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1Outline

● Bayesian Networks

● Parameterized distributions

● Exact inference

● Approximate inference
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bayesian networks
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3Bayesian Networks

● A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

● Syntax

– a set of nodes, one per variable
– a directed, acyclic graph (link ≈ “directly influences”)
– a conditional distribution for each node given its parents:

P(Xi∣Parents(Xi))

● In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over Xi for each combination of parent values
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4Example

● Topology of network encodes conditional independence assertions:

● Weather is independent of the other variables

● Toothache and Catch are conditionally independent given Cavity
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5Example

● I’m at work, neighbor John calls to say my alarm is ringing, but neighbor Mary
doesn’t call. Sometimes it’s set off by minor earthquakes.

Is there a burglar?

● Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

● Network topology reflects “causal” knowledge

– A burglar can set the alarm off
– An earthquake can set the alarm off
– The alarm can cause Mary to call
– The alarm can cause John to call
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6Example
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7Compactness

● A conditional probability table for Boolean Xi with k Boolean parents has 2k

rows for the combinations of parent values

● Each row requires one number p for Xi = true
(the number for Xi =false is just 1 − p)

● If each variable has no more than k parents,
the complete network requires O(n ⋅ 2k) numbers

● I.e., grows linearly with n, vs. O(2n) for the full joint distribution

● For burglary net, 1 + 1 + 4 + 2 + 2=10 numbers (vs. 25 − 1 = 31)
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8Global Semantics

● Global semantics defines the full joint distribution as the product of the local
conditional distributions:

P (x1, . . . , xn) =
n

∏
i=1

P (xi∣parents(Xi))

● E.g., P (j ∧m ∧ a ∧ ¬b ∧ ¬e)

= P (j∣a)P (m∣a)P (a∣¬b,¬e)P (¬b)P (¬e)

= 0.9×0.7×0.001×0.999×0.998

≈ 0.00063
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9Local Semantics

● Local semantics: each node is conditionally independent
of its nondescendants given its parents

● Theorem: Local semantics ⇔ global semantics
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10Markov Blanket

● Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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11Constructing Bayesian Networks

● Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X1, . . . ,Xn

2. For i = 1 to n
add Xi to the network

select parents from X1, . . . ,Xi−1 such that

P(Xi∣Parents(Xi)) = P(Xi∣X1, . . . , Xi−1)

● This choice of parents guarantees the global semantics:

P(X1, . . . ,Xn) =
n

∏
i=1

P(Xi∣X1, . . . , Xi−1) (chain rule)

=
n

∏
i=1

P(Xi∣Parents(Xi)) (by construction)
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12Example

● Suppose we choose the ordering M , J , A, B, E

● P (J ∣M) = P (J)?
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13Example

● Suppose we choose the ordering M , J , A, B, E

● P (J ∣M) = P (J)? No

● P (A∣J,M) = P (A∣J)? P (A∣J,M) = P (A)?
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14Example

● Suppose we choose the ordering M , J , A, B, E

● P (J ∣M) = P (J)? No

● P (A∣J,M) = P (A∣J)? P (A∣J,M) = P (A)? No

● P (B∣A,J,M) = P (B∣A)?

● P (B∣A,J,M) = P (B)?
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15Example

● Suppose we choose the ordering M , J , A, B, E

● P (J ∣M) = P (J)? No

● P (A∣J,M) = P (A∣J)? P (A∣J,M) = P (A)? No

● P (B∣A,J,M) = P (B∣A)? Yes

● P (B∣A,J,M) = P (B)? No

● P (E∣B,A,J,M) = P (E∣A)?

● P (E∣B,A,J,M) = P (E∣A,B)?
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16Example

● Suppose we choose the ordering M , J , A, B, E

● P (J ∣M) = P (J)? No

● P (A∣J,M) = P (A∣J)? P (A∣J,M) = P (A)? No

● P (B∣A,J,M) = P (B∣A)? Yes

● P (B∣A,J,M) = P (B)? No

● P (E∣B,A,J,M) = P (E∣A)? No

● P (E∣B,A,J,M) = P (E∣A,B)? Yes
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17Example

● Deciding conditional independence is hard in noncausal directions

● (Causal models and conditional independence seem hardwired for humans!)

● Assessing conditional probabilities is hard in noncausal directions

● Network is less compact: 1 + 2 + 4 + 2 + 4=13 numbers needed
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18Example: Car Diagnosis

● Initial evidence: car won’t start

● Testable variables (green), “broken, so fix it” variables (orange)

● Hidden variables (gray) ensure sparse structure, reduce parameters

Philipp Koehn Artificial Intelligence: Bayesian Networks 29 October 2015



19Example: Car Insurance
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20Compact Conditional Distributions

● CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child

● Solution: canonical distributions that are defined compactly

● Deterministic nodes are the simplest case:
X = f(Parents(X)) for some function f

● E.g., Boolean functions
NorthAmerican ⇔ Canadian ∨US ∨Mexican

● E.g., numerical relationships among continuous variables

∂Level

∂t
= inflow + precipitation - outflow - evaporation
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21Compact Conditional Distributions

● Noisy-OR distributions model multiple noninteracting causes

– parents U1 . . . Uk include all causes (can add leak node)
– independent failure probability qi for each cause alone

Ô⇒ P (X ∣U1 . . . Uj,¬Uj+1 . . .¬Uk) = 1 −∏
j
i=1 qi

Cold F lu Malaria P (Fever) P (¬Fever)

F F F 0.0 1.0
F F T 0.9 0.1
F T F 0.8 0.2
F T T 0.98 0.02 = 0.2 × 0.1
T F F 0.4 0.6
T F T 0.94 0.06 = 0.6 × 0.1
T T F 0.88 0.12 = 0.6 × 0.2
T T T 0.988 0.012 = 0.6 × 0.2 × 0.1

● Number of parameters linear in number of parents
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22Hybrid (Discrete+Continuous) Networks

● Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

● Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

● 1) Continuous variable, discrete+continuous parents (e.g., Cost)
2) Discrete variable, continuous parents (e.g., Buys?)
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23Continuous Child Variables

● Need one conditional density function for child variable given continuous
parents, for each possible assignment to discrete parents

● Most common is the linear Gaussian model, e.g.,:

P (Cost= c∣Harvest=h,Subsidy?= true)

= N(ath + bt, σt)(c)

=
1

σt
√

2π
exp(−

1

2
(
c − (ath + bt)

σt
)

2

)

● Mean Cost varies linearly with Harvest, variance is fixed

● Linear variation is unreasonable over the full range
but works OK if the likely range of Harvest is narrow

Philipp Koehn Artificial Intelligence: Bayesian Networks 29 October 2015



24Continuous Child Variables

● All-continuous network with LG distributions
Ô⇒ full joint distribution is a multivariate Gaussian

● Discrete+continuous LG network is a conditional Gaussian network i.e., a
multivariate Gaussian over all continuous variables for each combination of
discrete variable values
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25Discrete Variable w/ Continuous Parents

● Probability of Buys? given Cost should be a “soft” threshold:

● Probit distribution uses integral of Gaussian:
Φ(x) = ∫

x
−∞
N(0,1)(x)dx

P (Buys?= true ∣ Cost= c) = Φ((−c + µ)/σ)
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26Why the Probit?

● It’s sort of the right shape

● Can view as hard threshold whose location is subject to noise
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27Discrete Variable

● Sigmoid (or logit) distribution also used in neural networks:

P (Buys?= true ∣ Cost= c) =
1

1 + exp(−2−c+µσ )

● Sigmoid has similar shape to probit but much longer tails:
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inference
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29Inference Tasks

● Simple queries: compute posterior marginal P(Xi∣E=e)
e.g., P (NoGas∣Gauge= empty,Lights=on,Starts=false)

● Conjunctive queries: P(Xi,Xj∣E=e) = P(Xi∣E=e)P(Xj∣Xi,E=e)

● Optimal decisions: decision networks include utility information;
probabilistic inference required for P (outcome∣action, evidence)

● Value of information: which evidence to seek next?

● Sensitivity analysis: which probability values are most critical?

● Explanation: why do I need a new starter motor?
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30Inference by Enumeration

● Slightly intelligent way to sum out variables from the joint without actually
constructing its explicit representation

● Simple query on the burglary network
P(B∣j,m)

= P(B, j,m)/P (j,m)

= αP(B, j,m)

= α ∑e ∑a P(B,e, a, j,m)

● Rewrite full joint entries using product of CPT entries:
P(B∣j,m)

= α ∑e ∑a P(B)P (e)P(a∣B,e)P (j∣a)P (m∣a)
= αP(B) ∑e P (e) ∑a P(a∣B,e)P (j∣a)P (m∣a)

● Recursive depth-first enumeration: O(n) space, O(dn) time
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31Enumeration Algorithm

function ENUMERATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network with variables {X} ∪ E ∪ Y

Q(X )←a distribution over X, initially empty
for each value xi of X do

extend e with value xi for X
Q(xi)←ENUMERATE-ALL(VARS[bn], e)

return NORMALIZE(Q(X ))

function ENUMERATE-ALL(vars, e) returns a real number
if EMPTY?(vars) then return 1.0
Y←FIRST(vars)
if Y has value y in e

then return P (y ∣ Pa(Y )) × ENUMERATE-ALL(REST(vars), e)
else return ∑y P (y ∣ Pa(Y )) × ENUMERATE-ALL(REST(vars), ey)

where ey is e extended with Y = y
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32Evaluation Tree

● Enumeration is inefficient: repeated computation
e.g., computes P (j∣a)P (m∣a) for each value of e
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33Inference by Variable Elimination

● Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B∣j,m)

= α P(B)
²
B

∑e P (e)
²
E

∑aP(a∣B,e)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

P (j∣a)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

J

P (m∣a)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

M

= αP(B)∑eP (e)∑aP(a∣B,e)P (j∣a)fM(a)

= αP(B)∑eP (e)∑aP(a∣B,e)fJ(a)fM(a)

= αP(B)∑eP (e)∑a fA(a, b, e)fJ(a)fM(a)

= αP(B)∑eP (e)fĀJM(b, e) (sum out A)

= αP(B)fĒĀJM(b) (sum out E)

= αfB(b)×fĒĀJM(b)
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34Variable Elimination: Basic Operations

● Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

∑x f1×⋯×fk = f1×⋯×fi ∑x fi+1×⋯×fk = f1×⋯×fi×fX̄

assuming f1, . . . , fi do not depend on X

● Pointwise product of factors f1 and f2:
f1(x1, . . . , xj, y1, . . . , yk)×f2(y1, . . . , yk, z1, . . . , zl)

= f(x1, . . . , xj, y1, . . . , yk, z1, . . . , zl)

● E.g., f1(a, b)×f2(b, c) = f(a, b, c)
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35Variable Elimination Algorithm

function ELIMINATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable

e, evidence specified as an event
bn, a belief network specifying joint distribution P(X1, . . . ,Xn)

factors← [ ]; vars←REVERSE(VARS[bn])
for each var in vars do

factors← [MAKE-FACTOR(var ,e)∣factors]
if var is a hidden variable then factors←SUM-OUT(var, factors)

return NORMALIZE(POINTWISE-PRODUCT(factors))
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36Irrelevant Variables

● Consider the query P (JohnCalls∣Burglary = true)

P (J ∣b) = αP (b)∑
e

P (e)∑
a

P (a∣b, e)P (J ∣a)∑
m

P (m∣a)

Sum over m is identically 1; M is irrelevant to the query

● Theorem 1: Y is irrelevant unless Y ∈Ancestors({X}∪E)

● Here
– X =JohnCalls, E={Burglary}
– Ancestors({X}∪E) = {Alarm,Earthquake}
⇒ MaryCalls is irrelevant

● Compare this to backward chaining from the query in Horn clause KBs
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37Irrelevant Variables

● Definition: moral graph of Bayes net: marry all parents and drop arrows

● Definition: A is m-separated from B by C iff separated by C in the moral graph

● Theorem 2: Y is irrelevant if m-separated from X by E

● For P (JohnCalls∣Alarm= true), both
Burglary and Earthquake are irrelevant
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38Complexity of Exact Inference

● Singly connected networks (or polytrees)

– any two nodes are connected by at most one (undirected) path

– time and space cost of variable elimination are O(dkn)

● Multiply connected networks

– can reduce 3SAT to exact inference Ô⇒ NP-hard

– equivalent to counting 3SAT models Ô⇒ #P-complete
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approximate inference
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40Inference by Stochastic Simulation

● Basic idea

– Draw N samples from a sampling distribution S

– Compute an approximate posterior probability P̂

– Show this converges to the true probability P

● Outline

– Sampling from an empty network

– Rejection sampling: reject samples disagreeing with evidence

– Likelihood weighting: use evidence to weight samples

– Markov chain Monte Carlo (MCMC): sample from a stochastic process
whose stationary distribution is the true posterior
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41Sampling from an Empty Network

function PRIOR-SAMPLE(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution P(X1, . . . ,Xn)

x←an event with n elements
for i = 1 to n do

xi←a random sample from P(Xi ∣ parents(Xi))

given the values of Parents(Xi) in x
return x
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42Example
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48Example
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49Sampling from an Empty Network

● Probability that PRIORSAMPLE generates a particular event
SPS(x1 . . . xn) =∏

n
i=1P (xi∣parents(Xi)) = P (x1 . . . xn)

i.e., the true prior probability

● E.g., SPS(t, f, t, t) = 0.5×0.9×0.8×0.9 = 0.324 = P (t, f, t, t)

● Let NPS(x1 . . . xn) be the number of samples generated for event x1, . . . , xn

● Then we have lim
N→∞

P̂ (x1, . . . , xn) = lim
N→∞

NPS(x1, . . . , xn)/N

= SPS(x1, . . . , xn)

= P (x1 . . . xn)

● That is, estimates derived from PRIORSAMPLE are consistent

● Shorthand: P̂ (x1, . . . , xn) ≈ P (x1 . . . xn)

Philipp Koehn Artificial Intelligence: Bayesian Networks 29 October 2015



50Rejection Sampling
● P̂(X ∣e) estimated from samples agreeing with e

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P (X ∣e)
local variables: N, a vector of counts over X, initially zero

for j = 1 to N do
x←PRIOR-SAMPLE(bn)
if x is consistent with e then

N[x]←N[x]+1 where x is the value of X in x
return NORMALIZE(N[X])

● E.g., estimate P(Rain∣Sprinkler = true) using 100 samples
27 samples have Sprinkler = true

Of these, 8 have Rain= true and 19 have Rain=false

● P̂(Rain∣Sprinkler = true) = NORMALIZE(⟨8,19⟩) = ⟨0.296,0.704⟩

● Similar to a basic real-world empirical estimation procedure
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51Analysis of Rejection Sampling

● P̂(X ∣e) = αNPS(X,e) (algorithm defn.)
= NPS(X,e)/NPS(e) (normalized by NPS(e))
≈ P(X,e)/P (e) (property of PRIORSAMPLE)
= P(X ∣e) (defn. of conditional probability)

● Hence rejection sampling returns consistent posterior estimates

● Problem: hopelessly expensive if P (e) is small

● P (e) drops off exponentially with number of evidence variables!
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52Likelihood Weighting
● Idea: fix evidence variables, sample only nonevidence variables,

and weight each sample by the likelihood it accords the evidence

function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P (X ∣e)
local variables: W, a vector of weighted counts over X, initially zero

for j = 1 to N do
x, w←WEIGHTED-SAMPLE(bn)
W[x ]←W[x ] +w where x is the value of X in x

return NORMALIZE(W[X ])

function WEIGHTED-SAMPLE(bn, e) returns an event and a weight

x←an event with n elements; w←1
for i = 1 to n do

if Xi has a value xi in e
then w←w × P (Xi = xi ∣ parents(Xi))

else xi←a random sample from P(Xi ∣ parents(Xi))

return x, w
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53Likelihood Weighting Example

w = 1.0
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54Likelihood Weighting Example

w = 1.0
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55Likelihood Weighting Example

w = 1.0
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56Likelihood Weighting Example

w = 1.0×0.1
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57Likelihood Weighting Example

w = 1.0×0.1
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58Likelihood Weighting Example

w = 1.0×0.1
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59Likelihood Weighting Example

w = 1.0×0.1×0.99 = 0.099
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60Likelihood Weighting Analysis

● Sampling probability for WEIGHTEDSAMPLE is
SWS(z,e) =∏li=1P (zi∣parents(Zi))

● Note: pays attention to evidence in ancestors only
Ô⇒ somewhere “in between” prior and

posterior distribution

● Weight for a given sample z,e is
w(z,e) =∏mi=1P (ei∣parents(Ei))

● Weighted sampling probability is
SWS(z,e)w(z,e)

=∏
l
i=1P (zi∣parents(Zi)) ∏

m
i=1P (ei∣parents(Ei))

= P (z,e) (by standard global semantics of network)

● Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables
because a few samples have nearly all the total weight
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61Approximate Inference using MCMC

● “State” of network = current assignment to all variables

● Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-ASK(X, e, bn, N) returns an estimate of P (X ∣e)
local variables: N[X ], a vector of counts over X, initially zero

Z, the nonevidence variables in bn
x, the current state of the network, initially copied from e

initialize x with random values for the variables in Y
for j = 1 to N do

for each Zi in Z do
sample the value of Zi in x from P(Zi ∣mb(Zi))

given the values of MB(Zi) in x
N[x ]←N[x ] + 1 where x is the value of X in x

return NORMALIZE(N[X ])

● Can also choose a variable to sample at random each time
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62The Markov Chain

● With Sprinkler = true,WetGrass= true, there are four states:

● Wander about for a while, average what you see
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63MCMC Example

● Estimate P(Rain∣Sprinkler = true,WetGrass= true)

● Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.

● E.g., visit 100 states
31 have Rain= true, 69 have Rain=false

● P̂(Rain∣Sprinkler = true,WetGrass= true)
= NORMALIZE(⟨31,69⟩) = ⟨0.31,0.69⟩

● Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly
proportional to its posterior probability
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64Markov Blanket Sampling

● Markov blanket of Cloudy is Sprinkler and Rain

● Markov blanket of Rain is
Cloudy, Sprinkler, and WetGrass

● Probability given the Markov blanket is calculated as follows:
P (x′i∣mb(Xi)) = P (x′i∣parents(Xi))∏Zj∈Children(Xi)P (zj∣parents(Zj))

● Easily implemented in message-passing parallel systems, brains

● Main computational problems
– difficult to tell if convergence has been achieved
– can be wasteful if Markov blanket is large:

P (Xi∣mb(Xi)) won’t change much (law of large numbers)
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65Summary
● Bayes nets provide a natural representation for (causally induced)

conditional independence

● Topology + CPTs = compact representation of joint distribution

● Generally easy for (non)experts to construct

● Canonical distributions (e.g., noisy-OR) = compact representation of CPTs

● Continuous variables Ô⇒ parameterized distributions (e.g., linear Gaussian)

● Exact inference by variable elimination
– polytime on polytrees, NP-hard on general graphs
– space = time, very sensitive to topology

● Approximate inference by LW, MCMC
– LW does poorly when there is lots of (downstream) evidence
– LW, MCMC generally insensitive to topology
– Convergence can be very slow with probabilities close to 1 or 0
– Can handle arbitrary combinations of discrete and continuous variables
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