Constraint Satisfaction

Philipp Koehn

1 October 2015

Outline

- Constraint satisfaction problems (CSP) examples
- Backtracking search for CSPs
- Problem structure and problem decomposition
- Local search for CSPs

examples

Constraint Satisfaction Problems (CSPs)

- Standard search problem: state is a "black box"—any old data structure that supports goal test, eval, successor
- CSP
 - state is defined by variables X_i with values from domain D_i
 - goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language
- Allows useful **general-purpose** algorithms with more power than standard search algorithms

Example: Map-Coloring

- Variables WA, NT, Q, NSW, V, SA, T
- Domains $D_i = \{red, green, blue\}$
- Constraints: adjacent regions must have different colors e.g., $WA \neq NT$ (if the language allows this), or $(WA, NT) \in \{(red, green), (red, blue), (green, red), (green, blue), \ldots\}$

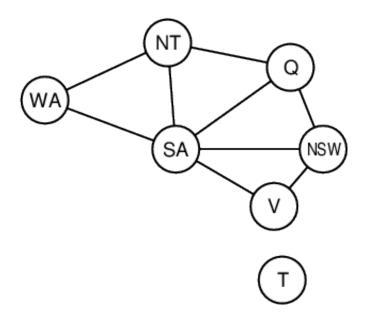
Example: Map-Coloring

• Solutions are assignments satisfying all constraints, e.g.,

 $\{WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green\}$

Constraint Graph

- Binary CSP: each constraint relates at most two variables
- Constraint graph: nodes are variables, arcs show constraints



• General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Varieties of CSPs

• Discrete variables

- finite domains; size $d \Longrightarrow O(d^n)$ complete assignments
 - * e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
- infinite domains (integers, strings, etc.)
 - * e.g., job scheduling, variables are start/end days for each job
 - * need a constraint language, e.g., $StartJob_1 + 5 \le StartJob_3$
 - * linear constraints solvable, nonlinear undecidable

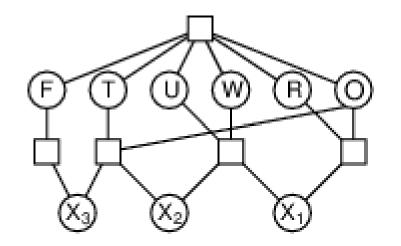
Continuous variables

- e.g., start/end times for Hubble Telescope observations
- linear constraints solvable in poly time by LP methods

Varieties of Constraints

- Unary constraints involve a single variable, e.g., $SA \neq green$
- Binary constraints involve pairs of variables, e.g., $SA \neq WA$
- Higher-order constraints involve 3 or more variables, e.g., cryptarithmetic column constraints
- Preferences (soft constraints), e.g., *red* is better than *green* often representable by a cost for each variable assignment
 - → constrained optimization problems

Example: Cryptarithmetic



- Variables: $F T U W R O X_1 X_2 X_3$
- Domains: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Constraints

alldiff
$$(F, T, U, W, R, O)$$

 $O + O = R + 10 \cdot X_1$, etc.

Example: Sudoku

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	ന	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	ന	7	2	8	4
2	8	7	4	1	9	6	ന	5
3	4	5	2	8	6	1	7	9

- No same number in row, column, small square
- Easily formulated as CSP with *alldiff* constraints
- Can be quickly solved with standard CSP solvers

Real-World CSPs

- Assignment problems e.g., who teaches what class
- Timetabling problems e.g., which class is offered when and where?
- Hardware configuration
- Spreadsheets
- Transportation scheduling
- Factory scheduling
- Floorplanning
- Notice that many real-world problems involve real-valued variables

backtracking search

Standard Search Formulation (Incremental)

- Let's start with the straightforward, dumb approach, then fix it
- States are defined by the values assigned so far
 - Initial state: the empty assignment, ∅
 - Successor function: assign a value to an unassigned variable that does not conflict with current assignment.
 - ⇒ fail if no legal assignments (not fixable!)
 - Goal test: the current assignment is complete

Note

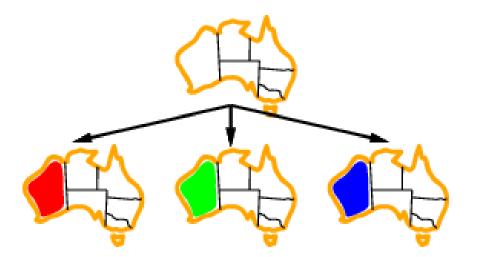
- This is the same for all CSPs! ☺
- Every solution appears at depth n with n variables \implies use depth-first search
- Path is irrelevant, so can also use complete-state formulation
- $b = (n \ell)d$ at depth ℓ , hence $n!d^n$ leaves!!!! \odot

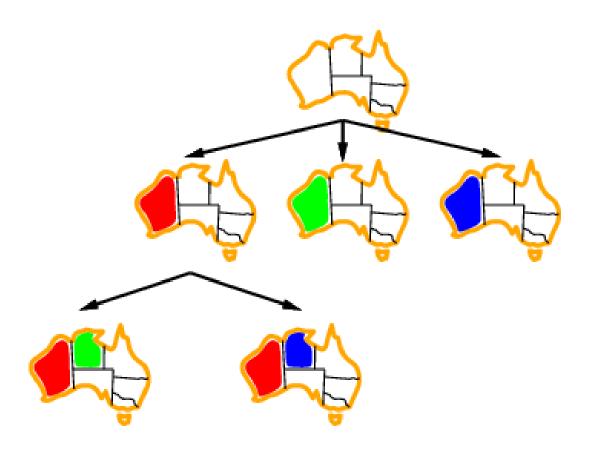
Backtracking Search

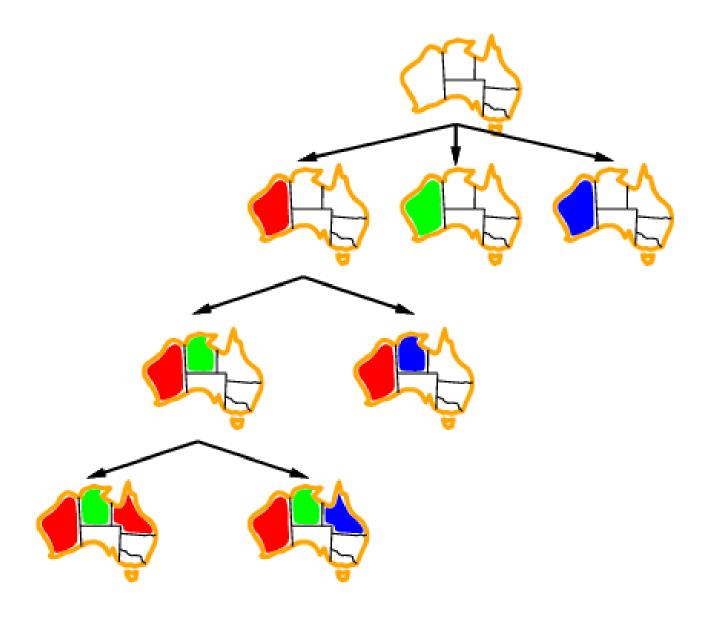
- Variable assignments are commutative, i.e., [WA = red then NT = green] same as [NT = green then WA = red]
- Only need to consider assignments to a single variable at each node $\implies b = d$ and there are d^n leaves
- Depth-first search for CSPs with single-variable assignments is called backtracking search
- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve n-queens for $n \approx 25$

Backtracking Search


```
function BACKTRACKING-SEARCH(csp) returns solution/failure
  return RECURSIVE-BACKTRACKING({ }, csp)
function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
  if assignment is complete then return assignment
  var ← Select-Unassigned-Variable(Variables[csp], assignment, csp)
  for each value in Order-Domain-Values(var, assignment, csp) do
     if value is consistent with assignment given CONSTRAINTS[csp] then
        add { var = value} to assignment
        result ← RECURSIVE-BACKTRACKING(assignment, csp)
        if result # failure then return result
        remove { var = value} from assignment
  return failure
```





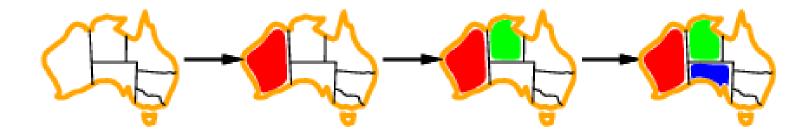
Improving Backtracking Efficiency

General-purpose methods can give huge gains in speed:

- 1. Which variable should be assigned next?
- 2. In what order should its values be tried?
- 3. Can we detect inevitable failure early?
- 4. Can we take advantage of problem structure?

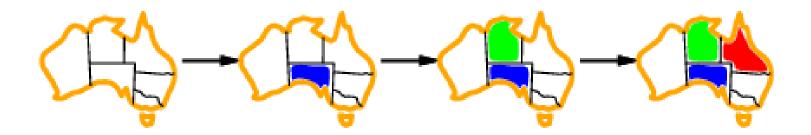
Minimum Remaining Values

• Minimum remaining values (MRV): choose the variable with the fewest legal values



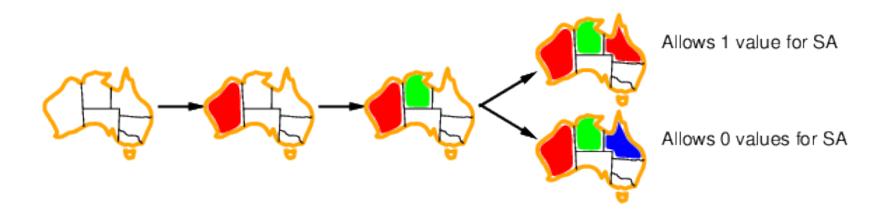
Degree Heuristic

- Tie-breaker among MRV variables
- Degree heuristic: choose the variable with the most constraints on remaining variables



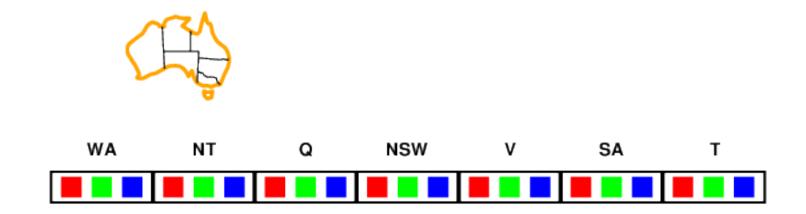
Least Constraining Value

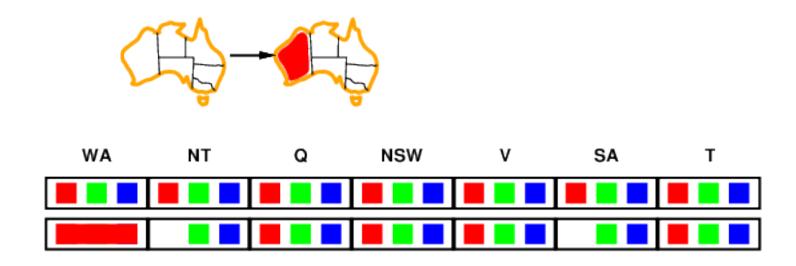
• Given a variable, choose the least constraining value: the one that rules out the fewest values in the remaining variables

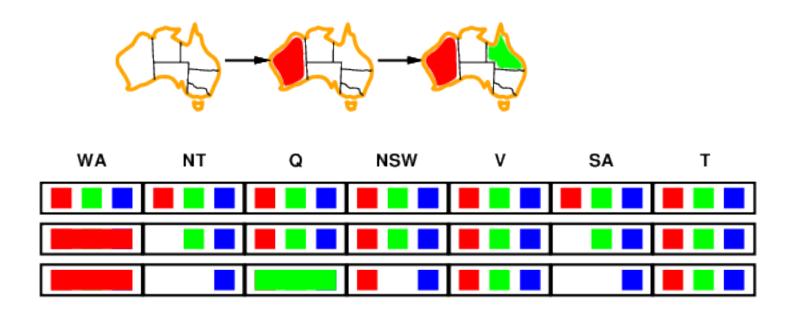


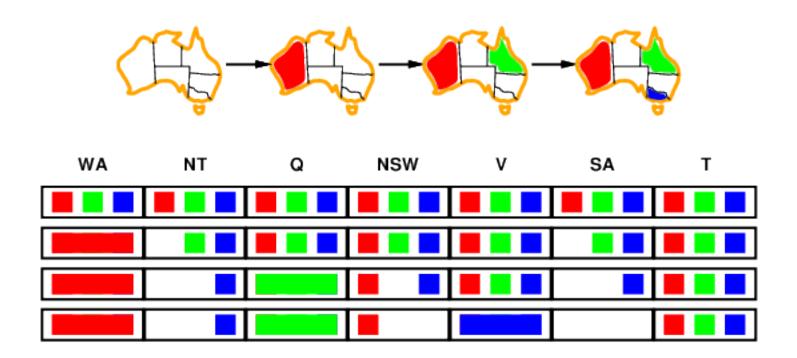
• Combining these heuristics makes 1000 queens feasible

constraint propagation



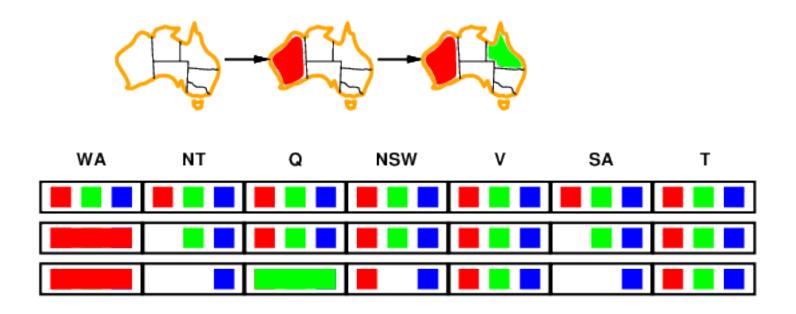






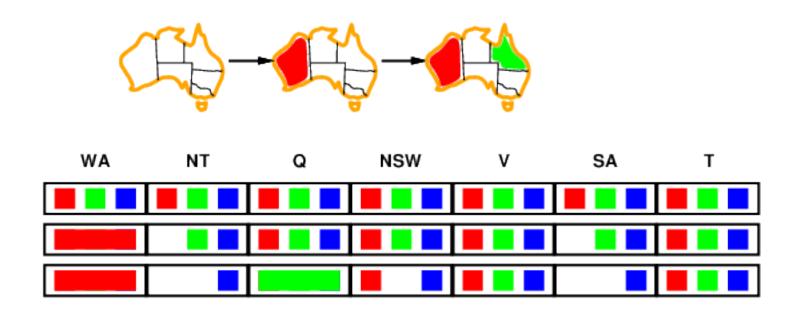
Constraint Propagation

• Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

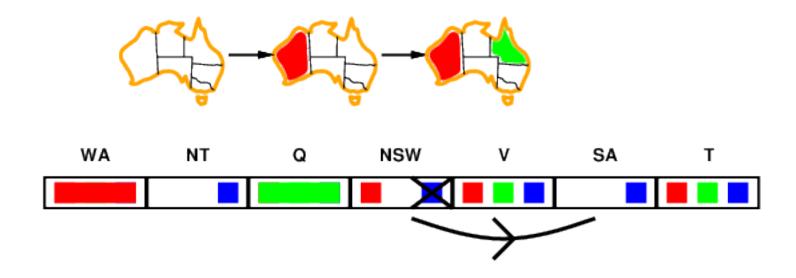


- *NT* and *SA* cannot both be blue!
- Constraint propagation repeatedly enforces constraints locally

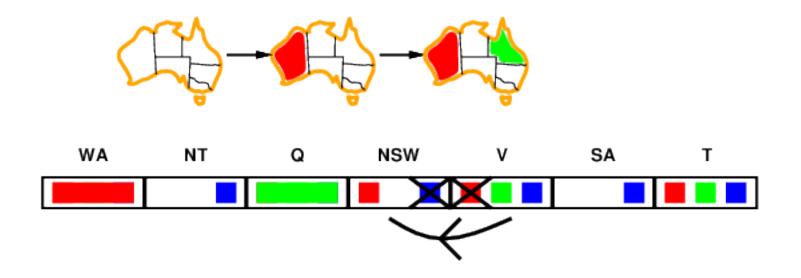
- Simplest form of propagation makes each arc consistent
- X → Y is consistent iff
 for every value x of X there is some allowed y



- Simplest form of propagation makes each arc consistent
- X → Y is consistent iff
 for every value x of X there is some allowed y

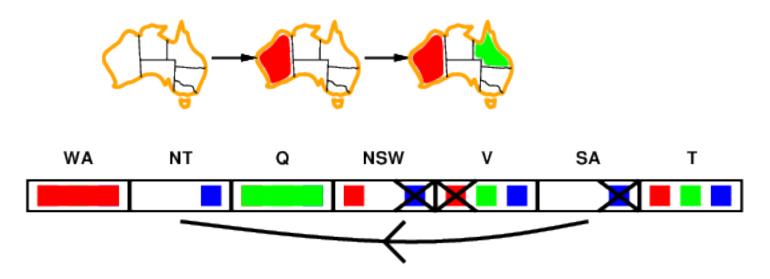


- Simplest form of propagation makes each arc consistent
- *X* → *Y* is consistent iff
 for **every** value *x* of *X* there is **some** allowed *y*



• If *X* loses a value, neighbors of *X* need to be rechecked

- Simplest form of propagation makes each arc consistent
- X → Y is consistent iff
 for every value x of X there is some allowed y



- If *X* loses a value, neighbors of *X* need to be rechecked
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment

Arc Consistency Algorithm

function AC-3(*csp*) **returns** the CSP, possibly with reduced domains


```
inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\} local variables: queue, a queue of arcs, initially all the arcs in csp while queue is not empty \mathbf{do} (X_i, X_j) \leftarrow \mathsf{REMOVE\text{-}FIRST}(queue) if \mathsf{REMOVE\text{-}INCONSISTENT\text{-}VALUES}(X_i, X_j) then for \mathbf{each}\ X_k in \mathsf{NEIGHBORS}[X_i] \mathbf{do} add (X_k, X_i) to queue

function \mathsf{REMOVE\text{-}INCONSISTENT\text{-}VALUES}(X_i, X_j) returns true iff succeeds removed \leftarrow false for \mathbf{each}\ x in \mathsf{DOMAIN}[X_i] \mathbf{do} if no value y in \mathsf{DOMAIN}[X_i] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_j
```

 $O(n^2d^3)$, can be reduced to $O(n^2d^2)$ (but detecting **all** is NP-hard)

then delete x from DOMAIN[X_i]; removed \leftarrow true

return removed

Path Consistency

- Arc consistency check removes some possible values
 - reduces search space
 - may already solve problem (each variable one value)
 - may already eliminate search state (one variable no value)
- One step further: path consistency
- Any two variable set $\{X_i, X_j\}$ is **path consistent** with third variable X_k if any assignment $\{X_i = a, X_j = b\}$ there is an assignment for X_k that fulfills constraints for $\{X_i, X_k\}$ and $\{X_j, X_k\}$
- PC-2 path consistency equivalent for AC-3 algorithm

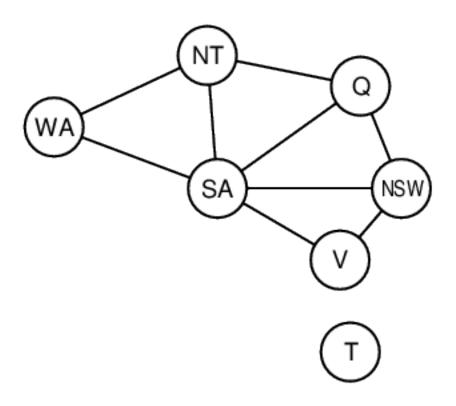
k-Consistency

- Node consistency = check all unary constraints
- Arc consistency = check all binary constraints
- Path consistency = check all constraints for each 3-variable subset
- k-consistency = check all constraints for each k-variable subset

- ullet But: checking all subsets for high k increasing computationally expensive
- ⇒ not done in practice

problem structure

Problem Structure

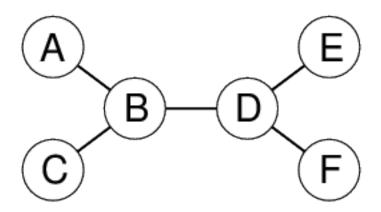


- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph

Problem Structure

- Suppose each subproblem has c variables out of n total
- Worst-case solution cost is $n/c \cdot d^c$, linear in n
- E.g., n = 80, d = 2, c = 20 $2^{80} = 4$ billion years at 10 million nodes/sec $4 \cdot 2^{20} = 0.4$ seconds at 10 million nodes/sec

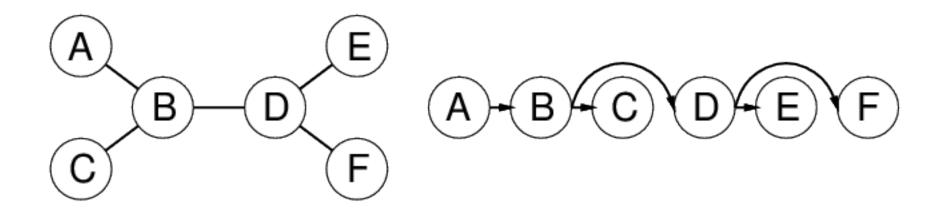
Tree-Structured CSPs



- Theorem: if constraint graph has no loops, CSP can be solved in $O(n d^2)$ time
- Compare to general CSPs, where worst-case time is $O(d^n)$
- This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Algorithm for Tree-Structured CSPs

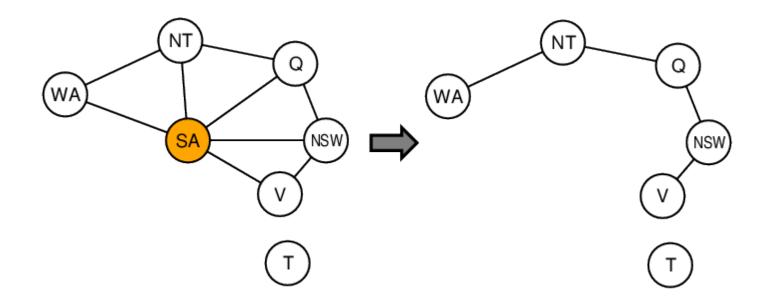
1. Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering



- 2. For j from n down to 2, apply REMOVEINCONSISTENT($Parent(X_j), X_j$)
- 3. For *j* from 1 to *n*, assign X_j consistently with $Parent(X_j)$

Nearly Tree-Structured CSPs

• Conditioning: instantiate a variable, prune its neighbors' domains



- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size $c \implies$ runtime $O(d^c \cdot (n-c)d^2)$, very fast for small c

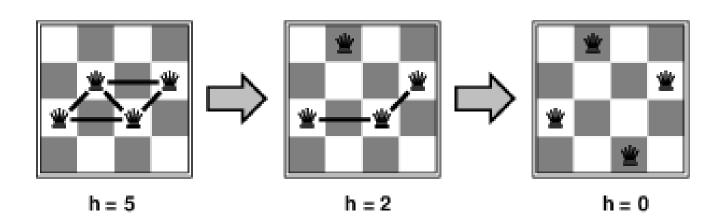
local search

Iterative Algorithms for CSPs

- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs
 - allow states with unsatisfied constraints
 - operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic
 - choose value that violates the fewest constraints
 - i.e., hillclimb with h(n) = total number of violated constraints

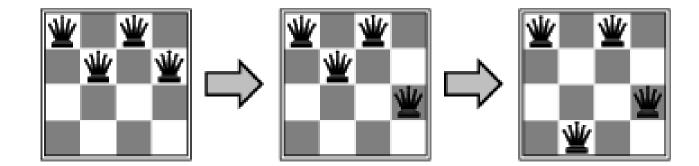
Example: 4-Queens

- States: 4 queens in 4 columns ($4^4 = 256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: h(n) = number of attacks



Example: 4-Queens as a CSP

- Assume one queen in each column. Which row does each one go in?
- Variables Q_1 , Q_2 , Q_3 , Q_4
- Domains $D_i = \{1, 2, 3, 4\}$



Constraints

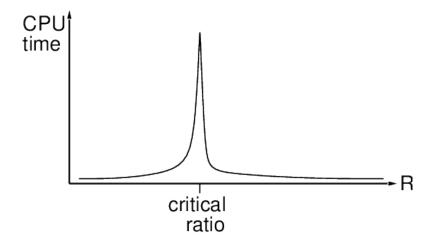
$$Q_i \neq Q_j$$
 (cannot be in same row) $|Q_i - Q_j| \neq |i - j|$ (or same diagonal)

- Translate each constraint into set of allowable values for its variables
- E.g., values for (Q_1, Q_2) are (1,3)(1,4)(2,4)(3,1)(4,1)(4,2)

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)
- The same appears to be true for any randomly-generated CSP
 except in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$



Summary

- CSPs are a special kind of problem: states defined by values of a fixed set of variables goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The CSP representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice