
Basic Search

Philipp Koehn

21 February 2017

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

1Outline

• Problem-solving agents

• Problem types

• Problem formulation

• Example problems

• Basic search algorithms

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

2

problem-solving agents

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

3Problem Solving Agents
Restricted form of general agent:

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
static: seq, an action sequence, initially empty

state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state←UPDATE-STATE(state, percept)
if seq is empty then

goal← FORMULATE-GOAL(state)
problem← FORMULATE-PROBLEM(state, goal)
seq←SEARCH(problem)

action←RECOMMENDATION(seq, state)
seq←REMAINDER(seq, state)
return action

Note: this is offline problem solving; solution executed “eyes closed.”
Online problem solving involves acting without complete knowledge.

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

4Example: Romania

• On holiday in Romania; currently in Arad

• Flight leaves tomorrow from Bucharest

• Formulate goal

– be in Bucharest

• Formulate problem

– states: various cities
– actions: drive between cities

• Find solution

– sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

5Example: Romania

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

6

problem types

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

7Problem Types

• Deterministic, fully observable =⇒ single-state problem

– agent knows exactly which state it will be in
– solution is a sequence

• Non-observable =⇒ conformant problem

– Agent may have no idea where it is
– solution (if any) is a sequence

• Nondeterministic and/or partially observable =⇒ contingency problem

– percepts provide new information about current state
– solution is a contingent plan or a policy
– often interleave search, execution

• Unknown state space =⇒ exploration problem (“online”)

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

8Example: Vacuum World

Single-state, start in #5. Solution?
[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution?
[Right, Suck, Left, Suck]

Contingency, start in #5
Murphy’s Law: Suck can dirty a clean carpet
Local sensing: dirt, location only.
Solution?
[Right, if dirt then Suck]

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

9

problem formulation

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

10Single-State Problem Formulation

• A problem is defined by four items:

– initial state e.g., “at Arad”

– successor function S(x) = set of action–state pairs
e.g., S(Arad) = {〈Arad→ Zerind, Zerind〉, . . .}

– goal test, can be
explicit, e.g., x = “at Bucharest”
implicit, e.g., NoDirt(x)

– path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x, a, y) is the step cost, assumed to be ≥ 0

• A solution is a sequence of actions
leading from the initial state to a goal state

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

11Selecting a State Space

• Real world is absurdly complex
⇒ state space must be abstracted for problem solving

• (Abstract) state = set of real states

• (Abstract) action = complex combination of real actions
e.g., “Arad→ Zerind” represents a complex set

of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state “in Arad”

must get to some real state “in Zerind”

• (Abstract) solution =
set of real paths that are solutions in the real world

• Each abstract action should be “easier” than the original problem!

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

12Example: Vacuum World State Space Graph

states?:
actions?:
goal test?:
path cost?:

states?: integer dirt and robot locations (ignore dirt amounts etc.)
actions?: Left, Right, Suck, NoOp
goal test?: no dirt
path cost?: 1 per action (0 for NoOp)

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

13Example: The 8-Puzzle

states?:
actions?:
goal test?:
path cost?:

states?: integer locations of tiles (ignore intermediate positions)
actions?: move blank left, right, up, down (ignore unjamming etc.)
goal test?: = goal state (given)
path cost?: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

14Example: Robotic Assembly

states?:

actions?:
goal test?:
path cost?:

states?: real-valued coordinates of robot joint angles
parts of the object to be assembled

actions?: continuous motions of robot joints
goal test?: complete assembly
path cost?: time to execute

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

15

tree search

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

16Tree Search Algorithms

• Basic idea: offline, simulated exploration of state space
by generating successors of already-explored states

(a.k.a. expanding states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

17Tree Search Example

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

18Tree Search Example

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

19Tree Search Example

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

20Implementation: States vs. Nodes

• A state is a (representation of) a physical configuration

• A node is a data structure constituting part of a search tree includes parent,
children, depth, path cost g(x)

• States do not have parents, children, depth, or path cost!

• The EXPAND function creates new nodes, filling in the various fields and using
the SUCCESSORFN of the problem to create the corresponding states.

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

21Implementation: General Tree Search
function TREE-SEARCH(problem, fringe) returns a solution, or failure

fringe← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if fringe is empty then return failure
node←REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE(node)) then return node
fringe← INSERTALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes
successors← the empty set
for each action, result in SUCCESSOR-FN(problem, STATE[node]) do

s← a new NODE
PARENT-NODE[s]←node; ACTION[s]←action; STATE[s]← result

PATH-COST[s]←PATH-COST[node] + STEP-COST(STATE[node], action,
result)

DEPTH[s]←DEPTH[node] + 1
add s to successors

return successors

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

22Search Strategies

• A strategy is defined by picking the order of node expansion

• Strategies are evaluated along the following dimensions

– completeness—does it always find a solution if one exists?
– time complexity—number of nodes generated/expanded
– space complexity—maximum number of nodes in memory
– optimality—does it always find a least-cost solution?

• Time and space complexity are measured in terms of

– b — maximum branching factor of the search tree
– d — depth of the least-cost solution
– m — maximum depth of the state space (may be∞)

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

23Uninformed Search Strategies

Uninformed strategies use only the information available
in the problem definition

• Breadth-first search

• Uniform-cost search

• Depth-first search

• Depth-limited search

• Iterative deepening search

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

24

breadth-first search

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

25Breadth-First Search

• Expand shallowest unexpanded node

• Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

26Breadth-First Search

• Expand shallowest unexpanded node

• Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

27Breadth-First Search

• Expand shallowest unexpanded node

• Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

28Breadth-First Search

• Expand shallowest unexpanded node

• Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

29Properties of Breadth-First Search

• Complete? Yes (if b is finite)

• Time? 1 + b+ b2 + b3 + . . .+ bd + b(bd − 1) = O(bd+1), i.e., exp. in d

• Space? O(bd+1) (keeps every node in memory)

• Optimal? Yes (if cost = 1 per step); not optimal in general

• Space is the big problem; can easily generate nodes at 100MB/sec
→ 24hrs = 8640GB.

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

30

uniform cost search

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

31Uniform-Cost Search

• Expand least-cost unexpanded node

• Implementation:
fringe = queue ordered by path cost, lowest first

• Equivalent to breadth-first if step costs all equal

• Properties

– Complete? Yes, if step cost ≥ ε
– Time? # of nodes with g ≤ cost of optimal solution, O(bdC

∗/εe)
where C∗ is the cost of the optimal solution

– Space? # of nodes with g ≤ cost of optimal solution, O(bdC
∗/εe)

– Optimal? Yes—nodes expanded in increasing order of g(n)

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

32

depth first search

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

33Depth-First Search

• Expand deepest unexpanded node

• Implementation:
fringe = LIFO queue, i.e., put successors at front

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

34Depth-First Search

• Expand deepest unexpanded node

• Implementation:
fringe = LIFO queue, i.e., put successors at front

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

35Depth-First Search

• Expand deepest unexpanded node

• Implementation:
fringe = LIFO queue, i.e., put successors at front

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

36Depth-First Search

• Expand deepest unexpanded node

• Implementation:
fringe = LIFO queue, i.e., put successors at front

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

37Depth-First Search

• Expand deepest unexpanded node

• Implementation:
fringe = LIFO queue, i.e., put successors at front

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

38Depth-First Search

• Expand deepest unexpanded node

• Implementation:
fringe = LIFO queue, i.e., put successors at front

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

39Depth-First Search

• Expand deepest unexpanded node

• Implementation:
fringe = LIFO queue, i.e., put successors at front

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

40Depth-First Search

• Expand deepest unexpanded node

• Implementation:
fringe = LIFO queue, i.e., put successors at front

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

41Depth-First Search

• Expand deepest unexpanded node

• Implementation:
fringe = LIFO queue, i.e., put successors at front

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

42Depth-First Search

• Expand deepest unexpanded node

• Implementation:
fringe = LIFO queue, i.e., put successors at front

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

43Depth-First Search

• Expand deepest unexpanded node

• Implementation:
fringe = LIFO queue, i.e., put successors at front

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

44Depth-First Search

• Expand deepest unexpanded node

• Implementation:
fringe = LIFO queue, i.e., put successors at front

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

45Properties of Depth-First Search

• Complete?

– no: fails in infinite-depth spaces, spaces with loops
– modify to avoid repeated states along path

⇒ complete in finite spaces

• Time? O(bm)

– terrible if m is much larger than d
– but if solutions are dense, may be much faster than breadth-first

• Space? O(bm), i.e., linear space!

• Optimal? No

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

46

iterative deepening

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

47Depth-Limited Search

• Depth-first search with depth limit l, i.e., nodes at depth l have no successors

• Recursive implementation:

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail/cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff
cutoff-occurred?← false
if GOAL-TEST(problem, STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do

result←RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred?← true
else if result 6= failure then return result

if cutoff-occurred? then return cutoff else return failure

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

48Iterative Deepening Search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution
inputs: problem, a problem

for depth← 0 to∞ do
result←DEPTH-LIMITED-SEARCH(problem, depth)
if result 6= cutoff then return result

end

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

49Iterative Deepening Search l = 0

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

50Iterative Deepening Search l = 1

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

51Iterative Deepening Search l = 2

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

52Iterative Deepening Search l = 3

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

53Properties of Iterative Deepening Search

• Complete? Yes

• Time? (d+ 1)b0 + db1 + (d− 1)b2 + . . .+ bd = O(bd)

• Space? O(bd)

• Optimal? Yes, if step cost = 1
Can be modified to explore uniform-cost tree

• Numerical comparison for b = 10 and d = 5, solution at far right leaf:

N(IDS) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450

N(BFS) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 + 999, 990 = 1, 111, 100

• IDS does better because other nodes at depth d are not expanded

• BFS can be modified to apply goal test when a node is generated

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

54

summary

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

55Summary of Algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening

Complete? Yes∗ Yes∗ No Yes, if l ≥ d Yes
Time bd+1 bdC

∗/εe bm bl bd

Space bd+1 bdC
∗/εe bm bl bd

Optimal? Yes∗ Yes No No Yes∗

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

56Repeated States

Failure to detect repeated states can turn a linear problem into an exponential one

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

57Graph Search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed← an empty set
fringe← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if fringe is empty then return failure
node←REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then

add STATE[node] to closed
fringe← INSERTALL(EXPAND(node, problem), fringe)

end

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

58Summary

• Problem formulation usually requires abstracting away real-world details to
define a state space that can feasibly be explored

• Variety of uninformed search strategies

• Iterative deepening search uses only linear space
and not much more time than other uninformed algorithms

• Graph search can be exponentially more efficient than tree search

Philipp Koehn Artificial Intelligence: Basic Search 21 February 2017

