
Informed Search

Philipp Koehn

24 September 2015

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

1Heuristic

From Wikipedia:

any approach to problem solving, learning, or discovery
that employs a practical method

not guaranteed to be optimal or perfect
but sufficient for the immediate goals

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

2Outline

● Best-first search

● A∗ search

● Heuristic algorithms

– hill-climbing
– simulated annealing
– genetic algorithms (briefly)
– local search in continuous spaces (very briefly)

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

3

best-first search

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

4Review: Tree Search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if fringe is empty then return failure
node←REMOVE-FRONT(fringe)
if GOAL-TEST[problem] applied to STATE(node) succeeds return node
fringe← INSERTALL(EXPAND(node, problem), fringe)

● Search space is in form of a tree

● Strategy is defined by picking the order of node expansion

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

5Best-First Search

● Idea: use an evaluation function for each node

– estimate of “desirability”

⇒ Expand most desirable unexpanded node

● Implementation:
fringe is a queue sorted in decreasing order of desirability

● Special cases

– greedy search
– A∗ search

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

6Romania

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

7Romania with Step Costs in km

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

8Greedy Search

● State evaluation function h(n) (heuristic)
= estimate of cost from n to the closest goal

● E.g., hSLD(n) = straight-line distance from n to Bucharest

● Greedy search expands the node that appears to be closest to goal

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

9Greedy Search Example

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

10Greedy Search Example

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

11Greedy Search Example

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

12Greedy Search Example

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

13Properties of Greedy Search

● Complete? No, can get stuck in loops, e.g., with Oradea as goal,
Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

● Time? O(bm), but a good heuristic can give dramatic improvement

● Space? O(bm)—keeps all nodes in memory

● Optimal? No

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

14

a* search

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

15A∗ Search

● Idea: avoid expanding paths that are already expensive

● State evaluation function f(n) = g(n) + h(n)

– g(n) = cost so far to reach n
– h(n) = estimated cost to goal from n
– f(n) = estimated total cost of path through n to goal

● A∗ search uses an admissible heuristic

– i.e., h(n) ≤ h∗(n)where h∗(n) is the true cost from n
– also require h(n) ≥ 0, so h(G) = 0 for any goal G

● E.g., hSLD(n) never overestimates the actual road distance

● Theorem: A∗ search is optimal

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

16A∗ Search Example

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

17A∗ Search Example

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

18A∗ Search Example

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

19A∗ Search Example

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

20A∗ Search Example

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

21A∗ Search Example

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

22A∗ Search Example

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

23A∗ Search Example

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

24A∗ Search Example

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

25A∗ Search Example

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

26A∗ Search Example

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

27Optimality of A∗ (Standard Proof)

● Suppose some suboptimal goal G2 has been generated and is in the queue

● Let n be an unexpanded node on a shortest path to an optimal goal G1

f(G2) = g(G2) since h(G2) = 0

> g(G1) since G2 is suboptimal

≥ f(n) since h is admissible

● Since f(G2) > f(n), A∗ will never terminate at G2

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

28Optimality of A∗ (More Useful)

● Lemma: A∗ expands nodes in order of increasing f value∗

● Gradually adds “f -contours” of nodes (cf. breadth-first adds layers)

● Contour i has all nodes with f = fi, where fi < fi+1

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

29Properties of A∗

● Complete? Yes, unless there are infinitely many nodes with f ≤ f(G)

● Time? Exponential in [relative error in h × length of solution]

● Space? Keeps all nodes in memory

● Optimal? Yes—cannot expand fi+1 until fi is finished

A∗ expands all nodes with f(n) < C∗

A∗ expands some nodes with f(n) = C∗

A∗ expands no nodes with f(n) > C∗

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

30Proof of Lemma: Consistency

● A heuristic is consistent if

h(n) ≤ c(n,a,n′) + h(n′)

● If h is consistent, we have
f(n′) = g(n′) + h(n′)

= g(n) + c(n,a,n′) + h(n′)

≥ g(n) + h(n)

= f(n)

● I.e., f(n) is nondecreasing along any path.

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

31Admissible Heuristics

● E.g., for the 8-puzzle

– h1(n) = number of misplaced tiles
– h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

● h1(S) =?

● h2(S) =?

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

32Admissible Heuristics

● E.g., for the 8-puzzle

– h1(n) = number of misplaced tiles
– h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

● h1(S) =? 6

● h2(S) =? 4+0+3+3+1+0+2+1 = 14

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

33Dominance

● If h2(n) ≥ h1(n) for all n (both admissible)
→ h2 dominates h1 and is better for search

● Typical search costs:
d = 14 IDS = 3,473,941 nodes

A∗
(h1) = 539 nodes

A∗
(h2) = 113 nodes

d = 24 IDS ≈ 54,000,000,000 nodes
A∗
(h1) = 39,135 nodes

A∗
(h2) = 1,641 nodes

● Given any admissible heuristics ha, hb,

h(n) = max(ha(n), hb(n))

is also admissible and dominates ha, hb

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

34Relaxed Problems

● Admissible heuristics can be derived from the exact solution cost
of a relaxed version of the problem

● If the rules of the 8-puzzle are relaxed so that a tile can move anywhere
⇒ h1(n) gives the shortest solution

● If the rules are relaxed so that a tile can move to any adjacent square
⇒ h2(n) gives the shortest solution

● Key point: the optimal solution cost of a relaxed problem is no greater than
the optimal solution cost of the real problem

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

35Relaxed Problems

● Well-known example: travelling salesperson problem (TSP)

● Find the shortest tour visiting all cities exactly once

● Minimum spanning tree

– can be computed in O(n2
)

– is a lower bound on the shortest (open) tour

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

36Summary: A*

● Heuristic functions estimate costs of shortest paths

● Good heuristics can dramatically reduce search cost

● Greedy best-first search expands lowest h

– incomplete and not always optimal

● A∗ search expands lowest g + h

– complete and optimal
– also optimally efficient (up to tie-breaks, for forward search)

● Admissible heuristics can be derived from exact solution of relaxed problems

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

37

iterative improvement algorithms

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

38Iterative Improvement Algorithms

● In many optimization problems, path is irrelevant;
the goal state itself is the solution

● Then state space = set of “complete” configurations

– find optimal configuration, e.g., TSP
– find configuration satisfying constraints, e.g., timetable

● In such cases, can use iterative improvement algorithms
→ keep a single “current” state, try to improve it

● Constant space, suitable for online as well as offline search

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

39Example: Travelling Salesperson Problem

● Start with any complete tour, perform pairwise exchanges

● Variants of this approach get within 1% of optimal quickly with 1000s of cities

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

40Example: n-Queens

● Put n queens on an n × n board with no two queens
on the same row, column, or diagonal

● Move a queen to reduce number of conflicts

● Almost always solves n-queens problems almost instantaneously
for very large n, e.g., n=1 million

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

41Hill-Climbing

● For instance Gradient Ascent (or Descent)

● “Like climbing Everest in thick fog with amnesia”

function HILL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node

neighbor, a node

current←MAKE-NODE(INITIAL-STATE[problem])
loop do

neighbor←a highest-valued successor of current
if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
current←neighbor

end

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

42Hill-Climbing

● Useful to consider state space landscape

● Random-restart hill climbing overcomes local maxima—trivially complete

● Random sideways moves , escape from shoulders / loop on flat maxima

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

43Simulated Annealing

● Idea: escape local maxima by allowing some “bad” moves

● But gradually decrease their size and frequency

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature”
local variables: current, a node

next, a node
T, a “temperature” controlling prob. of downward steps

current←MAKE-NODE(INITIAL-STATE[problem])
for t← 1 to ∞ do

T←schedule[t]
if T = 0 then return current
next←a randomly selected successor of current
∆E←VALUE[next] – VALUE[current]
if ∆E > 0 then current←next
else current←next only with probability e∆ E/T

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

44Properties of Simulated Annealing

● At fixed “temperature” T , state occupation probability reaches
Boltzman distribution

p(x) = αe
E(x)
kT

● T decreased slowly enoughÔ⇒ always reach best state x∗

because e
E(x∗)
kT /e

E(x)
kT = e

E(x∗)−E(x)
kT ≫ 1 for small T

● Is this necessarily an interesting guarantee?

● Devised by Metropolis et al., 1953, for physical process modelling

● Widely used in VLSI layout, airline scheduling, etc.

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

45Local Beam Search

● Idea: keep k states instead of 1; choose top k of all their successors

● Not the same as k searches run in parallel!

● Searches that find good states recruit other searches to join them

● Problem: quite often, all k states end up on same local hill

● Idea: choose k successors randomly, biased towards good ones

● Observe the close analogy to natural selection!

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

46Genetic Algorithms

● Stochastic local beam search + generate successors from pairs of states

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

47Genetic Algorithms

● GAs require states encoded as strings (GPs use programs)

● Crossover helps iff substrings are meaningful components

● GAs ≠ evolution: e.g., real genes encode replication machinery!

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

48Continuous State Spaces

● Suppose we want to site three airports in Romania

– 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)

– objective function f(x1, y2, x2, y2, x3, y3) =
sum of squared distances from each city to nearest airport

● Discretization methods turn continuous space into discrete space,
e.g., empirical gradient considers ±δ change in each coordinate

● Gradient methods compute

∇f = (
∂f

∂x1
,
∂f

∂y1
,
∂f

∂x2
,
∂f

∂y2
,
∂f

∂x3
,
∂f

∂y3
)

to increase/reduce f , e.g., by x← x + α∇f(x)

● Sometimes can solve for ∇f(x) = 0 exactly (e.g., with one city)
Newton–Raphson (1664, 1690) iterates x← x −H−1

f (x)∇f(x)
to solve ∇f(x) = 0, where Hij =∂2f/∂xi∂xj

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

49Summary

● Exact search

– exhaustive exploration of the search space
– search with heuristics: a*

● Approximate search

– hill-climbing
– simulated annealing
– genetic algorithms (briefly)
– local search in continuous spaces (very briefly)

Philipp Koehn Artificial Intelligence: Informed Search 24 September 2015

