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Supervised Learning QY
e Examples described by attribute values (Boolean, discrete, continuous, etc.)

e E.g., situations where I will/won’t wait for a table:

Example Attributes Target
Alt | Bar | Frt | Hun Pat Price | Rain | Res Type Est WillWait
X1 T F F T Some $$$ F T French 0-10 T
X9 T F F T Full $ F F Thai 30-60 F
X3 F T F F Some $ F F Burger 0-10 T
X T F T T Full $ F F Thai 10-30 T
X5 T F T F Full $$$ F T French >60 F
X F T F T Some $$ T T Italian 0-10 T
X7 F T F F None $ T F Burger 0-10 F
X3 F F F T Some $$ T T Thai 0-10 T
Xg F T T F Full $ T F Burger >60 F
X10 T T T T Full $$% F T Italian 10-30 F
X11 F F F F None $ F F Thai 0-10 F
X19 T T T T Full $ F F Burger | 30-60 T

o Classification of examples is positive (T) or negative (F)
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Naive Bayes Models 2

e Bayesrule
1
p(CIA) = p(AIC) p(O)

e Independence assumption

p(A|C)

p(ala az, ag, ..., an|C)

Hp(ai\c)l

12

o Weights
p(AIC) = [Tp(ai]O)™
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Naive Bayes Models 3

Q

e [.inear model

P(AIC) = exp [T p(a|C)

e Probability distribution as features

hi(A,C) = logp(a;|C)
ho(A,C) = logp(C)l

e Linear model with features

p(CIA) o Y\, hi(A.C)
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Linear Model 4

e Weighted linear combination of feature values /; and weights ), for example d;

score(A,d;) = > A, hj(d;)
J

e Such models can be illustrated as a "network”

QO
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Limits of Linearity 5

e We can give each feature a weight

e But not more complex value relationships, e.g,

— any value in the range [0;5] is equally good
— values over 8 are bad

— higher than 10 is not worse
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XOR 6

e Linear models cannot model XOR
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Multiple Layers =

e Add an intermediate ("hidden”) layer of processing
(each arrow is a weight)
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e Have we gained anything so far?
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Non-Linearity

e Instead of computing a linear combination

score(A,d;) = > A, hj(d;)
J

e Add a non-linear function

score(\,d;) = f( Z)\j hj(di))

e Popular choices
tanh(x)

/

(sigmoid is also called the “logistic function”)

sigmoid(x) = =

S

1

l+e™ %

/‘
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Deep Learning * QY

e More layers = deep learning

‘\\\"l/ SVe -~ OSVe
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example
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Simple Neural Network 11

e One innovation: bias units (no inputs, always value 1)
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Sample Input 12

e Try out two input values

e Hidden unit computation

sigmoid (1.0 x 3.7+ 0.0 x 3.7+ 1 x -1.5) = sigmoid(2.2) = =0.90

1+e22

sigmoid (1.0 x 2.9 +0.0 x 2.9+ 1 x —4.5) = sigmoid(-1.6) = =0.17

1+el6
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Computed Hidden 13

e Try out two input values

e Hidden unit computation

sigmoid (1.0 x 3.7+ 0.0 x 3.7+ 1 x -1.5) = sigmoid(2.2) = =0.90

1+e22

sigmoid (1.0 x 2.9 +0.0 x 2.9+ 1 x —4.5) = sigmoid(-1.6) = =0.17

1+el6
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Compute Output 14

e Output unit computation

. : : : 1
sigmoid (.90 x 4.5 + .17 x =5.2 + 1 x =2.0) = sigmoid(1.17) = TSR 0.76
6 .
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Computed Output 15

e Output unit computation

. : : : 1
sigmoid (.90 x 4.5 + .17 x =5.2 + 1 x =2.0) = sigmoid(1.17) = TSR 0.76
6 .
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o QY

why “neural” networks?
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Neuron in the Brain 17

e The human brain is made up of about 100 billion neurons

Dendrite

Axon terminal

’ Soma I

QQO‘?

Axon

Nucleus

e Neurons receive electric signals at the dendrites and send them to the axon
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Neural Communication 8

e The axon of the neuron is connected to the dendrites of many other neurons

Neurotransmitter
Synaptic
vesicle

Neurotransmitter
transporter

Axon
terminal
Voltage
gated Ca++

channel

Postsynaptic Receptor

density

} Synaptic cleft

Dendrite
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The Brain vs. Artificial Neural Networks

e Similarities

— Neurons, connections between neurons
— Learning = change of connections, not change of neurons
— Massive parallel processing

e But artificial neural networks are much simpler

— computation within neuron vastly simplified
— discrete time steps
— typically some form of supervised learning with massive number of stimuli
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back-propagation training
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Error 21

o Computed output: y =.76

e Correct output: ¢t = 1.0

= How do we adjust the weights?
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Key Concepts 22

e Gradient descent

— error is a function of the weights

— we want to reduce the error

— gradient descent: move towards the error minimum

— compute gradient — get direction to the error minimum
— adjust weights towards direction of lower error

e Back-propagation

— first adjust last set of weights
— propagate error back to each previous layer
— adjust their weights
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Derivative of Sigmoid 23

1
1l+e™

e Sigmoid sigmoid(z) =

e Reminder: quotient rule

(M)’ _9(@)f'(x) - f(x)g'(x)
g9(x) g9(x)?

e Derivative d sigmoid(x) _d 1

dx dr 1+e®
Ox(1-e™)-(-e™)
- (1+e )2

1 —x
) 1+e‘3’(1ie‘$)

1 1
) 1+e‘$(1_ 1+e‘$)

= sigmoid(x)(1 - sigmoid(x))
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Final Layer Update 24

e Linear combination of weights s = ), wihy

Activation function y = sigmoid(s)

Error (L2 norm) F = (¢ - y)?
e Derivative of error with regard to one weight w;,

dbi  dEdy ds
dwp dy ds dwy,
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Final Layer Update (1) 25

Linear combination of weights s = >, wihy

Activation function y = sigmoid(s)
e Error (L2 norm) £ = (¢ - y)?

e Derivative of error with regard to one weight wy,

db;  dEdy ds
dwy,  dy dsdwy,

e Error F is defined with respect to y

dE  d 1
= — —(t-vy)?=-(t-
i dyQ( y) =-(t-y)
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Final Layer Update (2) 26

e Linear combination of weights s = ), wyhy

Activation function y = sigmoid(s)
e Error (L2 norm) £ = (¢ - y)?

e Derivative of error with regard to one weight wy,

db;  dEdy ds
dwp dy ds dwy,

e y with respect to x is sigmoid(s)

dy dsigmoid(s)
ds ds

= sigmoid(s)(1 - sigmoid(s)) = y(1 - y)
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Final Layer Update (3) 27

Linear combination of weights s = >, wihy

Activation function y = sigmoid(s)
e Error (L2 norm) £ = (¢ - y)?

e Derivative of error with regard to one weight wy,

db;  dEdy ds
dwy,  dy dsdwy,

e 1 is weighted linear combination of hidden node values h,

ds
dwy, dwk

Z wkhk = hk
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Putting it All Together 28

e Derivative of error with regard to one weight wy,

dbs  dEdy ds
dwy dy ds dwy,

=—(t-y) y(l-y) hy

— error
— derivative of sigmoid: '

o Weight adjustment will be scaled by a fixed learning rate p

Awg=p(t-y)y he
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Multiple Output Nodes 29

Our example only had one output node
e Typically neural networks have multiple output nodes

e Error is computed over all j output nodes
1 2
E=) 5t~ y))
J

e Weights k — j are adjusted according to the node they point to

Awjcr = plty —y;) vy I
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Hidden Layer Update 0 G
e In a hidden layer, we do not have a target output value

e But we can compute how much each node contributed to downstream error

e Definition of error term of each node

0 = (tj = vj)

e Back-propagate the error term
(why this way? there is math to back it up...)

0; = (ijeiéj) Yi
J

e Universal update formula
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Our Example 31

e Computed output: y = .76
e Correct output: ¢t = 1.0

e Final layer weight updates (learning rate ;. = 10)
— Sa=(t-y)y =(1-.76) 0.181 = .0434
— Aweap = 11 0 hp = 10 x .0434 x .90 = .391
— Awge = i 0g hg =10 x.0434 x .17 = .074
— Awgr = 1 0g hg =10 x.0434 x 1 = .434
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Our Example 32

o Computed output: y = .76
e Correct output: ¢ = 1.0

e Final layer weight updates (learning rate ;. = 10)
— 0g=(t-y)y =(1-.76) 0.181 = .0434
— Awgp = 1 0g hp = 10 x .0434 x .90 = .391
— Awge = i 0g he =10 x.0434 x .17 = .074
— Awgr = 1 0g hg =10 x.0434 x 1 = .434
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Hidden Layer Updates 33

e Hidden node D

— 0o = (2 wji0;) yb = wep de yb = 4.5 x 0434 x 0898 = 0175
— Awpa = 0p hpa=10x.0175x1.0=.175

— Awpg = 1 0p hg =10 %x.0175x 0.0 =0

— Awpe = 1 6p he = 10 x 0175 x 1 = 175

e Hidden node E
— 0c = (2, wji6;) Yk = wee o Y = ~5.2x 0434 x 0.1411 = -.0318

- A’U]EA = 55 hA =10x -.0318 x 1.0 = -.318
— etc.
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Connectionist Semantic Cognition 34
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e Hidden layer representations for concepts and concept relationships
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some additional aspects

Philipp Koehn Artificial Intelligence: Neural Networks 20 April 2017



Initialization of Weights 36

e Weights are initialized randomly
e.g., uniformly from interval [-0.01,0.01]

e Glorot and Bengio (2010) suggest

— for shallow neural networks
1

=

-

n is the size of the previous layer
— for deep neural networks

b VO

\/nj + nj+1’ \/nj + Nnj4+1

n; is the size of the previous layer, n; size of next layer
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Neural Networks for Classification 37

O
- O

e Predict class: one output node per class
e Training data output: “One-hot vector”, e.g., y = (0,0,1)%

e Prediction

— predicted class is output node y; with highest value
— obtain posterior probability distribution by soft-max

eYi
2. €Y
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Speedup: Momentum Term 38

e Updates may move a weight slowly in one direction

e To speed this up, we can keep a memory of prior updates

ijy_k;(n — 1)

e ... and add these to any new updates (with decay factor p)

A’wjy_k;(n) =W 5j hk + pijg_k(’n, — 1)
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computational aspects
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Vector and Matrix Multiplications 40

e Forward computation: 5 = W

Activation function: 7 = sigmoid(h)
e Error term: ¢ = (7 - §j) sigmoid’(3)

e Propagation of error term: 0; = Wiy -sigmoid’(s)

Weight updates: AW = poh”
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GPU !

e Neural network layers may have, say, 200 nodes
e Computations such as W7 require 200 x 200 = 40, 000 multiplications

e Graphics Processing Units (GPU) are designed for such computations

— image rendering requires such vector and matrix operations

— massively mulit-core but lean processing units
— example: NVIDIA Tesla K20c GPU provides 2496 thread processors

e Extensions to C to support programming of GPUs, such as CUDA
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Theano 42

e GPU library for Python
e Homepage: http://deeplearning.net/software/theano/
e See web site for sample implementation of back-propagation training

e Used to implement

— neural network language models
— neural machine translation (Bahdanau et al., 2015)
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