = (∑
j

wj←iδj) y
′
i

● Universal update formula
∆wj←k = µ δj hk

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

31Our Example

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

A

B

C

D

E

F

G

● Computed output: y = .76

● Correct output: t = 1.0

● Final layer weight updates (learning rate µ = 10)
– δG = (t − y) y′ = (1 − .76) 0.181 = .0434

– ∆wGD = µ δG hD = 10 × .0434 × .90 = .391

– ∆wGE = µ δG hE = 10 × .0434 × .17 = .074

– ∆wGF = µ δG hF = 10 × .0434 × 1 = .434

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

32Our Example

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0
-4.6-1.5

3.7
2.9

3.7

2.9

A

B

C

D

E

F

G

4.891 —

-5.126 ——

-1.566 ——

● Computed output: y = .76

● Correct output: t = 1.0

● Final layer weight updates (learning rate µ = 10)
– δG = (t − y) y′ = (1 − .76) 0.181 = .0434

– ∆wGD = µ δG hD = 10 × .0434 × .90 = .391

– ∆wGE = µ δG hE = 10 × .0434 × .17 = .074

– ∆wGF = µ δG hF = 10 × .0434 × 1 = .434

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

33Hidden Layer Updates

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0
-4.6-1.5

3.7
2.9

3.7

2.9

A

B

C

D

E

F

G

4.891 —

-5.126 ——

-1.566 ——

● Hidden node D

– δD = (∑jwj←iδj) y
′
D = wGD δG y′D = 4.5 × .0434 × .0898 = .0175

– ∆wDA = µ δD hA = 10 × .0175 × 1.0 = .175
– ∆wDB = µ δD hB = 10 × .0175 × 0.0 = 0
– ∆wDC = µ δD hC = 10 × .0175 × 1 = .175

● Hidden node E

– δE = (∑jwj←iδj) y
′
E = wGE δG y′E = −5.2 × .0434 × 0.1411 = −.0318

– ∆wEA = µ δE hA = 10 × −.0318 × 1.0 = −.318
– etc.

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

34Connectionist Semantic Cognition

● Hidden layer representations for concepts and concept relationships

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

35

some additional aspects

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

36Initialization of Weights

● Weights are initialized randomly
e.g., uniformly from interval [−0.01,0.01]

● Glorot and Bengio (2010) suggest

– for shallow neural networks

[−
1

√
n
,

1
√
n
]

n is the size of the previous layer

– for deep neural networks

[−

√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]

nj is the size of the previous layer, nj size of next layer

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

37Neural Networks for Classification

● Predict class: one output node per class

● Training data output: ”One-hot vector”, e.g., y⃗ = (0,0,1)T

● Prediction
– predicted class is output node yi with highest value
– obtain posterior probability distribution by soft-max

softmax(yi) =
eyi

∑j e
yj

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

38Speedup: Momentum Term

● Updates may move a weight slowly in one direction

● To speed this up, we can keep a memory of prior updates

∆wj←k(n − 1)

● ... and add these to any new updates (with decay factor ρ)

∆wj←k(n) = µ δj hk + ρ∆wj←k(n − 1)

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

39

computational aspects

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

40Vector and Matrix Multiplications

● Forward computation: s⃗ =Wh⃗

● Activation function: y⃗ = sigmoid(h⃗)

● Error term: δ⃗ = (t⃗ − y⃗) sigmoid’(s⃗)

● Propagation of error term: δ⃗i =Wδ⃗i+1 ⋅ sigmoid’(s⃗)

● Weight updates: ∆W = µδ⃗h⃗T

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

41GPU

● Neural network layers may have, say, 200 nodes

● Computations such as Wh⃗ require 200 × 200 = 40,000 multiplications

● Graphics Processing Units (GPU) are designed for such computations

– image rendering requires such vector and matrix operations
– massively mulit-core but lean processing units
– example: NVIDIA Tesla K20c GPU provides 2496 thread processors

● Extensions to C to support programming of GPUs, such as CUDA

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

42Theano

● GPU library for Python

● Homepage: http://deeplearning.net/software/theano/

● See web site for sample implementation of back-propagation training

● Used to implement

– neural network language models
– neural machine translation (Bahdanau et al., 2015)

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017

