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1Outline

● Hidden Markov models

● Inference: filtering, smoothing, best sequence

● Kalman filters (a brief mention)

● Dynamic Bayesian networks

● Speech recognition
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2Time and Uncertainty

● The world changes; we need to track and predict it

● Diabetes management vs vehicle diagnosis

● Basic idea: sequence of state and evidence variables

● Xt = set of unobservable state variables at time t
e.g., BloodSugart, StomachContentst, etc.

● Et = set of observable evidence variables at time t
e.g., MeasuredBloodSugart, PulseRatet, FoodEatent

● This assumes discrete time; step size depends on problem

● Notation: Xa∶b = Xa,Xa+1, . . . ,Xb−1,Xb
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3Markov Processes (Markov Chains)

● Construct a Bayes net from these variables: parents?

● Markov assumption: Xt depends on bounded subset of X0∶t−1

● First-order Markov process: P(Xt∣X0∶t−1) = P(Xt∣Xt−1)

Second-order Markov process: P(Xt∣X0∶t−1) = P(Xt∣Xt−2,Xt−1)

● Sensor Markov assumption: P(Et∣X0∶t,E0∶t−1) = P(Et∣Xt)

● Stationary process: transition model P(Xt∣Xt−1) and
sensor model P(Et∣Xt) fixed for all t
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4Example

● First-order Markov assumption not exactly true in real world!

● Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add Tempt, Pressuret
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5

inference
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6Inference Tasks

● Filtering: P(Xt∣e1∶t)

belief state—input to the decision process of a rational agent

● Smoothing: P(Xk∣e1∶t) for 0 ≤ k < t
better estimate of past states, essential for learning

● Most likely explanation: argmaxx1∶t P (x1∶t∣e1∶t)

speech recognition, decoding with a noisy channel
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7Filtering

● Aim: devise a recursive state estimation algorithm

P(Xt+1∣e1∶t+1) = P(Xt+1∣e1∶t,et+1)

= αP(et+1∣Xt+1,e1∶t)P(Xt+1∣e1∶t) (Bayes rule)

= αP(et+1∣Xt+1)P(Xt+1∣e1∶t) (Sensor Markov assumption)

= αP(et+1∣Xt+1)∑
xt

P(Xt+1∣xt,e1∶t)P (xt∣e1∶t) (multiplying out)

= αP(et+1∣Xt+1)∑
xt

P(Xt+1∣xt)P (xt∣e1∶t) (first order Markov model)

● Summary: P(Xt+1∣e1∶t+1) = αP(et+1∣Xt+1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

emission

∑
xt

P(Xt+1∣xt)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

transition

P (xt∣e1∶t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
recursive call

● f1∶t+1 = FORWARD(f1∶t,et+1) where f1∶t =P(Xt∣e1∶t)

Time and space constant (independent of t)

Philipp Koehn Artificial Intelligence: Markov Decision Processes 3 November 2015



8Filtering Example

emissiontran
sitio

n

tran
sitio

n
emission
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9Smoothing

● If full sequence is known

⇒what is the state probability P(Xk∣e1∶t) including future evidence?

● Smoothing: sum over all paths
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10Smoothing

● Divide evidence e1∶t into e1∶k, ek+1∶t:

P(Xk∣e1∶t) = P(Xk∣e1∶k,ek+1∶t)

= αP(Xk∣e1∶k)P(ek+1∶t∣Xk,e1∶k)

= αP(Xk∣e1∶k)P(ek+1∶t∣Xk)

= αf1∶kbk+1∶t

● Backward message bk+1∶t computed by a backwards recursion
P(ek+1∶t∣Xk) = ∑

xk+1

P(ek+1∶t∣Xk,xk+1)P(xk+1∣Xk)

= ∑
xk+1

P (ek+1∶t∣xk+1)P(xk+1∣Xk)

= ∑
xk+1

P (ek+1∣xk+1)P (ek+2∶t∣xk+1)P(xk+1∣Xk)
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11Smoothing Example

Forward–backward algorithm: cache forward messages along the way
Time linear in t (polytree inference), space O(t∣f∣)
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12Most Likely Explanation

● Most likely sequence ≠ sequence of most likely states

● Most likely path to each xt+1

= most likely path to some xt plus one more step

max
x1...xt

P(x1, . . . ,xt,Xt+1∣e1∶t+1)

= P(et+1∣Xt+1)max
xt

(P(Xt+1∣xt) max
x1...xt−1

P (x1, . . . ,xt−1,xt∣e1∶t))

● Identical to filtering, except f1∶t replaced by

m1∶t = max
x1...xt−1

P(x1, . . . ,xt−1,Xt∣e1∶t)

i.e., m1∶t(i) gives the probability of the most likely path to state i.

● Update has sum replaced by max, giving the Viterbi algorithm:

m1∶t+1 = P(et+1∣Xt+1)max
xt

(P(Xt+1∣xt)m1∶t)

Also requires back-pointers for backward pass to retrieve best sequence

bXt+1,t+1
= argmaxxt

(P(Xt+1∣xt)m1∶t)
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13Viterbi Example
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14Hidden Markov Models

● Xt is a single, discrete variable (usually Et is too)
Domain of Xt is {1, . . . , S}

● Transition matrix Tij = P (Xt = j∣Xt−1 = i), e.g., (
0.7 0.3
0.3 0.7

)

● Sensor matrix Ot for each time step, diagonal elements P (et∣Xt = i)

e.g., with U1 = true, O1 = (
0.9 0
0 0.2

)

● Forward and backward messages as column vectors:

f1∶t+1 = αOt+1T⊺f1∶t
bk+1∶t = TOk+1bk+2∶t

● Forward-backward algorithm needs time O(S2t) and space O(St)
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kalman filters
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16Kalman Filters

● Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—Xt =X,Y,Z, Ẋ, Ẏ , Ż.
Airplanes, robots, ecosystems, economies, chemical plants, planets, . . .

(Zt = observed position)

● Gaussian prior, linear Gaussian transition model and sensor model
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17Updating Gaussian Distributions

● Prediction step: if P(Xt∣e1∶t) is Gaussian, then prediction

P(Xt+1∣e1∶t) = ∫
xt

P(Xt+1∣xt)P (xt∣e1∶t)dxt

is Gaussian. If P(Xt+1∣e1∶t) is Gaussian, then the updated distribution

P(Xt+1∣e1∶t+1) = αP(et+1∣Xt+1)P(Xt+1∣e1∶t)

is Gaussian

● Hence P(Xt∣e1∶t) is multivariate Gaussian N(µt,Σt) for all t

● General (nonlinear, non-Gaussian) process: description of posterior grows
unboundedly as t→∞
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18Simple 1-D Example

● Gaussian random walk on X–axis, s.d. σx, sensor s.d. σz
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(σ2

t + σ
2
x)zt+1 + σ

2
zµt
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19General Kalman Update

● Transition and sensor models:

P (xt+1∣xt) = N(Fxt,Σx)(xt+1)

P (zt∣xt) = N(Hxt,Σz)(zt)

F is the matrix for the transition; Σx the transition noise covariance
H is the matrix for the sensors; Σz the sensor noise covariance

● Filter computes the following update:

µt+1 = Fµt +Kt+1(zt+1 −HFµt)

Σt+1 = (I −Kt+1)(FΣtF⊺
+Σx)

where Kt+1 = (FΣtF⊺
+Σx)H⊺

(H(FΣtF⊺
+Σx)H⊺

+Σz)
−1

is the Kalman gain matrix

● Σt and Kt are independent of observation sequence, so compute offline
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202-D Tracking Example: Filtering
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212-D Tracking Example: Smoothing
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22

dynamic baysian networks
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23Dynamic Bayesian Networks

● Xt, Et contain arbitrarily many variables in a sequentialized Bayes net
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24DBNs vs. HMMs

● Every HMM is a single-variable DBN; every discrete DBN is an HMM

● Sparse dependencies⇒ exponentially fewer parameters;
e.g., 20 state variables, three parents each
DBN has 20×23 =160 parameters, HMM has 220×220 ≈ 1012
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25DBNs vs Kalman Filters

● Every Kalman filter model is a DBN, but few DBNs are KFs;
real world requires non-Gaussian posteriors

● E.g., where my keys? What’s the battery charge?

Philipp Koehn Artificial Intelligence: Markov Decision Processes 3 November 2015



26Exact Inference in DBNs

● Naive method: unroll the network and run any exact algorithm

● Problem: inference cost for each update grows with t

● Rollup filtering: add slice t + 1, “sum out” slice t using variable elimination

● Largest factor is O(dn+1), update cost O(dn+2)
(cf. HMM update cost O(d2n))
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27Likelihood Weighting for DBNs

● Set of weighted samples approximates the belief state

● LW samples pay no attention to the evidence!
⇒ fraction “agreeing” falls exponentially with t
⇒ number of samples required grows exponentially with t
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28Particle Filtering

● Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space

● Replicate particles proportional to likelihood for et

● Widely used for tracking nonlinear systems, esp. in vision

● Also used for simultaneous localization and mapping in mobile robots
105-dimensional state space
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29

speech recognition

Philipp Koehn Artificial Intelligence: Markov Decision Processes 3 November 2015



30Speech as Probabilistic Inference

It’s not easy to wreck a nice beach

● Speech signals are noisy, variable, ambiguous

● What is the most likely word sequence, given the speech signal?
I.e., choose Words to maximize P (Words∣signal)

● Use Bayes’ rule:
P (Words∣signal) = αP (signal∣Words)P (Words)

i.e., decomposes into acoustic model + language model

● Words are the hidden state sequence, signal is the observation sequence
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31Phones

● All human speech is composed from 40-50 phones, determined by the
configuration of articulators (lips, teeth, tongue, vocal cords, air flow)

● Form an intermediate level of hidden states between words and signal
⇒ acoustic model = pronunciation model + phone model

● ARPAbet designed for American English

[iy] beat [b] bet [p] pet
[ih] bit [ch] Chet [r] rat
[ey] bet [d] debt [s] set
[ao] bought [hh] hat [th] thick
[ow] boat [hv] high [dh] that
[er] Bert [l] let [w] wet
[ix] roses [ng] sing [en] button
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

e.g., “ceiling” is [s iy l ih ng] / [s iy l ix ng] / [s iy l en]
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32Speech Sounds

● Raw signal is the microphone displacement as a function of time;
processed into overlapping 30ms frames, each described by features

● Frame features are typically formants—peaks in the power spectrum
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33Speech Spectrogram
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34Phone Models

● Frame features in P (features∣phone) summarized by
– an integer in [0 . . .255] (using vector quantization); or
– the parameters of a mixture of Gaussians

● Three-state phones: each phone has three phases (Onset, Mid, End)
E.g., [t] has silent Onset, explosive Mid, hissing End
⇒ P (features∣phone, phase)

● Triphone context: each phone becomes n2 distinct phones, depending on the
phones to its left and right

E.g., [t] in “star” is written [t(s,aa)] (different from “tar”!)

● Triphones useful for handling coarticulation effects: the articulators have inertia
and cannot switch instantaneously between positions

E.g., [t] in “eighth” has tongue against front teeth
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35Phone Model Example
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36Word Pronunciation Models

● Each word is described as a distribution over phone sequences

● Distribution represented as an HMM transition model

P ([towmeytow]∣“tomato”) = P ([towmaatow]∣“tomato”) = 0.1
P ([tahmeytow]∣“tomato”) = P ([tahmaatow]∣“tomato”) = 0.4

● Structure is created manually, transition probabilities learned from data
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37Recognition of Isolated Words

● Phone models + word models fix likelihood P (e1∶t∣word) for isolated word

P (word∣e1∶t) = αP (e1∶t∣word)P (word)

● Prior probability P (word) obtained simply by counting word frequencies

P (e1∶t∣word) can be computed recursively: define


1∶t =P(Xt,e1∶t)

and use the recursive update


1∶t+1 = FORWARD(`1∶t,et+1)

and then P (e1∶t∣word) = ∑xt

1∶t(xt)

● Isolated-word dictation systems with training reach 95–99% accuracy
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38Continuous Speech

● Not just a sequence of isolated-word recognition problems!

– adjacent words highly correlated
– sequence of most likely words ≠ most likely sequence of words
– segmentation: there are few gaps in speech
– cross-word coarticulation—e.g., “next thing”

● Complications

– mismatch between speaker in training and test
– noise
– crosstalk
– bad microphone position

● Continuous speech systems manage over 90% accuracy on a good day

Philipp Koehn Artificial Intelligence: Markov Decision Processes 3 November 2015



39Language Model

● Prior probability of a word sequence is given by chain rule:

P (w1⋯wn) =
n

∏
i=1

P (wi∣w1⋯wi−1)

● Bigram model:
P (wi∣w1⋯wi−1) ≈ P (wi∣wi−1)

● Train by counting all word pairs in a large text corpus

● More sophisticated models (trigrams, grammars, etc.) help a little bit
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40Combined HMM

● States of the combined language+word+phone model are labelled by
the word we’re in + the phone in that word + the phone state in that phone

● Viterbi algorithm finds the most likely phone state sequence

● Does segmentation by considering all possible word sequences and boundaries

● Doesn’t always give the most likely word sequence because
each word sequence is the sum over many state sequences

● Jelinek invented A∗ in 1969 a way to find most likely word sequence
where “step cost” is − logP (wi∣wi−1)
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41DBNs for Speech Recognition

● Also easy to add variables for, e.g., gender, accent, speed

● Zweig and Russell (1998) show up to 40% error reduction over HMMs
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42Progress
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43Progress
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44Summary

● Temporal models use state and sensor variables replicated over time

● Markov assumptions and stationarity assumption, so we need
– transition modelP(Xt∣Xt−1)

– sensor model P(Et∣Xt)

● Tasks are filtering, smoothing, most likely sequence;
all done recursively with constant cost per time step

● Hidden Markov models have a single discrete state variable; used
for speech recognition

● Kalman filters allow n state variables, linear Gaussian, O(n3) update

● Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

● Speech recognition
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