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Preferences 3
e An agent chooses among prizes (4, 3, etc.)

e Notation:
A>B A preferred to B
A~B indifference between A and B
AZB B not preferred to A

e Lottery L = [p, A: (1 -p), B], i.e., situations with uncertain prizes

A
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Rational Preferences
e Idea: preferences of a rational agent must obey constraints

e Rational preferences —
behavior describable as maximization of expected utility

e Constraints:

Orderability

(A>B)v(B>A)v(A~B)
Transitivity

(A>BYA(B>C) = (4> Ol
Continuity

A>B>C = 3p [p,A; 1-p,C]~ DBl
Substitutability

A~B = [p,A4; 1-p,C]~[p,B;1-p,CI
Monotonicity

A>B — (p2q < [p,A; 1-p,B] - (g, A; 1-q,B])
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Rational Preferences 5

e Violating the constraints leads to self-evident irrationality
e For example: an agent with intransitive preferences can be induced to give away

all its money
- A
o If B > (, then an agent who has C
would pay (say) 1 cent to get B 1o I

o If A> 3, then an agent who has B
would pay (say) 1 cent to get A

o If C' > A, then an agent who has A v
would pay (say) 1 cent to get

I
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Maximizing Expected Utility 6

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):

Given preferences satisfying the constraints
there exists a real-valued function U such that

U(A)>U(B) & AZB
U([p1,S1; - 5 pnSnl) = 2 piU(S:)

e MEU principle:
Choose the action that maximizes expected utility

e Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and probabilities

e E.g., alookup table for perfect tictactoe
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[ ] [ ] [ ] Q
Utilities QY
o Utilities map states to real numbers. Which numbers?

e Standard approach to assessment of human utilities

— compare a given state A to a standard lottery L, that has
+ “best possible prize” u; with probability p
+ “worst possible catastrophe” u, with probability (1 —p)

— adjust lottery probability p until A ~ L,

0.999090 continue as before

pay $30 -~ L

0.000001 instant death

Philipp Koehn Artificial Intelligence: Decision Theory 5 November 2015



Utility Scales 9

e Normalized utilities: v, = 1.0, u, = 0.0

e Micromorts: one-millionth chance of death
useful for Russian roulette, paying to reduce product risks, etc.

QALYs: quality-adjusted life years
useful for medical decisions involving substantial risk

Note: behavior is invariant w.r.t. +ve linear transformation

U'(x) =kU(xz)+ky wherek; >0

e With deterministic prizes only (no lottery choices), only
ordinal utility can be determined, i.e., total order on prizes
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Money 10

e Money does hot behave as a utility function

e Given a lottery L with expected monetary value MV (L),
usually U(L) <U(EMV (L)), i.e., people are risk-aversel

Utility curve: for what probability p am I indifferent between a prize = and a
lottery [p,$M; (1 —-p),50] for large N/?

o Typical empirical data, extrapolated with risk-prone behavior:

I I
-150,000 800,000
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decision networks
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Decision Networks 12

e Add action nodes and utility nodes to belief networks
to enable rational decision making

Airport Site

e Algorithm:
For each value of action node
compute expected value of utility node given action, evidence
Return MEU action
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Multiattribute Utility 13

e How can we handle utility functions of many variables X ... X, ?
E.g., whatis U(Deaths, Noise, Cost)?

e How can complex utility functions be assessed from
preference behaviour?

e Idea 1: identify conditions under which decisions can be made without complete
identification of U (x1,....x,)

e Idea 2: identify various types of independence in preferences
and derive consequent canonical forms for U(xy, ..., x,,)
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Strict Dominance

e Typically define attributes such that U/ is monotonic in each

e Strict dominance: choice B strictly dominates choice A iff

X5 This region X4
4 i dominates A I |
| (8
C, : B I
N A
D |
1

(and hence U(B) > U(A))

Deterministic attributes

14

Uncertain attributes

e Strict dominance seldom holds in practice

-0

Philipp Koehn

Artificial Intelligence: Decision Theory

5 November 2015



Stochastic Dominance 5
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e Distribution p; stochastically dominates distribution ps iff

Vi f:opl(az)da: < f;pg(a:)dajl

e If U is monotonic in z, then A; with outcome distribution p;
stochastically dominates A, with outcome distribution p:
p1(@)U(x)dz> [ pa(a)U(w)da

— o0

Multiattribute case: stochastic dominance on all attributes — optimal
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Stochastic Dominance 16

e Stochastic dominance can often be determined without
exact distributions using qualitative reasoning

e E.g., construction cost increases with distance from city
S is closer to the city than 55
— 5 stochastically dominates 5> on cost

e E.g., injury increases with collision speed

e Can annotate belief networks with stochastic dominance information:
X .V (X positively influences V') means that
For every value z of Y’s other parents Z
Vay,xo 21> 19 == P(Y|2,2) stochastically dominates P(Y'|x5,2)
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Preference Structure: Deterministic 23

e X and X, preferentially independent of X3 iff
preference between (11, 29, 23) and (2, 25, x3)
does not depend on x5

e E.g., (Noise,Cost,Safety):
(20,000 suffer, $4.6 billion, 0.06 deaths/mpm) vs.
(70,000 suffer, $4.2 billion, 0.06 deaths/mpm )l

Theorem (Leontief, 1947): if every pair of attributes is PI. of its complement,
then every subset of attributes is P.I of its complement: mutual P.II

Theorem (Debreu, 1960): mutual P.I. — 7 additive value function:
V(S) = L VX))

Hence assess n single-attribute functions; often a good approximation
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Preference Structure: Stochastic 24

e Need to consider preferences over lotteries:
X is utility-independent of Y iff
preferences over lotteries in X do not depend on y

e Mutual U.L: each subset is U.I of its complement
— J multiplicative utility function:
U = klUl + kQUQ + ngg
+ kleUlUg + kgngQUg + ]fgklUgUl
+ klkgnglUQUg

e Routine procedures and software packages for generating preference tests to
identify various canonical families of utility functions
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value of information
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Value of Information 26

e Idea: compute value of acquiring each possible piece of evidence
Can be done directly from decision network

e Example: buying oil drilling rights
Two blocks A and B, exactly one has oil, worth £
Prior probabilities 0.5 each, mutually exclusive
Current price of each block is % /2
“Consultant” offers accurate survey of A. Fair price?

e Solution: compute expected value of information
= expected value of best action given the information
minus expected value of best action without information

e Survey may say “oil in A” or “no oil in A”, prob. 0.5 each (given!)
= [0.5 x value of “buy A” given “oil in A”
+ 0.5 x value of “buy B” given “no oil in A”]
-0
=(0.5xk/2)+(0.5xk/2)-0=FK/2
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General Formula 27

Current evidence F/, current best action «

e Possible action outcomes 5;, potential new evidence £;

EU(alF) = mgxz U(S;) P(S;|F,a)

e Suppose we knew £ =¢;;, then we would choose ., s.t.

EU(ac,|E, Ej=ej,) =max ), U(S;) P(Si|E, a,Ej=e;)

e [J;is arandom variable whose value is currently unknown
e — must compute expected gain over all possible values:

VP[E(E]) = (Z P(E] Zejk‘E)EU(Oéejk‘E,Ej :ij)) - EU(O&‘E)
k

(VPI = value of perfect information)
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Properties of VPI 28

Nonnegative—in expectation, not post hoc

Vj,E VPIg(E;)>0

Nonadditive—consider, e.g., obtaining ; twice

VPIg(E;,Ey) # VPIg(E;) +V PIg(Ey)

Order-independent

VPIg(E;,Ey) =V PIg(E;) + VPIg g (Ex) = VPIg(Ey) + VPIg g, (E;)

e Note: when more than one piece of evidence can be gathered,
maximizing VPI for each to select one is not always optimal
— evidence-gathering becomes a sequential decision problem
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sequential decision problems

Philipp Koehn Artificial Intelligence: Decision Theory 5 November 2015



Sequential Decision Problems 30

Search
and subgoals and utiity
Plannin Markov decision
9 - problems (MDPs) N
uncartan axp AcErans uncartain alfef statas
and th‘l'l'l'!}-'!}l and subgoals Sansing } " )
i
Decision-theoretic Parllallg observable -
planning MDPs (POMDPs)
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Example Markov Decision Process

State Map Stochastic Movement
0.8
[+1]
0.1 0.1
[=1]
1 2 3 4

e States se S, actionsa € A

e Model T'(s,a,s’) = P(s'|s,a) = probability that a in s leads to s’

e Reward function R(s) (or R(s,a), R(s,a,s’))

—-0.04 (small penalty) for nonterminal states

+1 for terminal states

QP

Philipp Koehn

Artificial Intelligence: Decision Theory

5 November 2015



[ [ [ ] Q
Solving Markov Decision Processes 2 QY

e In search problems, aim is to find an optimal sequence

e In MDPs, aim is to find an optimal policy 7 (s)
i.e., best action for every possible state s
(because can’t predict where one will end up)

e The optimal policy maximizes (say) the expected sum of rewards

e Optimal policy when state penalty R(s) is —0.04:

s | = | = | — | D

= | 4 b e
1 f - —-—— -
1 2 3 4
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Risk and Reward 33

r=[=0.0480 : =0.0274] r=[=0.0218 : 0.0000]
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Utility of State Sequences
e Need to understand preferences between sequences of states

o Typically consider stationary preferences on reward sequences:

[Ta ro, 71,72, .. ] > [Tv T(ljarllaréa .- ] ~ [T07T17T27 < ] > [T()?T,l?T,Q? cee

e There are two ways to combine rewards over time

1. Additive utility function:
U([807 $1,52, - - ]) = R(SO) + R(Sl) + R(Sg) + ...

2. Discounted utility function:

U([807 §1,52, - - ]) = R(So) + "}/R(Sl) + ’)/QR(32> + ...
where 7 is the discount factor

g
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Utility of States

o Utility of a state (a.k.a. its value) is defined to be
U(s) = expected (discounted) sum of rewards (until termination)

assuming optimal actions

35

e Given the utilities of the states, choosing the best action is just MEU:

maximize the expected utility of the immediate successors

0.812 0.868 0.912 + 1 3 —
0.660 -1 2 ?
0.705 0.655 0.611 0.388 1 ’
1 2 3 4 1

+ 1
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Utilities 3 QY
e Problem: infinite lifetimes =—= additive utilities are infinite

e 1) Finite horizon: termination at a fixed time T
— nonstationary policy: 7(s) depends on time left

e 2) Absorbing state(s): w/ prob. 1, agent eventually “dies” for any =
— expected utility of every state is finite

e 3) Discounting: assuming v < 1, R(s) < Rmax,

U([50....50]) = ém(st) < Rov/(1=7)

Smaller v = shorter horizon

e 4) Maximize system gain = average reward per time step
Theorem: optimal policy has constant gain after initial transient
E.g., taxi driver’s daily scheme cruising for passengers
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Dynamic Programming: Bellman Equation s

e Definition of utility of states leads to a simple relationship among utilities of
neighboring states:

o Expected sum of rewards
= current reward

+ v x expected sum of rewards after taking best action

e Bellman equation (1957):

e U(1,1)
T

e One equation per state = n nonlinear equations in n unknowns

U(s)=R(s)+~ mng:U(s’)T(s,a,s')

= —0.04

max{0.8U(1,2) +0.1U(2,1) + 0.1U(1,1),
0.9U(1,1) +0.1U(1,2)
0.9U(1,1) +0.1U(2,1)
0.8U(2,1) +0.1U(1,2) + 0.1U(1,1)}

up
left
down

right

Philipp Koehn

Artificial Intelligence: Decision Theory

5 November 2015



38

inference algorithms
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Value Iteration Algorithm

o Idea: Start with arbitrary utility values
Update to make them locally consistent with Bellman eqn.
Everywhere locally consistent = global optimality

e Repeat for every s simultaneously until “no change”

U(s) < R(s)+7 mC?XZU(S,)T(S,CL,S,)

e Example:
utility estimates
for selected states

stimates

Utility e

05 -

for all s

05 F /

0F

—
— Ll |
e e

(3.1)

@D

4.2) A

l 1 1 1
0 5 10 15 20 25
Number of iterations

30
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Policy Iteration 40

Howard, 1960: search for optimal policy and utility values simultaneously

Algorithm:
T < an arbitrary initial policy
repeat until no change in 7
compute utilities given 7
update 7 as if utilities were correct (i.e., local MEU)

e To compute utilities given a fixed 7 (value determination):

U(s)=R(s)+~ Z U(s")T'(s,m(s),s") for all s

e i.e., n simultaneous linear equations in n unknowns, solve in O(n?)
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Modified Policy Iteration 41

e Policy iteration often converges in few iterations, but each is expensive

e Idea: use a few steps of value iteration (but with 7 fixed)
starting from the value function produced the last time
to produce an approximate value determination step.

e Often converges much faster than pure VI or PI

e Leads to much more general algorithms where Bellman value updates and
Howard policy updates can be performed locally in any order

e Reinforcement learning algorithms operate by performing such updates based
on the observed transitions made in an initially unknown environment
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Partial Observability 42

e POMDP has an observation model O(s, e) defining the probability that the agent
obtains evidence e when in state s

e Agent does not know which state it is in
— makes no sense to talk about policy 7 (s)!

e Theorem (Astrom, 1965): the optimal policy in a POMDP is a function
7(b) where b is the belief state (probability distribution over states)

e Can convert a POMDP into an MDP in belief-state space, where
T'(b,a,b’) is the probability that the new belief state is &/
given that the current belief state is b and the agent does a.
L.e., essentially a filtering update step
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Partial Observability 43

e Solutions automatically include information-gathering behavior

e If there are n states, b is an n-dimensional real-valued vector
— solving POMDPs is very (actually, PSPACE-) hard!

e The real world is a POMDP (with initially unknown 7" and O)
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