
Decision Theory

Philipp Koehn

5 November 2015

Philipp Koehn Artificial Intelligence: Decision Theory 5 November 2015



1Outline

● Rational preferences

● Utilities

● Multiattribute utilities

● Decision networks

● Value of information

● Sequential decision problems

● Value iteration

● Policy iteration

Philipp Koehn Artificial Intelligence: Decision Theory 5 November 2015



2

preferences

Philipp Koehn Artificial Intelligence: Decision Theory 5 November 2015



3Preferences

● An agent chooses among prizes (A, B, etc.)

● Notation:
A ≻ B A preferred to B
A ∼ B indifference between A and B
A ≻∼ B B not preferred to A

● Lottery L = [p,A; (1 − p),B], i.e., situations with uncertain prizes
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4Rational Preferences

● Idea: preferences of a rational agent must obey constraints

● Rational preferences Ô⇒
behavior describable as maximization of expected utility

● Constraints:
Orderability

(A ≻ B) ∨ (B ≻ A) ∨ (A ∼ B)
Transitivity

(A ≻ B) ∧ (B ≻ C) Ô⇒ (A ≻ C)
Continuity

A ≻ B ≻ C Ô⇒ ∃p [p,A; 1 − p,C] ∼ B
Substitutability

A ∼ B Ô⇒ [p,A; 1 − p,C] ∼ [p,B; 1 − p,C]
Monotonicity

A ≻ B Ô⇒ (p ≥ q ⇔ [p,A; 1 − p,B] ≻∼ [q,A; 1 − q,B])
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5Rational Preferences

● Violating the constraints leads to self-evident irrationality

● For example: an agent with intransitive preferences can be induced to give away
all its money

● If B ≻ C, then an agent who has C
would pay (say) 1 cent to get B

● If A ≻ B, then an agent who has B
would pay (say) 1 cent to get A

● If C ≻ A, then an agent who has A
would pay (say) 1 cent to get C
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6Maximizing Expected Utility

● Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):

Given preferences satisfying the constraints
there exists a real-valued function U such that

U(A) ≥ U(B) ⇔ A ≻∼ B
U([p1, S1; . . . ; pn, Sn]) = ∑i piU(Si)

● MEU principle:
Choose the action that maximizes expected utility

● Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and probabilities

● E.g., a lookup table for perfect tictactoe
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8Utilities

● Utilities map states to real numbers. Which numbers?

● Standard approach to assessment of human utilities

– compare a given state A to a standard lottery Lp that has
∗ “best possible prize” u⊺ with probability p
∗ “worst possible catastrophe” u� with probability (1 − p)

– adjust lottery probability p until A ∼ Lp
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9Utility Scales

● Normalized utilities: u⊺ = 1.0, u� = 0.0

● Micromorts: one-millionth chance of death
useful for Russian roulette, paying to reduce product risks, etc.

● QALYs: quality-adjusted life years
useful for medical decisions involving substantial risk

● Note: behavior is invariant w.r.t. +ve linear transformation

U ′(x) = k1U(x) + k2 where k1 > 0

● With deterministic prizes only (no lottery choices), only
ordinal utility can be determined, i.e., total order on prizes
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10Money

● Money does not behave as a utility function

● Given a lottery L with expected monetary value EMV (L),
usually U(L) < U(EMV (L)), i.e., people are risk-averse

● Utility curve: for what probability p am I indifferent between a prize x and a
lottery [p,$M ; (1 − p),$0] for large M?

● Typical empirical data, extrapolated with risk-prone behavior:
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decision networks
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12Decision Networks

● Add action nodes and utility nodes to belief networks
to enable rational decision making

● Algorithm:
For each value of action node

compute expected value of utility node given action, evidence
Return MEU action
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13Multiattribute Utility

● How can we handle utility functions of many variables X1 . . .Xn?
E.g., what is U(Deaths,Noise,Cost)?

● How can complex utility functions be assessed from
preference behaviour?

● Idea 1: identify conditions under which decisions can be made without complete
identification of U(x1, . . . , xn)

● Idea 2: identify various types of independence in preferences
and derive consequent canonical forms for U(x1, . . . , xn)

Philipp Koehn Artificial Intelligence: Decision Theory 5 November 2015



14Strict Dominance

● Typically define attributes such that U is monotonic in each

● Strict dominance: choice B strictly dominates choice A iff
∀ i Xi(B) ≥Xi(A) (and hence U(B) ≥ U(A))

● Strict dominance seldom holds in practice
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15Stochastic Dominance

● Distribution p1 stochastically dominates distribution p2 iff

∀ t ∫
t

−∞
p1(x)dx ≤ ∫

t

−∞
p2(x)dx

● If U is monotonic in x, then A1 with outcome distribution p1
stochastically dominates A2 with outcome distribution p2:

∫
∞

−∞
p1(x)U(x)dx ≥ ∫

∞

−∞
p2(x)U(x)dx

Multiattribute case: stochastic dominance on all attributes Ô⇒ optimal
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16Stochastic Dominance

● Stochastic dominance can often be determined without
exact distributions using qualitative reasoning

● E.g., construction cost increases with distance from city
S1 is closer to the city than S2

Ô⇒ S1 stochastically dominates S2 on cost

● E.g., injury increases with collision speed

● Can annotate belief networks with stochastic dominance information:
X +Ð→ Y (X positively influences Y ) means that
For every value z of Y ’s other parents Z

∀x1, x2 x1 ≥ x2 Ô⇒ P(Y ∣x1,z) stochastically dominates P(Y ∣x2,z)
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23Preference Structure: Deterministic

● X1 and X2 preferentially independent of X3 iff
preference between ⟨x1, x2, x3⟩ and ⟨x′1, x′2, x3⟩
does not depend on x3

● E.g., ⟨Noise,Cost, Safety⟩:
⟨20,000 suffer, $4.6 billion, 0.06 deaths/mpm⟩ vs.
⟨70,000 suffer, $4.2 billion, 0.06 deaths/mpm⟩

● Theorem (Leontief, 1947): if every pair of attributes is P.I. of its complement,
then every subset of attributes is P.I of its complement: mutual P.I.

● Theorem (Debreu, 1960): mutual P.I. Ô⇒ ∃ additive value function:

V (S) =∑
i

Vi(Xi(S))

Hence assess n single-attribute functions; often a good approximation
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24Preference Structure: Stochastic

● Need to consider preferences over lotteries:
X is utility-independent of Y iff

preferences over lotteries in X do not depend on y

● Mutual U.I.: each subset is U.I of its complement
Ô⇒ ∃ multiplicative utility function:
U = k1U1 + k2U2 + k3U3

+ k1k2U1U2 + k2k3U2U3 + k3k1U3U1

+ k1k2k3U1U2U3

● Routine procedures and software packages for generating preference tests to
identify various canonical families of utility functions
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value of information
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26Value of Information

● Idea: compute value of acquiring each possible piece of evidence
Can be done directly from decision network

● Example: buying oil drilling rights
Two blocks A and B, exactly one has oil, worth k
Prior probabilities 0.5 each, mutually exclusive
Current price of each block is k/2
“Consultant” offers accurate survey of A. Fair price?

● Solution: compute expected value of information
= expected value of best action given the information

minus expected value of best action without information

● Survey may say “oil in A” or “no oil in A”, prob. 0.5 each (given!)
= [0.5 × value of “buy A” given “oil in A”

+ 0.5 × value of “buy B” given “no oil in A”]
– 0

= (0.5 × k/2) + (0.5 × k/2) − 0 = k/2
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27General Formula

● Current evidence E, current best action α

● Possible action outcomes Si, potential new evidence Ej

EU(α∣E) =max
a
∑
i

U(Si) P (Si∣E,a)

● Suppose we knew Ej = ejk, then we would choose αejk s.t.

EU(αejk∣E,Ej = ejk) =max
a
∑
i

U(Si) P (Si∣E,a,Ej = ejk)

● Ej is a random variable whose value is currently unknown

● Ô⇒ must compute expected gain over all possible values:

V PIE(Ej) = (∑
k

P (Ej = ejk∣E)EU(αejk∣E,Ej = ejk)) −EU(α∣E)

(VPI = value of perfect information)
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28Properties of VPI

● Nonnegative—in expectation, not post hoc

∀ j,E V PIE(Ej) ≥ 0

● Nonadditive—consider, e.g., obtaining Ej twice

V PIE(Ej,Ek) /= V PIE(Ej) + V PIE(Ek)

● Order-independent

V PIE(Ej,Ek) = V PIE(Ej) + V PIE,Ej
(Ek) = V PIE(Ek) + V PIE,Ek

(Ej)

● Note: when more than one piece of evidence can be gathered,
maximizing VPI for each to select one is not always optimal
Ô⇒ evidence-gathering becomes a sequential decision problem
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sequential decision problems
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30Sequential Decision Problems
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31Example Markov Decision Process

State Map Stochastic Movement

● States s ∈ S, actions a ∈ A

● Model T (s, a, s′) ≡ P (s′∣s, a) = probability that a in s leads to s′

● Reward function R(s) (or R(s, a), R(s, a, s′))

= { −0.04 (small penalty) for nonterminal states
±1 for terminal states
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32Solving Markov Decision Processes

● In search problems, aim is to find an optimal sequence

● In MDPs, aim is to find an optimal policy π(s)
i.e., best action for every possible state s
(because can’t predict where one will end up)

● The optimal policy maximizes (say) the expected sum of rewards

● Optimal policy when state penalty R(s) is –0.04:
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33Risk and Reward
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34Utility of State Sequences

● Need to understand preferences between sequences of states

● Typically consider stationary preferences on reward sequences:

[r, r0, r1, r2, . . .] ≻ [r, r′0, r′1, r′2, . . .] ⇔ [r0, r1, r2, . . .] ≻ [r′0, r′1, r′2, . . .]

● There are two ways to combine rewards over time

1. Additive utility function:
U([s0, s1, s2, . . .]) = R(s0) +R(s1) +R(s2) +⋯

2. Discounted utility function:
U([s0, s1, s2, . . .]) = R(s0) + γR(s1) + γ2R(s2) +⋯
where γ is the discount factor
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35Utility of States

● Utility of a state (a.k.a. its value) is defined to be
U(s) = expected (discounted) sum of rewards (until termination)

assuming optimal actions

● Given the utilities of the states, choosing the best action is just MEU:
maximize the expected utility of the immediate successors
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36Utilities

● Problem: infinite lifetimes Ô⇒ additive utilities are infinite

● 1) Finite horizon: termination at a fixed time T
Ô⇒ nonstationary policy: π(s) depends on time left

● 2) Absorbing state(s): w/ prob. 1, agent eventually “dies” for any π
Ô⇒ expected utility of every state is finite

● 3) Discounting: assuming γ < 1, R(s) ≤ Rmax,

U([s0, . . . s∞]) =
∞
∑
t=0
γtR(st) ≤ Rmax/(1 − γ)

Smaller γ ⇒ shorter horizon

● 4) Maximize system gain = average reward per time step
Theorem: optimal policy has constant gain after initial transient
E.g., taxi driver’s daily scheme cruising for passengers
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37Dynamic Programming: Bellman Equation

● Definition of utility of states leads to a simple relationship among utilities of
neighboring states:

● Expected sum of rewards
= current reward

+ γ × expected sum of rewards after taking best action

● Bellman equation (1957):

U(s) = R(s) + γ max
a
∑
s′
U(s′)T (s, a, s′)

● U(1,1) = −0.04
+ γ max{0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1), up

0.9U(1,1) + 0.1U(1,2) left
0.9U(1,1) + 0.1U(2,1) down
0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1)} right

● One equation per state = n nonlinear equations in n unknowns
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inference algorithms
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39Value Iteration Algorithm

● Idea: Start with arbitrary utility values
Update to make them locally consistent with Bellman eqn.
Everywhere locally consistent⇒ global optimality

● Repeat for every s simultaneously until “no change”

U(s)← R(s) + γ max
a
∑
s′
U(s′)T (s, a, s′) for all s

● Example:
utility estimates
for selected states
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40Policy Iteration

● Howard, 1960: search for optimal policy and utility values simultaneously

● Algorithm:
π ← an arbitrary initial policy
repeat until no change in π

compute utilities given π
update π as if utilities were correct (i.e., local MEU)

● To compute utilities given a fixed π (value determination):

U(s) = R(s) + γ ∑
s′
U(s′)T (s, π(s), s′) for all s

● i.e., n simultaneous linear equations in n unknowns, solve in O(n3)
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41Modified Policy Iteration

● Policy iteration often converges in few iterations, but each is expensive

● Idea: use a few steps of value iteration (but with π fixed)
starting from the value function produced the last time
to produce an approximate value determination step.

● Often converges much faster than pure VI or PI

● Leads to much more general algorithms where Bellman value updates and
Howard policy updates can be performed locally in any order

● Reinforcement learning algorithms operate by performing such updates based
on the observed transitions made in an initially unknown environment
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42Partial Observability

● POMDP has an observation modelO(s, e) defining the probability that the agent
obtains evidence e when in state s

● Agent does not know which state it is in
Ô⇒ makes no sense to talk about policy π(s)!!

● Theorem (Astrom, 1965): the optimal policy in a POMDP is a function
π(b) where b is the belief state (probability distribution over states)

● Can convert a POMDP into an MDP in belief-state space, where
T (b, a, b′) is the probability that the new belief state is b′
given that the current belief state is b and the agent does a.
I.e., essentially a filtering update step
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43Partial Observability

● Solutions automatically include information-gathering behavior

● If there are n states, b is an n-dimensional real-valued vector
Ô⇒ solving POMDPs is very (actually, PSPACE-) hard!

● The real world is a POMDP (with initially unknown T and O)
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