Decision Theory

Philipp Koehn

5 November 2015

Outline

- Rational preferences
- Utilities
- Multiattribute utilities
- Decision networks
- Value of information
- Sequential decision problems
- Value iteration
- Policy iteration

preferences

Preferences

- An agent chooses among prizes (*A*, *B*, etc.)
- Notation:
 - A > B A preferred to B
 - $A \sim B$ indifference between A and B
 - $A \stackrel{\succ}{\sim} B$ B not preferred to A
- Lottery L = [p, A; (1 p), B], i.e., situations with uncertain prizes

Rational Preferences

- Idea: preferences of a rational agent must obey constraints
- Rational preferences ⇒ behavior describable as maximization of expected utility
- Constraints:

Orderability

 $\overline{(A > B)} \lor (B > A) \lor (A \sim B)$ $\overline{\text{Transitivity}}$ $\overline{(A > B)} \land (B > C) \implies (A > C)$ $\overline{\text{Continuity}}$ $\overline{A > B > C} \implies \exists p \ [p, A; \ 1 - p, C] \sim B$ $\overline{\text{Substitutability}}$ $\overline{A \sim B} \implies [p, A; \ 1 - p, C] \sim [p, B; 1 - p, C]$ $\overline{\text{Monotonicity}}$ $\overline{A > B} \implies (p \ge q \Leftrightarrow [p, A; \ 1 - p, B] \stackrel{>}{\sim} [q, A; \ 1 - q, B])$

Rational Preferences

- Violating the constraints leads to self-evident irrationality
- For example: an agent with intransitive preferences can be induced to give away all its money
- If *B* > *C*, then an agent who has *C* would pay (say) 1 cent to get *B*
- If *A* > *B*, then an agent who has *B* would pay (say) 1 cent to get *A*
- If *C* > *A*, then an agent who has *A* would pay (say) 1 cent to get *C*

Maximizing Expected Utility

• **Theorem** (Ramsey, 1931; von Neumann and Morgenstern, 1944):

Given preferences satisfying the constraints there exists a real-valued function U such that

 $U(A) \ge U(B) \iff A \stackrel{\succ}{\sim} B$ $U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i U(S_i)$

• MEU principle:

Choose the action that maximizes expected utility

- Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
- E.g., a lookup table for perfect tictactoe

utilities

Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment of human utilities
 - compare a given state A to a standard lottery L_p that has
 - * "best possible prize" $u_{ op}$ with probability p
 - * "worst possible catastrophe" u_{\perp} with probability (1-p)
 - adjust lottery probability p until $A \sim L_p$

Utility Scales

- Normalized utilities: $u_{T} = 1.0$, $u_{\perp} = 0.0$
- Micromorts: one-millionth chance of death useful for Russian roulette, paying to reduce product risks, etc.
- QALYs: quality-adjusted life years useful for medical decisions involving substantial risk
- Note: behavior is **invariant** w.r.t. +ve linear transformation

 $U'(x) = k_1 U(x) + k_2$ where $k_1 > 0$

• With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

Money

- Money does **not** behave as a utility function
- Given a lottery *L* with expected monetary value *EMV*(*L*), usually *U*(*L*) < *U*(*EMV*(*L*)), i.e., people are risk-averse
- Utility curve: for what probability *p* am I indifferent between a prize *x* and a lottery [*p*, \$*M*; (1 − *p*), \$0] for large *M*?
- Typical empirical data, extrapolated with risk-prone behavior:

decision networks

Decision Networks

• Add action nodes and utility nodes to belief networks to enable rational decision making

• Algorithm:

For each value of action node

compute expected value of utility node given action, evidence Return MEU action

Multiattribute Utility

- How can we handle utility functions of many variables $X_1 \dots X_n$? E.g., what is U(Deaths, Noise, Cost)?
- How can complex utility functions be assessed from preference behaviour?
- Idea 1: identify conditions under which decisions can be made without complete identification of $U(x_1, \ldots, x_n)$
- Idea 2: identify various types of **independence** in preferences and derive consequent canonical forms for $U(x_1, ..., x_n)$

Strict Dominance

- Typically define attributes such that U is monotonic in each
- Strict dominance: choice *B* strictly dominates choice *A* iff $\forall i \ X_i(B) \ge X_i(A)$ (and hence $U(B) \ge U(A)$)

• Strict dominance seldom holds in practice

Stochastic Dominance

- Distribution p_1 stochastically dominates distribution p_2 iff $\forall t \int_{-\infty}^{t} p_1(x) dx \leq \int_{-\infty}^{t} p_2(x) dx$
- If *U* is monotonic in *x*, then A_1 with outcome distribution p_1 stochastically dominates A_2 with outcome distribution p_2 : $\int_{-\infty}^{\infty} p_1(x)U(x)dx \ge \int_{-\infty}^{\infty} p_2(x)U(x)dx$

Multiattribute case: stochastic dominance on all attributes \implies optimal

Stochastic Dominance

- Stochastic dominance can often be determined without exact distributions using **qualitative** reasoning
- E.g., construction cost increases with distance from city S₁ is closer to the city than S₂
 ⇒ S₁ stochastically dominates S₂ on cost
- E.g., injury increases with collision speed
- Can annotate belief networks with stochastic dominance information:
 X → Y (X positively influences Y) means that For every value z of Y's other parents Z
 ∀ x₁, x₂ x₁ ≥ x₂ ⇒ P(Y|x₁, z) stochastically dominates P(Y|x₂, z)

Preference Structure: Deterministic

- X₁ and X₂ preferentially independent of X₃ iff preference between (x₁, x₂, x₃) and (x'₁, x'₂, x₃) does not depend on x₃
- E.g., ⟨Noise, Cost, Safety⟩:
 (20,000 suffer, \$4.6 billion, 0.06 deaths/mpm⟩ vs.
 (70,000 suffer, \$4.2 billion, 0.06 deaths/mpm)
- **Theorem** (Leontief, 1947): if every pair of attributes is P.I. of its complement, then every subset of attributes is P.I of its complement: mutual P.I.
- **Theorem** (Debreu, 1960): mutual P.I. ⇒ ∃ additive value function:

$$V(S) = \sum_{i} V_i(X_i(S))$$

Hence assess *n* single-attribute functions; often a good approximation

Preference Structure: Stochastic

- Need to consider preferences over lotteries:
 X is utility-independent of Y iff preferences over lotteries in X do not depend on y
- Mutual U.I.: each subset is U.I of its complement
 - \implies \exists multiplicative utility function:
 - $U = k_1 U_1 + k_2 U_2 + k_3 U_3$ $+ k_1 k_2 U_1 U_2 + k_2 k_3 U_2 U_3 + k_3 k_1 U_3 U_1$ $+ k_1 k_2 k_3 U_1 U_2 U_3$
 - + $k_1 k_2 k_3 U_1 U_2 U_3$
- Routine procedures and software packages for generating preference tests to identify various canonical families of utility functions

value of information

Value of Information

- Idea: compute value of acquiring each possible piece of evidence Can be done **directly from decision network**
- Example: buying oil drilling rights Two blocks *A* and *B*, exactly one has oil, worth *k* Prior probabilities 0.5 each, mutually exclusive Current price of each block is *k*/2 "Consultant" offers accurate survey of *A*. Fair price?
- Solution: compute expected value of information

 = expected value of best action given the information
 minus expected value of best action without information
- Survey may say "oil in A" or "no oil in A", prob. 0.5 each (given!)
 = [0.5 × value of "buy A" given "oil in A"
 + 0.5 × value of "buy B" given "no oil in A"]
 0
 = (0.5 × k/2) + (0.5 × k/2) 0 = k/2

General Formula

- Current evidence *E*, current best action α
- Possible action outcomes S_i , potential new evidence E_j

$$EU(\alpha|E) = \max_{a} \sum_{i} U(S_i) P(S_i|E,a)$$

• Suppose we knew $E_j = e_{jk}$, then we would choose $\alpha_{e_{jk}}$ s.t.

$$EU(\alpha_{e_{jk}}|E, E_j = e_{jk}) = \max_a \sum_i U(S_i) P(S_i|E, a, E_j = e_{jk})$$

- E_j is a random variable whose value is *currently* unknown
- \implies must compute expected gain over all possible values:

$$VPI_E(E_j) = \left(\sum_k P(E_j = e_{jk}|E)EU(\alpha_{e_{jk}}|E, E_j = e_{jk})\right) - EU(\alpha|E)$$

(VPI = value of perfect information)

Properties of VPI

• Nonnegative—in expectation, not post hoc

 $\forall j, E \ VPI_E(E_j) \ge 0$

• **Nonadditive**—consider, e.g., obtaining E_j twice

 $VPI_E(E_j, E_k) \neq VPI_E(E_j) + VPI_E(E_k)$

• Order-independent

 $VPI_E(E_j, E_k) = VPI_E(E_j) + VPI_{E, E_j}(E_k) = VPI_E(E_k) + VPI_{E, E_k}(E_j)$

 Note: when more than one piece of evidence can be gathered, maximizing VPI for each to select one is not always optimal
 ⇒ evidence-gathering becomes a sequential decision problem

sequential decision problems

Sequential Decision Problems Search explicit actions uncertainty and subgoals and utility Markov decision Planning problems (MDPs) explicit actions uncertain uncertainty (belief states) and subgoals and utility sensing Decision-theoretic Partially observable MDPs (POMDPs) planning

Stochastic Movement

- States $s \in S$, actions $a \in A$
- <u>Model</u> $T(s, a, s') \equiv P(s'|s, a)$ = probability that a in s leads to s'
- <u>Reward function</u> R(s) (or R(s, a), R(s, a, s')) = $\begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{cases}$

Solving Markov Decision Processes

- In search problems, aim is to find an optimal *sequence*
- In MDPs, aim is to find an optimal policy π(s)

 i.e., best action for every possible state s
 (because can't predict where one will end up)
- The optimal policy maximizes (say) the *expected sum of rewards*
- Optimal policy when state penalty R(s) is -0.04:

Risk and Reward

Utility of State Sequences

- Need to understand preferences between *sequences* of states
- Typically consider stationary preferences on reward sequences:

$$[r, r_0, r_1, r_2, \ldots] > [r, r'_0, r'_1, r'_2, \ldots] \iff [r_0, r_1, r_2, \ldots] > [r'_0, r'_1, r'_2, \ldots]$$

- There are two ways to combine rewards over time
 - 1. Additive utility function: $U([s_0, s_1, s_2, ...]) = R(s_0) + R(s_1) + R(s_2) + \cdots$
 - 2. *Discounted* utility function:

 $U([s_0, s_1, s_2, \ldots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots$ where γ is the <u>discount factor</u>

Utility of States

- Utility of a *state* (a.k.a. its *value*) is defined to be $U(s) = \frac{\text{expected (discounted) sum of rewards (until termination)}}{\text{assuming optimal actions}}$
- Given the utilities of the states, choosing the best action is just MEU: maximize the expected utility of the immediate successors

Utilities

- Problem: infinite lifetimes \implies additive utilities are infinite
- 1) Finite horizon: termination at a *fixed time* $T \implies$ nonstationary policy: $\pi(s)$ depends on time left
- 2) Absorbing state(s): w/ prob. 1, agent eventually "dies" for any π ⇒ expected utility of every state is finite!
- 3) **Discounting**: assuming $\gamma < 1$, $R(s) \le R_{\max}$,

$$U([s_0,\ldots s_\infty]) = \sum_{t=0}^{\infty} \gamma^t R(s_t) \le R_{\max}/(1-\gamma)$$

Smaller $\gamma \Rightarrow$ shorter horizon

• 4) Maximize **system gain** = average reward per time step Theorem: optimal policy has constant gain after initial transient E.g., taxi driver's daily scheme cruising for passengers

Dynamic Programming: Bellman Equation 37

- Definition of utility of states leads to a simple relationship among utilities of neighboring states:
- Expected sum of rewards
 - = current reward

+ γ × expected sum of rewards after taking best action

• Bellman equation (1957):

$$U(s) = R(s) + \gamma \max_{a} \sum_{s'} U(s')T(s, a, s')$$

•
$$U(1,1) = -0.04$$

+ $\gamma \max\{0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1),$ up
 $0.9U(1,1) + 0.1U(1,2)$ left
 $0.9U(1,1) + 0.1U(2,1)$ down
 $0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1)\}$ right

• One equation per state = *n* **nonlinear** equations in *n* unknowns

inference algorithms

Value Iteration Algorithm

- <u>Idea</u>: Start with arbitrary utility values Update to make them <u>locally consistent</u> with Bellman eqn. Everywhere locally consistent ⇒ global optimality
- Repeat for every *s* simultaneously until "no change"

$$U(s) \leftarrow R(s) + \gamma \max_{a} \sum_{s'} U(s')T(s, a, s')$$
 for all s

Policy Iteration

- Howard, 1960: search for optimal policy and utility values simultaneously
- Algorithm:

 $\pi \leftarrow$ an arbitrary initial policy repeat until no change in π compute utilities given π update π as if utilities were correct (i.e., local MEU)

• To compute utilities given a fixed π (value determination):

$$U(s) = R(s) + \gamma \sum_{s'} U(s')T(s, \pi(s), s') \quad \text{for all } s$$

• i.e., *n* simultaneous <u>linear</u> equations in *n* unknowns, solve in $O(n^3)$

Modified Policy Iteration

- Policy iteration often converges in few iterations, but each is expensive
- Idea: use a few steps of value iteration (but with π fixed) starting from the value function produced the last time to produce an approximate value determination step.
- Often converges much faster than pure VI or PI
- Leads to much more general algorithms where Bellman value updates and Howard policy updates can be performed locally in any order
- Reinforcement learning algorithms operate by performing such updates based on the observed transitions made in an initially unknown environment

Partial Observability

- POMDP has an <u>observation model</u> O(s, e) defining the probability that the agent obtains evidence *e* when in state *s*
- Agent does not know which state it is in

 \implies makes no sense to talk about policy $\pi(s)$!!

- <u>Theorem</u> (Astrom, 1965): the optimal policy in a POMDP is a function $\pi(b)$ where *b* is the <u>belief state</u> (probability distribution over states)
- Can convert a POMDP into an MDP in belief-state space, where T(b, a, b') is the probability that the new belief state is b' given that the current belief state is b and the agent does a. I.e., essentially a filtering update step

Partial Observability

- Solutions automatically include information-gathering behavior
- If there are *n* states, *b* is an *n*-dimensional real-valued vector → solving POMDPs is very (actually, PSPACE-) hard!
- The real world is a POMDP (with initially unknown *T* and *O*)