Reinforcement Learning

Philipp Koehn

17 November 2015

—N
SN

Philipp Koehn

Artificial Intelligence: Reinforcement Learning

17 November 2015

Rewards 1

e Agent takes actions
e Agent occasionally receives reward

e Maybe just at the end of the process, e.g., Chess:
— agent has to decide on individual moves
— reward only at end: win/lose

e Maybe more frequently

— ping pong: any point scored
— learning to crawl: any forward movement

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

=X

Markov Decision Process > QY
State Map Stochastic Movement
0.8
(1]
0.1 0.1
1]
1 2 3 4

e States s € .5, actionsa € A

e Model 7'(s,a,s’) = P(s'|s,a) = probability that a in s leads to s’

e Reward function R(s) (or R(s,a), R(s,a,s’))

[-0.04

| £l

(small penalty) for nonterminal states

for terminal states

Philipp Koehn

Artificial Intelligence: Reinforcement Learning

17 November 2015

[

Agent Designs 3

)
~=

o Utility based agent

— needs model of environment
— learns utility function on states
— selects action that maximize expected outcome utility
e Q-learning
— learns action-utility function (Q(s, @) function)
— does not need to model outcomes of actions
— function provides expected utility of taken a given action at a given step

o Reflex agent

— learns policy that maps states to actions

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

passive reinforcement learning

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

=X

Setup s QY

State Map Stochastic Reward Function
Movement
o +1 for-goal
3 = .
R(s)={ -1 forpit
—0:04 forother
2 —
1 START
1 2 3 4

e We know which state we are in (= partially observable environment)
e We know which actions we can take

e But only after taking an action

— new state becomes known
— reward becomes known

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

. . . =X
Passive Reinforcement Learning 6 i':"

e Given a policy

N BE
1f--l—--—..-_
T2 3 4

e Task: compute utility of policy

o We will extend this later to active reinforcement learning
(= policy needs to be learned)

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Q

Sampling 7

B

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Sampling 8

Q

3 — — —_— El
-0.p4
M
2 |44 [=7]
-0.p4
[]
1 * B - -
1 2 3 d

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Q

Sampling 9

B

B

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Sampling 10

B

B

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Sampling 1

B

B

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Sampling 12

B

B

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Sampling 13

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Sampling 14

e Sample of reward to go

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Sampling

b | -

R

——

[7]
[-1]
4

Philipp Koehn

Artificial Intelligence: Reinforcement Learning

17 November 2015

Sampling 16

. [T

2 [=1]
—>

1 -
1 2 3 4

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Utility of Policy 17

e Definition of utility U of the policy 7 for state s

Un(s) = B [i vtmsa]

Start at state Sy = s
e Reward for state is R(s)

e Discount factor v (we use y = 1 in our examples)

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Direct Utility Estimation 18

e Learning from the samples

e Reward to go: + 1
— (1,1) one sample: 0.72 o
— (1,2) two samples: 0.76, 0.84 1
— (1,3) two samples: 0.80, 0.88 =
e Reward to go -
will converge to utility of state
1 2 3 4

But very slowly — can we do better?

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Bellman Equation 19

e Direct utility estimation ignores dependency between states

Given by Bellman equation

UT(s) = R(s) +71 2 P(sls,m(s) U

(v = reward decay)

Use of this known dependence can speed up learning

e Requires learning of transition probabilities P(s'|s, 7(s))

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Adaptive Dynamic Programming 20

Need to learn:

e State rewards R(s)

— whenever a state is visited, record award (deterministic)

e Outcome of action 7(s) at state s according to policy 7

— collect statistic count(s, s’) that s’ is reached from s
— estimate probability distribution

count(s, s)

P(3’|S,7T(3)) - S Count(s S")

= Ingredients for policy evaluation algorithm

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Adaptive Dynamic Programming 21

function PASSIVE-ADP-AGENT(percept) returns an action
inputs: percept, a percept indicating the current state s* and reward signal 7’
static: 7, a fixed policy
mdp, an MDP with model T ,rewards R, discount -y
U, a table of utilities, initially empty
Nq, a table of frequencies for state-action pairs, initially zero
Nsqst, a table of frequencies for state-action-state triples, initially zero
S, a, the previous state and action, initially null

if s isnewthendo U/s J+—r; R[s J—1'
if s is not null then do
increment N 4,[$,a] and N [5,a,5 |
for each ¢ such that N ¢,s[$,a,t /is nonzero do
Tls,a,t]+— Ngas[5,a,t]/ N gals, al
U < PoLicy- EVALUATION(#, U, mdp)
if TERMINAL?[s’] then s, a < null else s, a < s, w|s]
return a

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Learning Curve 22

0.6
e 4 3)
R YT L LA . " o, o (3'3} % 0.5
4+~ - TTTTTTTETTTTTTT E‘\ _________ 3 _:‘
. ey E
g 00 LG 503
2
Nl == . |
= ~
02 - 0.1 A
0 0
0 20 40 60 80 100 0 20 40 60 80 100
Number of trials Number of trials

e Major change at 78t trial: first time terminated in —1 state at (4,2)

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Temporal Difference Learning 23

e Idea: no model P(s'|s,7(s)), directly adjust utilities U(s) for all visited states

o Current model expects utility of current state as R(s) + yU™(s’)

Actually current utility: U™(s)

Adjust utility of current state U™ (s) if they differ
AU™(s)=a (R(s)+~UT(s')-UT(s))
(o = learning rate)

e Learning rate may decrease when state has been visited often

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Learning Curve 24

0.6 1
A o L R GO ek e
T e e 3 A 0.5
:ﬁ US fEhb i‘_f'ﬁ’l:‘- E‘:‘.'.v,'wa‘\\? “'-1n-r,..'wm-i!;“’,n.",.vm (1‘3) %-u
= i ;s (1,1) g 0.4
= *
B el 8
1 ‘g 0.3
=
s 04 é 0.2 -
"4
0.2 0.1
() v T v . r () r T T r .
0 100 200 300 400 500 0 20 40 60 80 100
Number of trials Number of trials

e Noisier, converging more slowly

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Comparison 25

e Both eventually converge to correct values

e Adaptive dynamic programming (ADP)
faster than
temporal difference learning (TD)

— both make adjustments to make successors agree

— but: ADP adjusts all possible successors, TD only observed successor

o ADP computationally more expensive due to policy evaluation algorithm

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

G

active reinforcement learning

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Active Reinforcement Learning 27

e Passive agent follows prescribed policy

e Active agent decides which action to take

— following optimal policy (as currently viewed)

— exploration

e Goal: optimize rewards for a given time frame

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Greedy Agent 28

1. Start with initial policy
2. Compute utilities (using ADP)
3. Optimize policy

4. Go to Step 2!

e This very seldom converges to global optimal policy

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Learning Curve 29

RMS error
Policy loss -==-----

[
L

M
e —,
e
H

RMS error, policy loss

i3
|
|
|

0

0 50 100 150 200 250 300 350 400 450 500

Number of trials 1

e Greedy agent stuck in local optimum

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Bandit Problems 30

e Bandit: slot machine

e N-armed bandit: n levers

e Each has different

probability distribution over payoffs
e Spend coin on

— presume optimal payoft

— exploration (new lever)
e If independent

— Gittins index: formula for solution
— uses payoff / number of times used

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Greedy in the Limit of Infinite Exploration =

e Explore any action in any state unbounded number of times

e Hventually has to become greedy

— carry out optimal policy

= maximize reward!

e Simple strategy
— with probability p(1/t) take random action

— initially (¢ small) focus on exploration

— later (¢ big) focus on optimal policy

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Extension of Adaptive Dynamic Programming

e Previous definition of utility calculation

U(s) < R(s) +~v max, ZP(S’|S, a) U(s)I

e New utility calculation
U"(s) « R(s) +~vymax, f (Z P(s'|s,a) U"(s"), N (s, a))l

e One possible definition of f(u,n)

Rt ifn< N,
uw otherwise

f(uvn) :{

R* is optimistic estimate, best possible award in any state

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Learning Curve 33

2.2 |
(1,1) —— 1.4 4 |
2 1155 J— ;
(I._3§ --------- - : RMS error
z e %23 i E Policy loss --------
2 1.6 e 11 |
z 3) - S :
Z 14 a3 s
212 2064 |
| L I
B M E e e N CR
. o g et o T 2 S o
0.8 = - 0.2
0.6 A v > g
.——_muﬁ——n;-q—m—'—_—
0 20 40 60 80 100 0 20 40 60 80 100

e Performance of exploratory ADP agent

e Parameter settings " =2 and N, =5

e Fairly quick convergence to optimal policy

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Q-Learning 34

e Learning an action utility function Q(s,a)

o Allows computation of utilities U(s) = max,Q(s,a)

Model-free: no explicit transition model P(s'|s, a)

e Theoretically correct Q values

Q(s.0) = R(s) +7 Y. P(s'|s,a) max,Q(s',a')F

e Update formula inspired by temporal difference learning

AQ(s,a) = a(R(s) +vymax, Q(s'a") - Q(s,a))

e For our example, Q-learning slower, but successful applications (TD-GAMMON)

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

35

generalization in

reinforcement learning

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Large Scale Reinforcement Learning 36

e Adaptive dynamic programming (ASP) scalable to maybe 10,000 states

— Backgammon has 102° states
— Chess has 107 states

e Itis not possible to visit all these states multiple times

= (Generalization of states needed

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Function Approximation 37

e Define state utility function as linear combination of features

(79(3) =01 f1(s) + 02 fa(s) + ... + 0n fr(s)

e Recall: features to assess Chess state

— f1(s) = (number of white pawns) — (number of black pawns)
— f2(s) = (number of white rooks) — (number of black rooks)

— [3(s) = (number of white queens) — (number of black queens)
— f4(s) = king safety

— f5(s) = good pawn position

— etc.

= Reduction from 104V to, say, 20 parameters

e Main benefit: ability to assess unseen states

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Learning Feature Weights 38

e Example: 2 features: x and y

Ug(f1, f2) = 0o+ 01.f1 + O fo

Current feature weights 6, 6;,605 = (0.5,0.2,0.1)
e Model’s prediction of utility of specific state, e.g., Uy(1,1) = 0.8

e Sample set of trials, found value ug(1,1) = 0.4

Error Fy = %(Ug(fhfz) —up(f1, f2))?

e How do you update the weights 0,7

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Gradient Descent Training 39

o Compute gradient of error

o0 = ((fr, f2) ~ oo, £2)) .

e Update against gradient

e Our example

= AO1 = -p(Up(f1, f2) - uo(f1, f2)) fi = -1(0.8-0.4) 1= -0.4p
— Aby = —p(Ug(f1, f2) —ue(f1, f2)) fi=-p(0.8-0.4) 1=-0.4

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Additional Remarks 40

o If we know something about the problem

= we may want to use more complex features

e Our toy example: utility related to Manhattan distance from goal (a;goal, ygoal)

f3(s) = (z - xgoal) +(y - ygoal)

e Gradient descent training can also be used for temporal distance learning

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

41

policy search

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Policy Search 42

e Idea: directly optimize policy

e Policy may be parameterized Q functions, hence:

7(s) = max,Qo(s,a)

e Stochastic policy, e.g., given by softmax function

1 A
To(s,a) = — eQo(s:a)

Policy value p(6): expected reward if 7y is carried out

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Hillclimbing 43

e Deterministic policy, deterministic environment

= optimizing policy value p(¢) may be done in closed form

o If p(0) differentiable
= gradient descent by following policy gradient

e Make small changes to parameters

= hillclimb if p(6) improves

e More complex for stochastic environment

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

examples

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Game Playing 45

e Backgammon: TD-GAMMON (1992)

Reward only at end of game
e Training with self-play

e 200,000 training games needed

o Competitive with top human players

o Better positional play, worse end game

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Robot Control 46

o Observe position , vertical speed #, angle 6, angle speed ¢

Action: jerk left or right
e Reward: time balanced until pole falls, or cart out of bounce

e More complex: multiple stacked poles, helicopter flight, walking

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

Summary 47

Building on Markov decision processes and machine learning

e Passive reinforcement learning
(fixed policy, partially observable environment, stochastic outcomes of actions)

— sampling (carrying out trials)
— adaptive dynamic programming
— temporal difference learning

e Active reinforcement learning
— greedy in the limit of infinite exploration

— following optimal policy vs. exploration
— exploratory adaptive dynamic programming

e Generalization: representing utility function with small set of parameters

e Policy search

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

