First Order Logic

Philipp Koehn

8 October 2015

Wittgenstein: Tractatus Logico-Philosophicus

- 1. The world is everything that is the case.
- 2. What is the case (a fact) is the existence of states of affairs.
- 3. A logical picture of facts is a thought.
- 4. A thought is a proposition with a sense.
- 5. A proposition is a truth-function of elementary propositions. (An elementary proposition is a truth-function of itself.)
- 6. The general form of a proposition is the general form of a truth function, which is: $[\bar{p}, \bar{\xi}, N(\bar{\xi})]$. This is the general form of a proposition.
- 7. Whereof one cannot speak, thereof one must be silent.

Outline

- Why first order logic?
- Syntax and semantics of first order logic
- Fun with sentences
- Wumpus world in first order logic

why?

Pros and Cons of Propositional Logic

- PRO: Propositional logic is **declarative**: pieces of syntax correspond to facts
- PRO: Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
- PRO: Propositional logic is **compositional**: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- PRO: Meaning in propositional logic is **context-independent** (unlike natural language, where meaning depends on context)
- CON: Propositional logic has very limited expressive power (unlike natural language)
 E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

First-Order Logic

- Propositional logic: world contains facts
- First-order logic: the world contains **objects**, **relations**, and **functions**
- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries . . .
- Relations: red, round, bogus, prime, multistoried ..., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
- Functions: father of, best friend, third inning of, one more than, end of ...

More Logics

Language	Ontological Commitment	Epistemological Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief
Fuzzy logic	facts + degree of truth	known interval value

Higher-order logic:

relations and functions operate not only on objects, but also on relations and functions

syntax and semantics

Syntax of FOL: Basic Elements

• Constants: KingJohn, 2, UCB,...

• Predicates: Brother, >, ...

• Functions: Sqrt, LeftLegOf,...

• Variables: x, y, a, b, \dots

• Connectives: ∧ ∨ ¬ ⇒ ⇒

• Equality: =

• Quantifiers: ∀ ∃

Atomic Sentences

- Atomic sentence = $predicate(term_1, ..., term_n)$ or $term_1 = term_2$
- Term = $function(term_1, ..., term_n)$ or constant or variable
- E.g., Brother(KingJohn, RichardTheLionheart) > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Complex Sentences

Complex sentences are made from atomic sentences using connectives

$$\neg S$$
, $S_1 \land S_2$, $S_1 \lor S_2$, $S_1 \Longrightarrow S_2$, $S_1 \Leftrightarrow S_2$

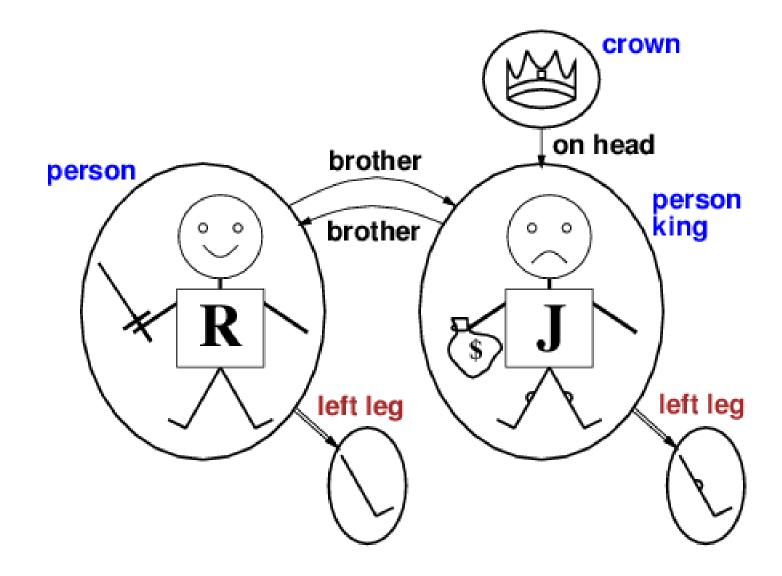
For instance

- $Sibling(KingJohn, Richard) \implies Sibling(Richard, KingJohn)$
- $->(1,2)\vee \leq (1,2)$
- $->(1,2) \land \neg>(1,2)$

Truth in First-Order Logic

- Sentences are true with respect to a model and an interpretation
- Model contains ≥ 1 objects (domain elements) and relations among them
- Interpretation specifies referents for
 - constant symbols → objects
 - predicate symbols → relations
 - function symbols → functional relations
- An atomic sentence $predicate(term_1, ..., term_n)$ is true iff the objects referred to by $term_1, ..., term_n$ are in the relation referred to by predicate

Models for FOL: Example



Truth Example

- Consider the interpretation in which
 - *Richard* → Richard the Lionheart
 - *John* → the evil King John
 - Brother \rightarrow the brotherhood relation
- Under this interpretation, Brother(Richard, John) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

Models for FOL: Lots!

- Entailment in propositional logic can be computed by enumerating models
- We **can** enumerate the FOL models for a given KB vocabulary:
- For each number of domain elements n from 1 to ∞ For each k-ary predicate P_k in the vocabulary For each possible k-ary relation on n objects For each constant symbol C in the vocabulary For each choice of referent for C from n objects
- Computing entailment by enumerating FOL models is not easy!

Universal Quantification

- Syntax: ∀ ⟨variables⟩ ⟨sentence⟩
- Everyone at JHU is smart: $\forall x \ At(x, JHU) \Longrightarrow Smart(x)$
- $\forall x \ P$ is true in a model m iff P is true with x being **each** possible object in the model
- **Roughly** speaking, equivalent to the conjunction of instantiations of *P*

```
(At(KingJohn, JHU) \Longrightarrow Smart(KingJohn))
 \land (At(Richard, JHU) \Longrightarrow Smart(Richard))
 \land (At(Jane, JHU) \Longrightarrow Smart(Jane))
 \land \dots
```

A Common Mistake to Avoid

- Typically, \Longrightarrow is the main connective with \forall
- Common mistake: using ∧ as the main connective with ∀:

$$\forall x \ At(x, JHU) \land Smart(x)$$

means "Everyone is at JHU and everyone is smart"

Correct

$$\forall x \ At(x, JHU) \implies Smart(x)$$

means "For everyone, if she is at JHU, then she is smart

Existential Quantification

- Syntax: ∃ ⟨variables⟩ ⟨sentence⟩
- Someone at JHU is smart:

```
\exists x \ At(x, JHU) \land Smart(x)
```

- $\exists x \ P$ is true in a model m iff P is true with x being **some** possible object in the model
- **Roughly** speaking, equivalent to the disjunction of instantiations of *P*

```
(At(KingJohn, JHU) \land Smart(KingJohn))
 \lor (At(Richard, JHU) \land Smart(Richard))
 \lor (At(JHU, JHU) \land Smart(JHU))
 \lor \dots
```

Another Common Mistake to Avoid

- Typically, \wedge is the main connective with \exists
- Common mistake: using \implies as the main connective with \exists :

$$\exists x \ At(x, JHU) \Longrightarrow Smart(x)$$

is true if there is anyone who is not at JHU

Correct

$$\exists x \ At(x, JHU) \land Smart(x)$$

is true if there is someone who is at JHU and smart

Properties of Quantifiers

- $\forall x \ \forall y$ is the same as $\forall y \ \forall x$ (why?)
- $\exists x \exists y$ is the same as $\exists y \exists x$ (why?)
- $\exists x \ \forall y$ is **not** the same as $\forall y \ \exists x$
- $\exists x \ \forall y \ Loves(x,y)$ "There is a person who loves everyone in the world"
- $\forall y \exists x \ Loves(x,y)$ "Everyone in the world is loved by at least one person"
- Quantifier duality: each can be expressed using the other
- $\forall x \ Likes(x, IceCream)$ $\neg \exists x \ \neg Likes(x, IceCream)$
- $\exists x \ Likes(x, Broccoli)$ $\neg \forall x \ \neg Likes(x, Broccoli)$

Equality

- $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object
- For instance
 - 1 = 2 and $\forall x \times (Sqrt(x), Sqrt(x)) = x$ are satisfiable
 - 2 = 2 is valid

(note: syntax does not imply anything about the semantics of 1, 2, Sqrt(x), etc.)

• Definition of (full) *Sibling* in terms of *Parent*

$$\forall x, y \; Sibling(x, y) \Leftrightarrow \left[\neg (x = y) \land \exists m, f \; \neg (m = f) \land Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y) \right]$$

fun with sentences

Fun with Sentences

Brothers are siblings

$$\forall x, y \; Brother(x, y) \Longrightarrow Sibling(x, y)$$

• "Sibling" is symmetric

$$\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$$

One's mother is one's female parent

$$\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y))$$

• A first cousin is a child of a parent's sibling

$$\forall x, y \; FirstCousin(x, y) \Leftrightarrow \exists p, ps \; Parent(p, x) \land Sibling(ps, p) \land Parent(ps, y)$$

Lincoln Quote

You can fool all the people some of the time, and some of the people all the time, but you cannot fool all the people all the time.

```
\forall p \exists t \ Fool(p,t) \blacksquare
\exists p \ \forall t \ Fool(p,t) \blacksquare
\land
\neg \ \forall p \ \forall t \ Fool(p,t)
```

Donkey Sentences

- Every farmer owns a donkey.
 - $\forall f \ (Farmer(f) \land \exists d \ (Donkey(d) \land Own(f,d)))$ ▮
 - $\exists d \ (Donkey(d) \land \forall f \ (Farmer(f) \land Own(f,d)))$
- Every human lives on a planet.
 - $-\exists d \ (Planet(p) \land \forall h \ (Human(f) \land LivesOn(h, p)))$
- Every farmer who owns a donkey beats it.
 - $\forall f \; Farmer(f) \land \exists d \; (Donkey(d) \land Own(f,d) \Longrightarrow Beats(f,d))$ but what if a farmer has a donkey d_1 and a pig d_2 and he beats neither $Donkey(d_2) \land Own(f,d_2) \Longrightarrow Beats(f,d_2) \text{ is true } (false \land true \Longrightarrow false)$
 - $\forall f \ \forall d \ (Farmer(f) \land Donkey(d) \land Own(f,d) \Longrightarrow Beats(f,d))$ but this means "Every farmer beats every donkey he owns."

Natural Language

- First order logic is close to the semantics of natural language
- But there are limitations
 - "There is at least one thing John has in common with Peter."
 Requires a quantifier over predicates.
 - "The cake is very good." $\exists c \ Cake(c) \land Good(c)$ but not Very(c)Functions and relations cannot be qualified.
- Natural language sentences are often intentionally vague and ambiguous

wampus world

Knowledge Base for the Wumpus World

• "Perception"

```
\forall b, g, t \ Percept([Smell, b, g], t) \Longrightarrow Smelt(t)
\forall s, b, t \ Percept([s, b, Glitter], t) \Longrightarrow AtGold(t)
```

- Reflex: $\forall t \ AtGold(t) \implies Action(Grab, t)$
- Reflex with internal state: do we have the gold already? $\forall t \ AtGold(t) \land \neg Holding(Gold, t) \Longrightarrow Action(Grab, t)$
- Holding(Gold, t) cannot be observed \Rightarrow keeping track of change is essential

Deducing Hidden Properties

• Properties of locations:

$$\forall x, t \ At(Agent, x, t) \land Smelt(t) \Longrightarrow Smelly(x)$$

 $\forall x, t \ At(Agent, x, t) \land Breeze(t) \Longrightarrow Breezy(x)$

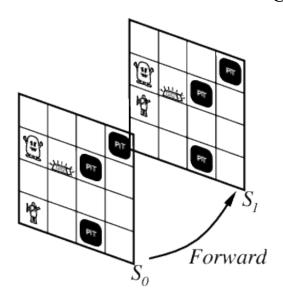
- Squares are breezy near a pit:
- Diagnostic rule—infer cause from effect $\forall y \ Breezy(y) \Longrightarrow \exists x \ Pit(x) \land Adjacent(x,y)$
- Causal rule—infer effect from cause $\forall x, y \; Pit(x) \land Adjacent(x, y) \implies Breezy(y)$
- Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy
- Definition for the Breezy predicate: $\forall y \ Breezy(y) \Leftrightarrow [\exists x \ Pit(x) \land Adjacent(x,y)]$

States and Fluents

- By acting, the agent moves through a sequence of situations *s*
- Fluents: aspects of the world that may change
 - current position
 - having an arrow
 - holding the gold
- Taking actions requires updates to the fluents

Keeping Track of Change

- Facts hold in situations, rather than eternally E.g., Holding(Gold, Now) rather than just Holding(Gold)
- Situation calculus is one way to represent change in FOL: Adds a situation argument to each non-eternal predicate E.g., *Now* in *Holding*(*Gold*, *Now*) denotes a situation
- Situations are connected by the Result function Result(a, s) is the situation that results from doing a in s



Describing Actions

- "Effect" axiom—describe changes due to action $\forall s \ AtGold(s) \Longrightarrow Holding(Gold, Result(Grab, s))$
- "Frame" axiom—describe **non-changes** due to action $\forall s \; HaveArrow(s) \Longrightarrow HaveArrow(Result(Grab, s))$
- Frame problem: find an elegant way to handle non-change
 - (a) representation—avoid frame axioms
 - (b) inference—avoid repeated "copy-overs" to keep track of state
- Qualification problem: true descriptions of real actions require endless caveats—what if gold is slippery or nailed down or . . .
- Ramification problem: real actions have many secondary consequences—what about the dust on the gold, wear and tear on gloves, . . .

Describing Actions

- Successor-state axioms solve the representational frame problem
- Each axiom is "about" a **predicate** (not an action per se):

```
P true afterwards 

⇔ [an action made P true]
```

∨ P true already and no action made P false]

• For holding the gold:

```
\forall a, s \; Holding(Gold, Result(a, s)) \Leftrightarrow
[(a = Grab \land AtGold(s))
\lor (Holding(Gold, s) \land a \neq Release)]
```

Making Plans

• Initial condition in KB:

$$At(Agent, [1, 1], S_0)$$

 $At(Gold, [1, 2], S_0)$

- Query: $Ask(KB, \exists s \ Holding(Gold, s))$ i.e., in what situation will I be holding the gold?
- Answer: $\{s/Result(Grab, Result(Forward, S_0))\}$ i.e., go forward and then grab the gold
- This assumes that the agent is interested in plans starting at S_0 and that S_0 is the only situation described in the KB

Making Plans: A Better Way

- Represent plans as action sequences $[a_1, a_2, \dots, a_n]$
- PlanResult(p, s) is the result of executing p in s
- Then the query $Ask(KB, \exists p \; Holding(Gold, PlanResult(p, S_0)))$ has the solution $\{p/[Forward, Grab]\}$
- Definition of *PlanResult* in terms of *Result*:

```
\forall s \ PlanResult([],s) = s
\forall a,p,s \ PlanResult([a|p],s) = PlanResult(p,Result(a,s))
```

• Planning systems are special-purpose reasoners designed to do this type of inference more efficiently than a general-purpose reasoner

Summary

- First-order logic
 - objects and relations are semantic primitives
 - syntax: constants, functions, predicates, equality, quantifiers

• Increased expressive power: sufficient to define wumpus world

- Situation calculus
 - conventions for describing actions and change in FOL
 - can formulate planning as inference on a situation calculus KB