Informed Search

Philipp Koehn

24 September 2015

Heuristic

From Wikipedia:

any approach to problem solving, learning, or discovery that employs a practical method not guaranteed to be optimal or perfect but sufficient for the immediate goals

Outline

- Best-first search
- A^{*} search
- Heuristic algorithms
 - hill-climbing
 - simulated annealing
 - genetic algorithms (briefly)
 - local search in continuous spaces (very briefly)

best-first search

Review: Tree Search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node ← REMOVE-FRONT(fringe)
if GOAL-TEST[problem] applied to STATE(node) succeeds return node
fringe ← INSERTALL(EXPAND(node, problem), fringe)

- Search space is in form of a tree
- Strategy is defined by picking the **order of node expansion**

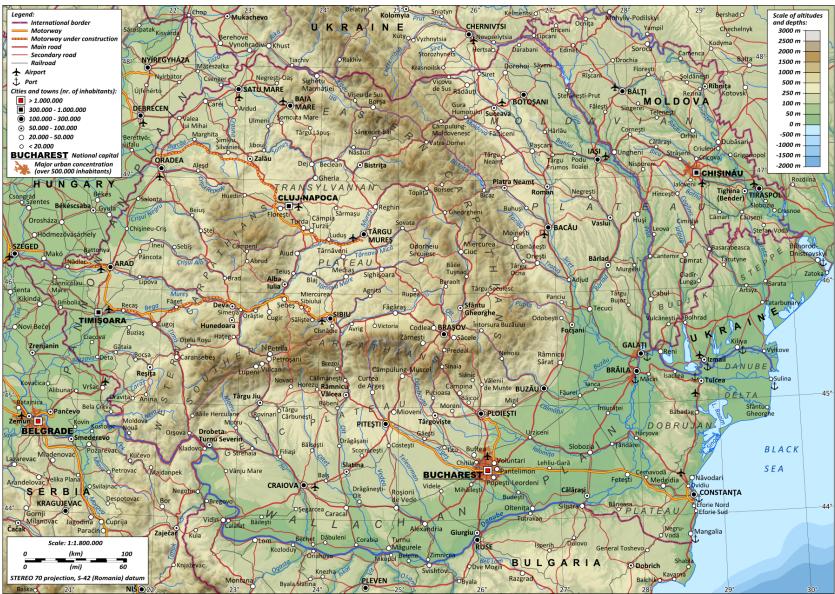
Best-First Search

- Idea: use an evaluation function for each node
 - estimate of "desirability"
- ⇒ Expand most desirable unexpanded node
 - Implementation:

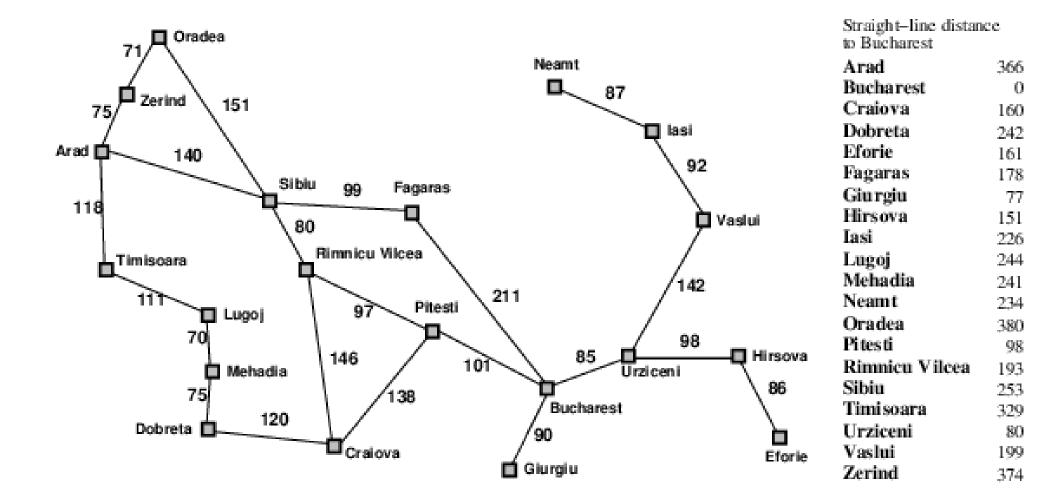
fringe is a queue sorted in decreasing order of desirability

- Special cases
 - greedy search
 - A* search

Romania

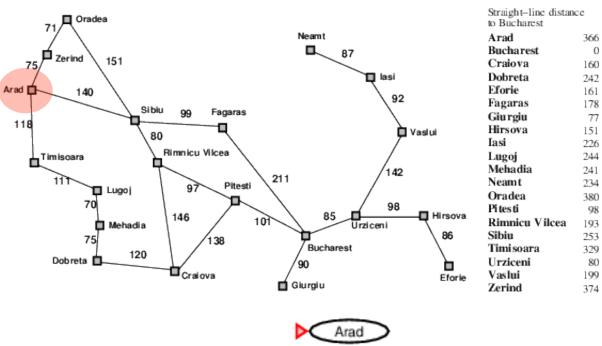


Romania with Step Costs in km

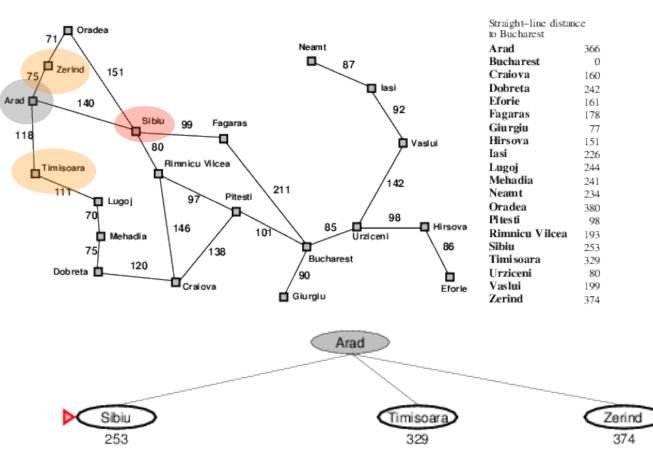


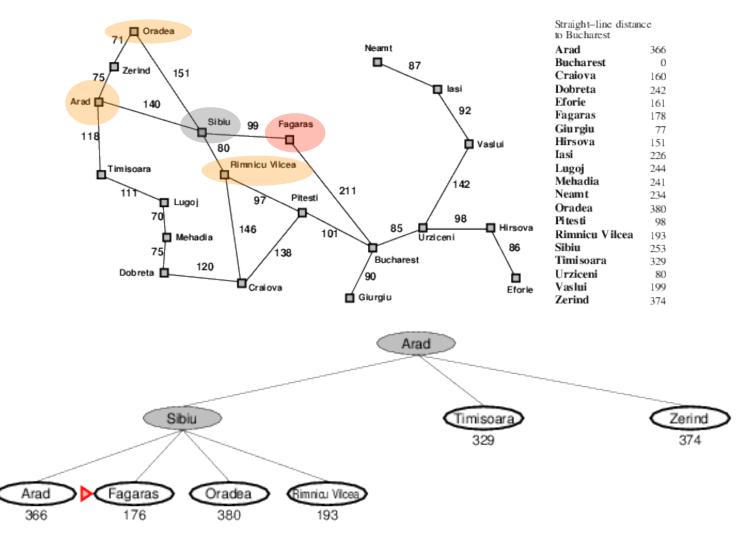
Greedy Search

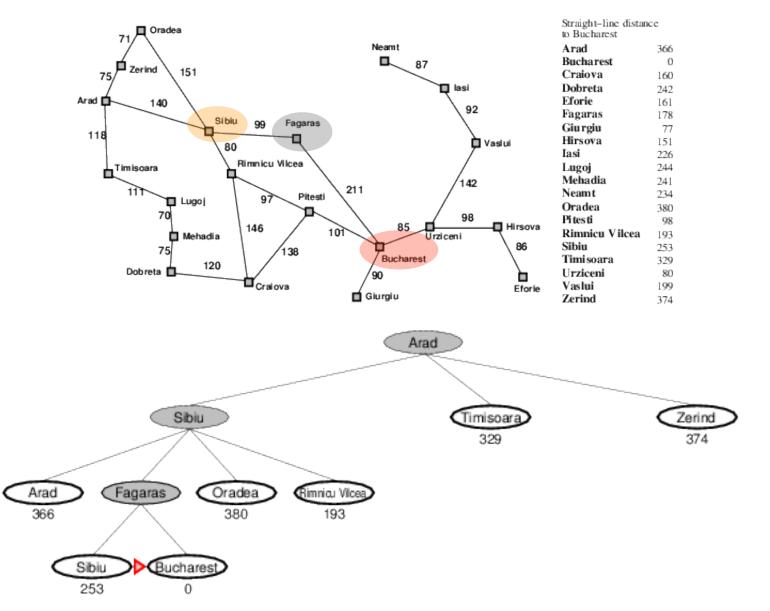
- State evaluation function h(n) (heuristic)
 = estimate of cost from n to the closest goal
- E.g., $h_{SLD}(n)$ = straight-line distance from n to Bucharest
- Greedy search expands the node that **appears** to be closest to goal



366

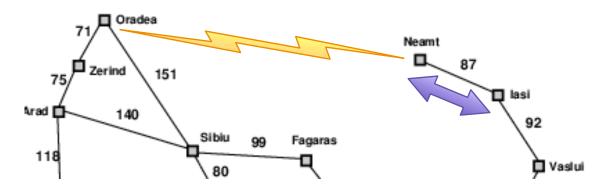






Properties of Greedy Search

 Complete? No, can get stuck in loops, e.g., with Oradea as goal, Iasi → Neamt → Iasi → Neamt →



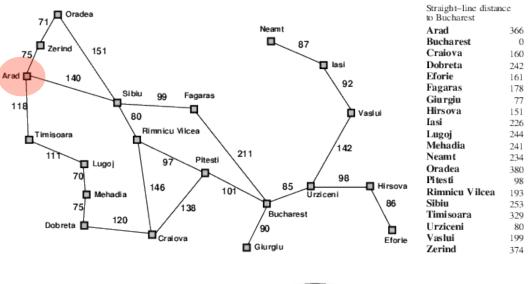
Complete in finite space with repeated-state checking

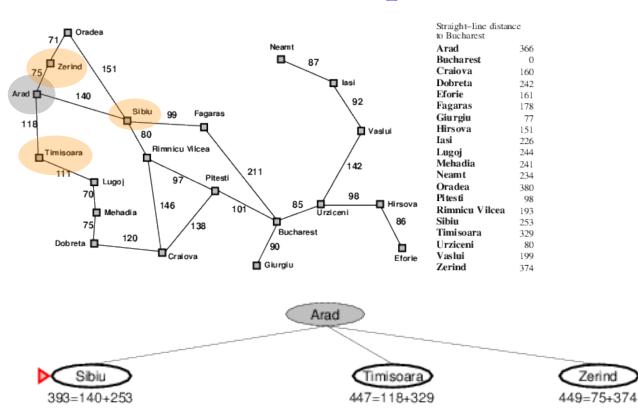
- Time? $O(b^m)$, but a good heuristic can give dramatic improvement
- Space? $O(b^m)$ —keeps all nodes in memory
- Optimal? No

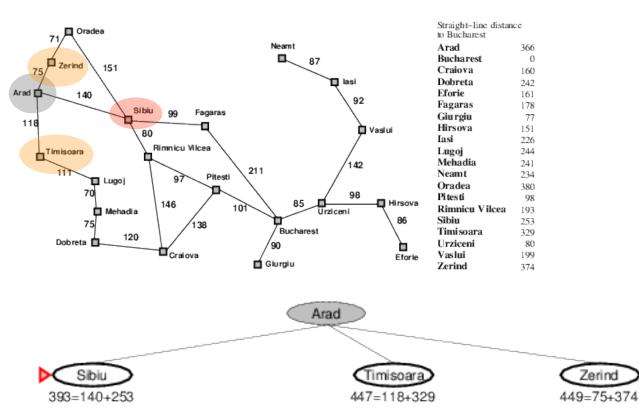
a* search

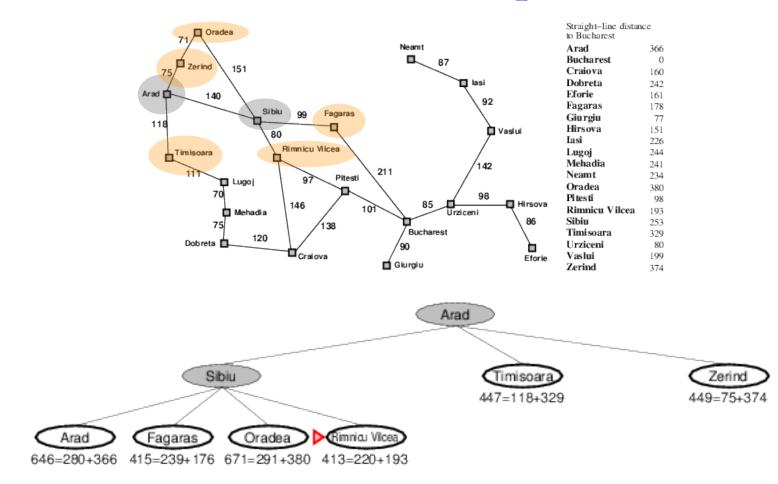
A* Search

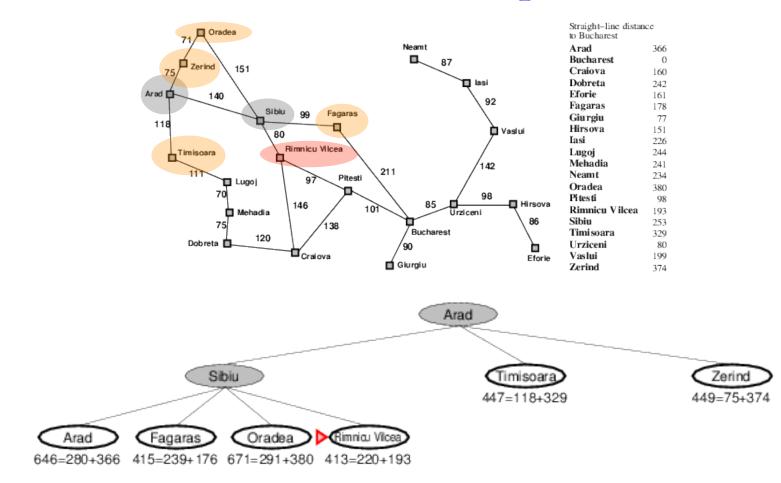
- Idea: avoid expanding paths that are already expensive
- State evaluation function f(n) = g(n) + h(n)
 - g(n) = cost so far to reach n
 - h(n) = estimated cost to goal from n
 - f(n) = estimated total cost of path through n to goal
- A* search uses an admissible heuristic
 - i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the **true** cost from n
 - also require $h(n) \ge 0$, so h(G) = 0 for any goal G
- E.g., $h_{SLD}(n)$ never overestimates the actual road distance
- Theorem: A* search is optimal

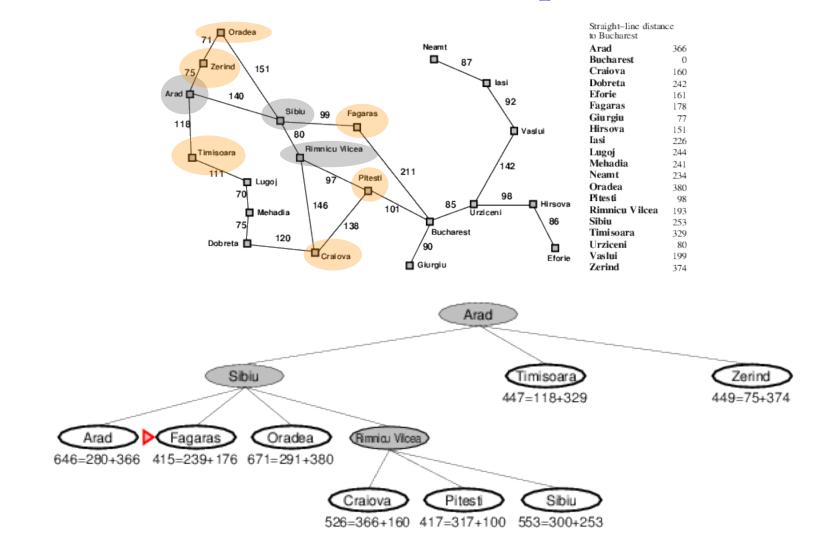


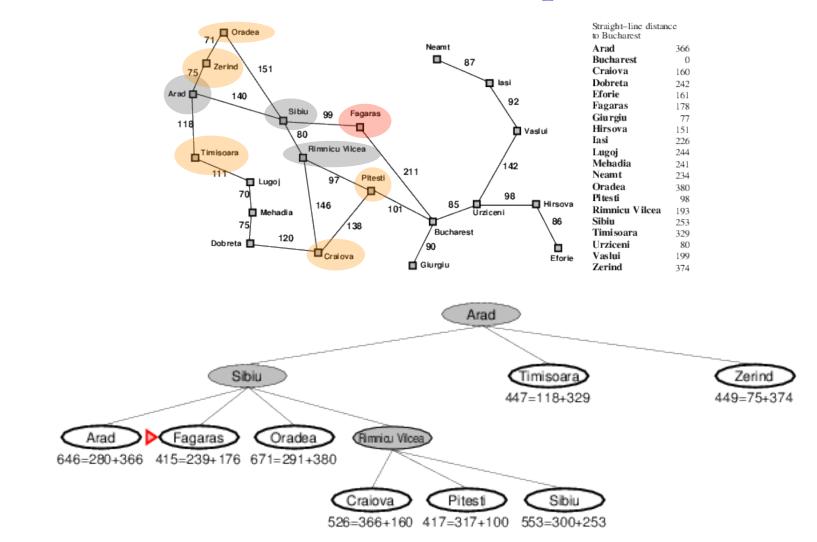


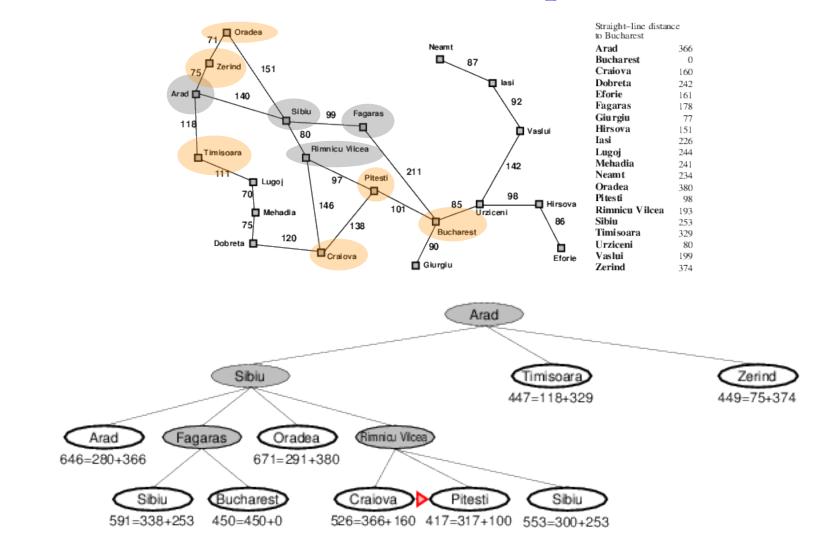


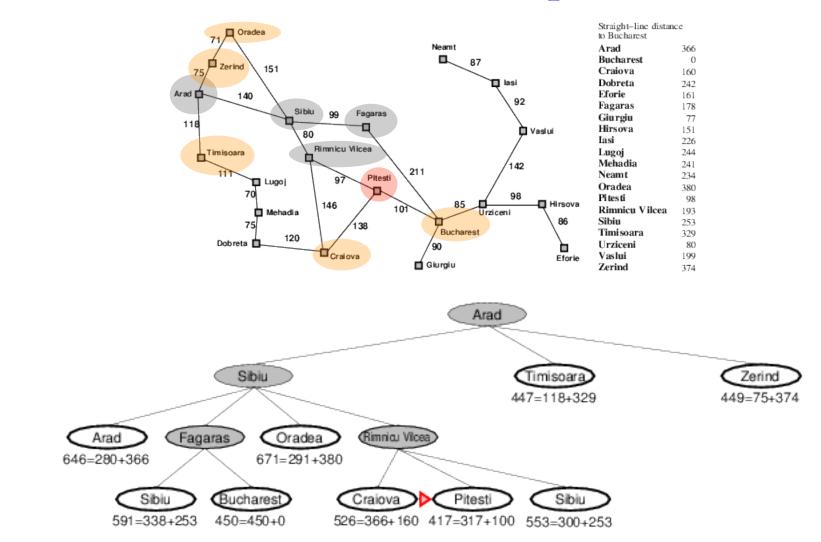


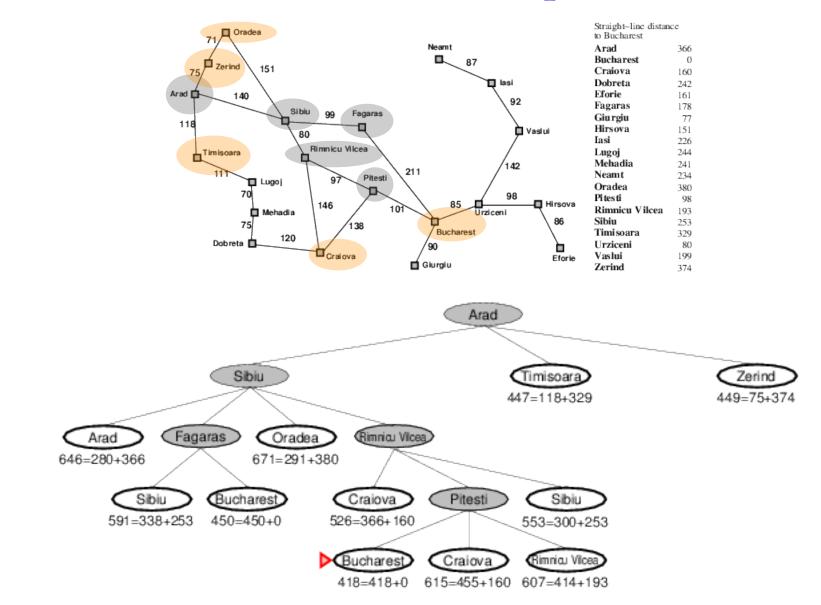


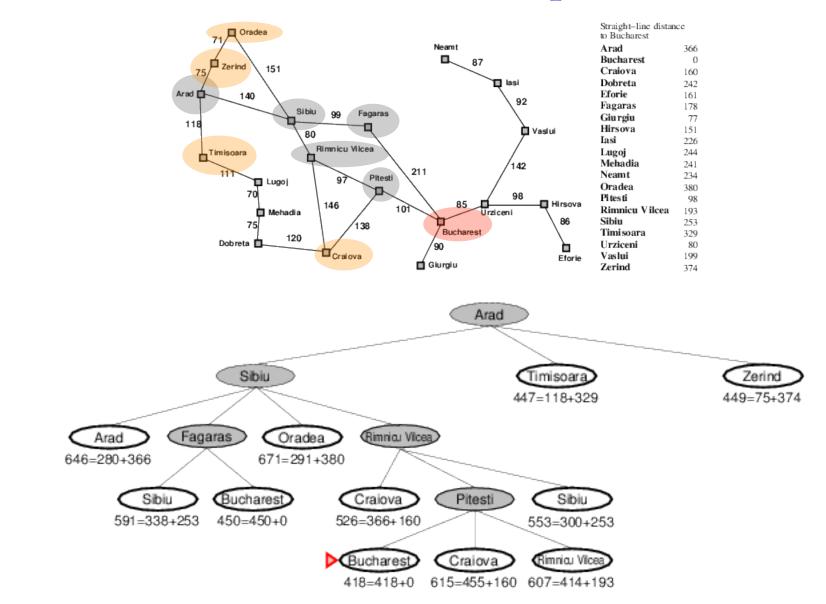






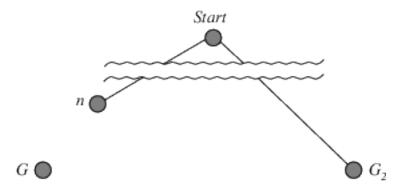






Optimality of A* (Standard Proof)

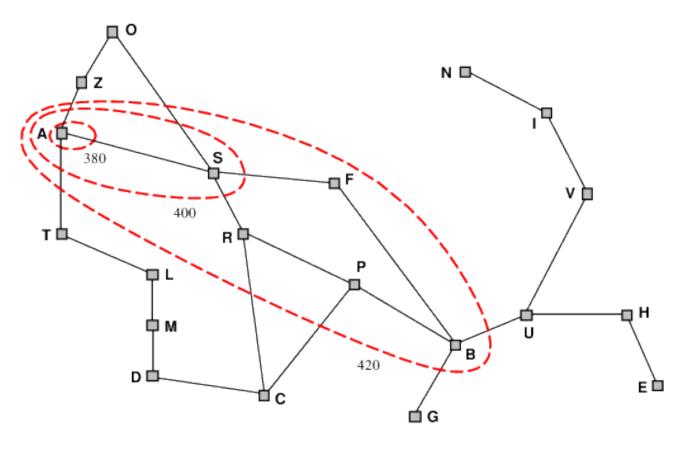
- Suppose some suboptimal goal G_2 has been generated and is in the queue
- Let *n* be an unexpanded node on a shortest path to an optimal goal G_1



- $f(G_2) = g(G_2) \quad \text{since } h(G_2) = 0$ > $g(G_1) \quad \text{since } G_2 \text{ is suboptimal}$ \ge f(n) \quad \text{since } h \text{ is admissible}
- Since $f(G_2) > f(n)$, A^{*} will never terminate at G_2

Optimality of A* (More Useful)

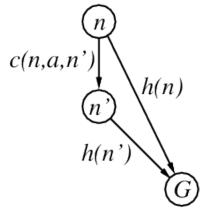
- Lemma: A* expands nodes in order of increasing f value*
- Gradually adds "*f*-contours" of nodes (cf. breadth-first adds layers)
- Contour *i* has all nodes with $f = f_i$, where $f_i < f_{i+1}$



Properties of A*

- Complete? Yes, unless there are infinitely many nodes with $f \leq f(G)$
- Time? Exponential in [relative error in *h* × length of solution]
- Space? Keeps all nodes in memory
- Optimal? Yes—cannot expand f_{i+1} until f_i is finished
 - A* expands all nodes with $f(n) < C^*$
 - A* expands some nodes with $f(n) = C^*$
 - A* expands no nodes with $f(n) > C^*$

• A heuristic is consistent if



$$h(n) \le c(n, a, n') + h(n')$$

• If *h* is consistent, we have

$$f(n') = g(n') + h(n')$$

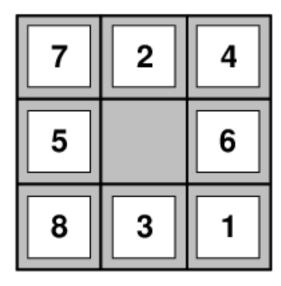
= $g(n) + c(n, a, n') + h(n')$
$$\geq g(n) + h(n)$$

= $f(n)$

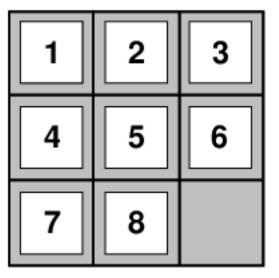
• I.e., f(n) is nondecreasing along any path.

Admissible Heuristics

- E.g., for the 8-puzzle
 - $h_1(n)$ = number of misplaced tiles
 - $h_2(n)$ = total Manhattan distance
 - (i.e., no. of squares from desired location of each tile)



Start State



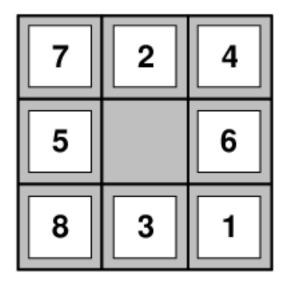
Goal State

- $h_1(S) = ?$
- $h_2(S) = ?$

Admissible Heuristics

- E.g., for the 8-puzzle
 - $h_1(n)$ = number of misplaced tiles
 - $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)



Start State

Goal State

2

5

8

4

з

6

• $h_1(S) = ?6$

• $h_2(S) = 4 + 0 + 3 + 3 + 1 + 0 + 2 + 1 = 14$

Dominance

- If $h_2(n) \ge h_1(n)$ for all n (both admissible) $\rightarrow h_2$ dominates h_1 and is better for search
- Typical search costs:

$$d = 14$$
 IDS = 3,473,941 nodes
 $A^*(h_1) = 539$ nodes
 $A^*(h_2) = 113$ nodes
 $d = 24$ IDS $\approx 54,000,000,000$ nodes
 $A^*(h_1) = 39,135$ nodes

$$A^*(h_2) = 1,641$$
 nodes

• Given any admissible heuristics *h*_a, *h*_b,

 $h(n) = \max(h_a(n), h_b(n))$

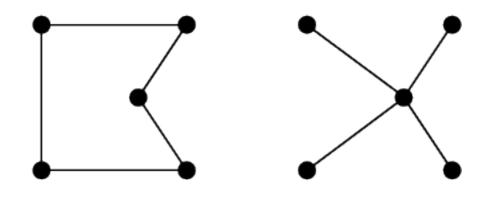
```
is also admissible and dominates h_a, h_b
```

Relaxed Problems

- Admissible heuristics can be derived from the **exact** solution cost of a **relaxed** version of the problem
- If the rules of the 8-puzzle are relaxed so that a tile can move **anywhere** ⇒ h₁(n) gives the shortest solution
- If the rules are relaxed so that a tile can move to **any adjacent square** ⇒ h₂(n) gives the shortest solution
- Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Relaxed Problems

- Well-known example: travelling salesperson problem (TSP)
- Find the shortest tour visiting all cities exactly once



- Minimum spanning tree
 - can be computed in $O(n^2)$
 - is a lower bound on the shortest (open) tour

Summary: A*

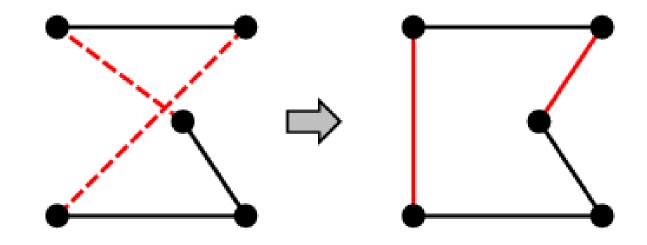
- Heuristic functions estimate costs of shortest paths
- Good heuristics can dramatically reduce search cost
- Greedy best-first search expands lowest *h*
 - incomplete and not always optimal
- A* search expands lowest g + h
 - complete and optimal
 - also optimally efficient (up to tie-breaks, for forward search)
- Admissible heuristics can be derived from exact solution of relaxed problems

iterative improvement algorithms

Iterative Improvement Algorithms

- In many optimization problems, **path** is irrelevant; the goal state itself is the solution
- Then state space = set of "complete" configurations
 - find **optimal** configuration, e.g., TSP
 - find configuration satisfying constraints, e.g., timetable
- In such cases, can use iterative improvement algorithms
 → keep a single "current" state, try to improve it
- Constant space, suitable for online as well as offline search

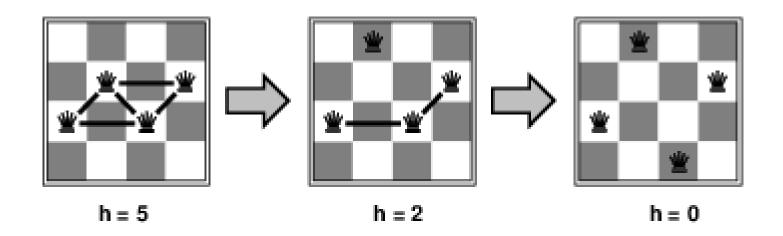
• Start with any complete tour, perform pairwise exchanges



• Variants of this approach get within 1% of optimal quickly with 1000s of cities

Example: *n*-Queens

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
- Move a queen to reduce number of conflicts



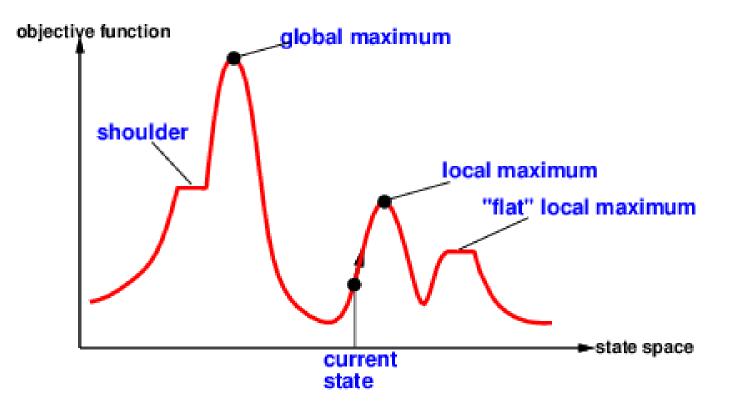
• Almost always solves *n*-queens problems almost instantaneously for very large *n*, e.g., *n* = 1 million

Hill-Climbing

- For instance Gradient Ascent (or Descent)
- "Like climbing Everest in thick fog with amnesia"

Hill-Climbing

• Useful to consider state space landscape



- Random-restart hill climbing overcomes local maxima—trivially complete
- Random sideways moves [©] escape from shoulders [©] loop on flat maxima

Simulated Annealing

- Idea: escape local maxima by allowing some "bad" moves
- But gradually decrease their size and frequency

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
  inputs: problem, a problem
           schedule, a mapping from time to "temperature"
  local variables: current, a node
                     next, a node
                     T, a "temperature" controlling prob. of downward steps
  current ← MAKE-NODE(INITIAL-STATE[problem])
  for t \leftarrow 1 to \infty do
      T \leftarrow schedule[t]
      if T = 0 then return current
      next ~ a randomly selected successor of current
      \Delta E \leftarrow VALUE[next] - VALUE[current]
      if \Delta E > 0 then current \leftarrow next
      else current \leftarrow next only with probability e^{\Delta E/T}
```

Properties of Simulated Annealing

• At fixed "temperature" T, state occupation probability reaches Boltzman distribution

 $p(x) = \alpha e^{\frac{E(x)}{kT}}$

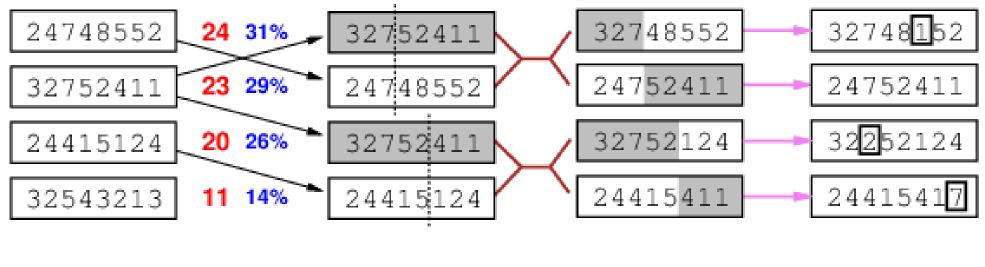
- T decreased slowly enough \implies always reach best state x^* because $e^{\frac{E(x^*)}{kT}}/e^{\frac{E(x)}{kT}} = e^{\frac{E(x^*)-E(x)}{kT}} \gg 1$ for small T
- Is this necessarily an interesting guarantee?
- Devised by Metropolis et al., 1953, for physical process modelling
- Widely used in VLSI layout, airline scheduling, etc.

Local Beam Search

- Idea: keep *k* states instead of 1; choose top *k* of all their successors
- Not the same as *k* searches run in parallel!
- Searches that find good states recruit other searches to join them
- Problem: quite often, all *k* states end up on same local hill
- Idea: choose *k* successors randomly, biased towards good ones
- Observe the close analogy to natural selection!

Genetic Algorithms

• Stochastic local beam search + generate successors from **pairs** of states



Fitness Selection

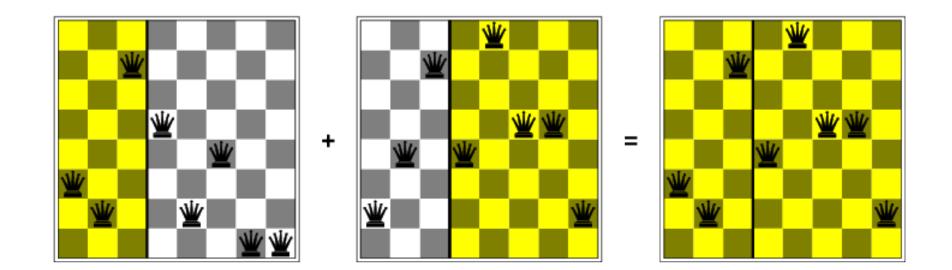
Pairs

Cross-Over

Mutation

Genetic Algorithms

- GAs require states encoded as strings (GPs use programs)
- Crossover helps iff substrings are meaningful components



• GAs *≠* evolution: e.g., real genes encode replication machinery!

Continuous State Spaces

- Suppose we want to site three airports in Romania
 - 6-D state space defined by $(x_1, y_2), (x_2, y_2), (x_3, y_3)$
 - objective function $f(x_1, y_2, x_2, y_2, x_3, y_3) =$ sum of squared distances from each city to nearest airport
- Discretization methods turn continuous space into discrete space, e.g., empirical gradient considers $\pm \delta$ change in each coordinate
- Gradient methods compute

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3}\right)$$

to increase/reduce f, e.g., by $\mathbf{x} \leftarrow \mathbf{x} + \alpha \nabla f(\mathbf{x})$

• Sometimes can solve for $\nabla f(\mathbf{x}) = 0$ exactly (e.g., with one city) Newton-Raphson (1664, 1690) iterates $\mathbf{x} \leftarrow \mathbf{x} - \mathbf{H}_f^{-1}(\mathbf{x}) \nabla f(\mathbf{x})$ to solve $\nabla f(\mathbf{x}) = 0$, where $\mathbf{H}_{ij} = \partial^2 f / \partial x_i \partial x_j$

Summary

- Exact search
 - exhaustive exploration of the search space
 - search with heuristics: a*
- Approximate search
 - hill-climbing
 - simulated annealing
 - genetic algorithms (briefly)
 - local search in continuous spaces (very briefly)