
Reinforcement Learning

Philipp Koehn

17 November 2015

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

1Rewards

● Agent takes actions

● Agent occasionally receives reward

● Maybe just at the end of the process, e.g., Chess:

– agent has to decide on individual moves
– reward only at end: win/lose

● Maybe more frequently

– ping pong: any point scored
– learning to crawl: any forward movement

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

2Markov Decision Process

State Map Stochastic Movement

● States s ∈ S, actions a ∈ A

● Model T (s, a, s′) ≡ P (s′∣s, a) = probability that a in s leads to s′

● Reward function R(s) (or R(s, a), R(s, a, s′))

= { −0.04 (small penalty) for nonterminal states
±1 for terminal states

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

3Agent Designs

● Utility based agent

– needs model of environment
– learns utility function on states
– selects action that maximize expected outcome utility

● Q-learning

– learns action-utility function (Q(s, a) function)
– does not need to model outcomes of actions
– function provides expected utility of taken a given action at a given step

● Reflex agent

– learns policy that maps states to actions

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

4

passive reinforcement learning

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

5Setup

State Map Stochastic
Movement

Reward Function

R(s) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

+1 for goal
–1 for pit
–0.04 for other

● We know which state we are in (= partially observable environment)

● We know which actions we can take

● But only after taking an action
→ new state becomes known
→ reward becomes known

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

6Passive Reinforcement Learning

● Given a policy

● Task: compute utility of policy

● We will extend this later to active reinforcement learning
(⇒ policy needs to be learned)

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

7Sampling

-0.04

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

8Sampling

-0.04

-0.04

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

9Sampling

-0.04

-0.04

-0.04

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

10Sampling

-0.04

-0.04

-0.04
-0.04

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

11Sampling

-0.04

-0.04

-0.04
-0.04

-0.04

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

12Sampling

-0.04

-0.04

-0.04
-0.04

-0.04 -0.04

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

13Sampling

-0.04

-0.04

-0.04
-0.04

-0.04 +1 -0.04

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

14Sampling

0.84

0.76

0.80 0.88
0.92 1.00 0.96

0.72

● Sample of reward to go

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

15Sampling

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

16Sampling

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

17Utility of Policy

● Definition of utility U of the policy π for state s

Uπ(s) = E [
∞
∑
t=0
γtR(St)]

● Start at state S0 = s

● Reward for state is R(s)

● Discount factor γ (we use γ = 1 in our examples)

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

18Direct Utility Estimation

0.84

0.76

0.80 0.88
0.92 1.00 0.96

0.72

● Learning from the samples

● Reward to go:

– (1,1) one sample: 0.72
– (1,2) two samples: 0.76, 0.84
– (1,3) two samples: 0.80, 0.88

● Reward to go
will converge to utility of state

● But very slowly — can we do better?

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

19Bellman Equation

● Direct utility estimation ignores dependency between states

● Given by Bellman equation

Uπ(s) = R(s) + γ∑
s′
P (s′∣s, π(s)) Uπ(s′)

(γ = reward decay)

● Use of this known dependence can speed up learning

● Requires learning of transition probabilities P (s′∣s, π(s))

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

20Adaptive Dynamic Programming

Need to learn:

● State rewards R(s)

– whenever a state is visited, record award (deterministic)

● Outcome of action π(s) at state s according to policy π

– collect statistic count(s, s′) that s′ is reached from s
– estimate probability distribution

P (s′∣s, π(s)) = count(s, s′)
∑s′′ count(s, s′′)

⇒ Ingredients for policy evaluation algorithm

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

21Adaptive Dynamic Programming

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

22Learning Curve

● Major change at 78th trial: first time terminated in –1 state at (4,2)

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

23Temporal Difference Learning

● Idea: no model P (s′∣s, π(s)), directly adjust utilities U(s) for all visited states

● Current model expects utility of current state as R(s) + γUπ(s′)

● Actually current utility: Uπ(s)

● Adjust utility of current state Uπ(s) if they differ

∆Uπ(s) = α (R(s) + γUπ(s′) −Uπ(s))

(α = learning rate)

● Learning rate may decrease when state has been visited often

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

24Learning Curve

● Noisier, converging more slowly

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

25Comparison

● Both eventually converge to correct values

● Adaptive dynamic programming (ADP)
faster than
temporal difference learning (TD)

– both make adjustments to make successors agree

– but: ADP adjusts all possible successors, TD only observed successor

● ADP computationally more expensive due to policy evaluation algorithm

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

26

active reinforcement learning

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

27Active Reinforcement Learning

● Passive agent follows prescribed policy

● Active agent decides which action to take

– following optimal policy (as currently viewed)

– exploration

● Goal: optimize rewards for a given time frame

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

28Greedy Agent

1. Start with initial policy

2. Compute utilities (using ADP)

3. Optimize policy

4. Go to Step 2

● This very seldom converges to global optimal policy

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

29Learning Curve

● Greedy agent stuck in local optimum

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

30Bandit Problems

● Bandit: slot machine

● N-armed bandit: n levers

● Each has different
probability distribution over payoffs

● Spend coin on

– presume optimal payoff
– exploration (new lever)

● If independent

– Gittins index: formula for solution
– uses payoff / number of times used

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

31Greedy in the Limit of Infinite Exploration

● Explore any action in any state unbounded number of times

● Eventually has to become greedy

– carry out optimal policy

⇒ maximize reward

● Simple strategy

– with probability p(1/t) take random action

– initially (t small) focus on exploration

– later (t big) focus on optimal policy

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

32Extension of Adaptive Dynamic Programming

● Previous definition of utility calculation

U(s) ← R(s) + γ maxa ∑
s′
P (s′∣s, a) U(s′)

● New utility calculation

U+(s) ← R(s) + γ maxa f (∑
s′
P (s′∣s, a) U+(s′),N(s, a))

● One possible definition of f(u,n)

f(u,n) = { R+ if n < Nc
u otherwise

R+ is optimistic estimate, best possible award in any state

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

33Learning Curve

● Performance of exploratory ADP agent

● Parameter settings R+ = 2 and Ne = 5

● Fairly quick convergence to optimal policy

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

34Q-Learning

● Learning an action utility function Q(s, a)

● Allows computation of utilities U(s) = maxaQ(s, a)

● Model-free: no explicit transition model P (s′∣s, a)

● Theoretically correct Q values

Q(s, a) = R(s) + γ∑
s′
P (s′∣s, a) maxa′Q(s′, a′)

● Update formula inspired by temporal difference learning

∆Q(s, a) = α(R(s) + γ maxa′ Q(s′a′) −Q(s, a))

● For our example, Q-learning slower, but successful applications (TD-GAMMON)

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

35

generalization in

reinforcement learning

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

36Large Scale Reinforcement Learning

● Adaptive dynamic programming (ASP) scalable to maybe 10,000 states

– Backgammon has 1020 states
– Chess has 1040 states

● It is not possible to visit all these states multiple times

⇒ Generalization of states needed

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

37Function Approximation

● Define state utility function as linear combination of features

Ûθ(s) = θ1 f1(s) + θ2 f2(s) + ... + θn fn(s)

● Recall: features to assess Chess state

– f1(s) = (number of white pawns) – (number of black pawns)
– f2(s) = (number of white rooks) – (number of black rooks)
– f3(s) = (number of white queens) – (number of black queens)
– f4(s) = king safety
– f5(s) = good pawn position
– etc.

⇒ Reduction from 1040 to, say, 20 parameters

● Main benefit: ability to assess unseen states

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

38Learning Feature Weights

● Example: 2 features: x and y

Ûθ(f1, f2) = θ0 + θ1f1 + θ2f2

● Current feature weights θ0, θ1, θ2 = (0.5,0.2,0.1)

● Model’s prediction of utility of specific state, e.g., Ûθ(1,1) = 0.8

● Sample set of trials, found value uθ(1,1) = 0.4

● Error Eθ = 1
2(Ûθ(f1, f2) − uθ(f1, f2))2

● How do you update the weights θi?

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

39Gradient Descent Training

● Compute gradient of error

dEθ
dθi

= (Ûθ(f1, f2) − uθ(f1, f2)) fi

● Update against gradient

∆θi = −µ
dEθ
dθi

● Our example

– ∆θ1 = −µ(Ûθ(f1, f2) − uθ(f1, f2)) fi = −µ(0.8 − 0.4) 1 = −0.4µ
– ∆θ2 = −µ(Ûθ(f1, f2) − uθ(f1, f2)) fi = −µ(0.8 − 0.4) 1 = −0.4µ

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

40Additional Remarks

● If we know something about the problem

⇒we may want to use more complex features

● Our toy example: utility related to Manhattan distance from goal (xgoal, ygoal)

f3(s) = (x − xgoal) + (y − ygoal)

● Gradient descent training can also be used for temporal distance learning

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

41

policy search

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

42Policy Search

● Idea: directly optimize policy

● Policy may be parameterized Q functions, hence:

π(s) = maxaQ̂θ(s, a)

● Stochastic policy, e.g., given by softmax function

πθ(s, a) =
1

Zs
eQ̂θ(s,a)

● Policy value ρ(θ): expected reward if πθ is carried out

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

43Hillclimbing

● Deterministic policy, deterministic environment

⇒ optimizing policy value ρ(θ) may be done in closed form

● If ρ(θ) differentiable

⇒ gradient descent by following policy gradient

● Make small changes to parameters

⇒ hillclimb if ρ(θ) improves

● More complex for stochastic environment

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

44

examples

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

45Game Playing

● Backgammon: TD-GAMMON (1992)

● Reward only at end of game

● Training with self-play

● 200,000 training games needed

● Competitive with top human players

● Better positional play, worse end game

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

46Robot Control

● Observe position x, vertical speed x̂, angle θ, angle speed θ̂

● Action: jerk left or right

● Reward: time balanced until pole falls, or cart out of bounce

● More complex: multiple stacked poles, helicopter flight, walking

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

47Summary

● Building on Markov decision processes and machine learning

● Passive reinforcement learning
(fixed policy, partially observable environment, stochastic outcomes of actions)
– sampling (carrying out trials)
– adaptive dynamic programming
– temporal difference learning

● Active reinforcement learning
– greedy in the limit of infinite exploration
– following optimal policy vs. exploration
– exploratory adaptive dynamic programming

● Generalization: representing utility function with small set of parameters

● Policy search

Philipp Koehn Artificial Intelligence: Reinforcement Learning 17 November 2015

