
Tetrahedral Mesh Generation by Delaunay Refinement

Jonathan Richard Shewchuk
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213
jrs@cs.cmu.edu

���������
	����

Given a complex of vertices, constraining segments, and planar
straight-line constraining facets in 
�� , with no input angle less than�����

, an algorithm presented herein can generate a conforming mesh
of Delaunay tetrahedra whose circumradius-to-shortest edge ratios
are no greater than two. The sizes of the tetrahedra can provably
grade from small to large over a relatively short distance. An im-
plementation demonstrates that the algorithm generates excellent
meshes, generally surpassing the theoretical bounds, and is effec-
tive in eliminating tetrahedra with small or large dihedral angles,
although they are not all covered by the theoretical guarantee.
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Meshes of triangles or tetrahedra have many applications, including
interpolation, rendering, and numerical methods such as the finite
element method. Most such applications demand more than just a
triangulation of the object or domain being rendered or simulated.
To ensure accurate results, the triangles or tetrahedra must be “well-
shaped,” having small aspect ratios or bounds on their smallest and
largest angles.

Mesh generation algorithms based on Delaunay refinement are
effective both in theory and in practice. Delaunay refinement algo-
rithms operate by maintaining a Delaunay or constrained Delaunay
triangulation, which is refined by inserting carefully placed vertices
until the mesh meets constraints on triangle quality and size.

It is difficult to trace who first used Delaunay triangulations
for finite element meshing, and equally difficult to tell where the
suggestion arose to use the triangulation to guide vertex creation.
These ideas have been intensively studied in the engineering com-
munity since the mid-1980s; for instance, Frey [7] eliminates poor-
ly shaped triangles from a triangulation by inserting new vertices at
their circumcenters (defined in Section 2), whereas Weatherill [17]
inserts new vertices at their centroids.

These ideas bore vital theoretical fruit when the problem of
mesh generation began to attract interest from the computational
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geometry community in the early 1990s. The first provably good
Delaunay refinement algorithm is due to Paul Chew [2], and takes
as its input a set of vertices and segments that define the region to be
meshed. By inserting additional vertices, Chew’s algorithm gener-
ates a two-dimensional constrained Delaunay triangulation whose
angles are bounded between # � � and $&% � � . Dey, Bajaj, and Sug-
ihara [5] and Chew [4] generalize Chew’s algorithm to three di-
mensions, but only for unconstrained point set inputs. All three
algorithms produce uniform meshes, whose triangles or tetrahedra
are of roughly the same size.

Uniform meshes sometimes have many more triangles or tetra-
hedra than are necessary, and thus impose an excessive computa-
tional load upon the applications that make use of them. Jim Rup-
pert [13] and Paul Chew [3] have each proposed two-dimensional
Delaunay refinement algorithms that produce meshes of well-shaped
triangles whose sizes are graded, and Ruppert has furthermore pro-
ven that his algorithm produces meshes that are nicely graded in a
theoretical sense described in Section 7.

These algorithms are successful because they exploit several
favorable characteristics of Delaunay triangulations. Delaunay tri-
angulations have been extensively studied, and good algorithms are
available. Inserting a vertex is a local operation, and is inexpensive
except in unusual cases. In two dimensions, Delaunay triangula-
tions maximize the minimum angle, compared with all other trian-
gulations of the same vertex set [8].

The greatest advantage of Delaunay triangulations is less ob-
vious. The central question of any Delaunay refinement algorithm
is “where should the next vertex be inserted?” As Section 3 will
demonstrate, a reasonable answer is “as far from other vertices as
possible.” If a new vertex is inserted too close to another vertex,
the resulting short edge will engender thin triangles or tetrahedra.

Because a Delaunay triangle has no vertices in its circumcircle
(and a Delaunay tetrahedron has no vertices in its circumsphere),
a Delaunay triangulation is an ideal search structure for finding
points that are far from other vertices.

Herein, I build upon the algorithmic and analytical framework
of Ruppert to design a new tetrahedral Delaunay refinement algo-
rithm. This algorithm generates meshes whose tetrahedra have
circumradius-to-shortest edge ratios (defined shortly) no greater
than the bound ')(*% . Upon relaxing ' to be greater than two, one
can also guarantee good grading. My algorithm is distinguished
from those of Dey et al. and Chew by this guarantee of good grad-
ing (as opposed to uniform meshes), and by its ability to handle the
rather general constrained inputs described in Section 4 (as opposed
to unconstrained sets of vertices). The main theoretical deficiency
of the algorithm is its requirement that incident input segments and
facets be separated by angles of at least

�+� �
. (The requirements are

less onerous in practice.) This deficiency can be partly ameliorated;
Section 9 includes a brief summary of the steps involved.
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Figure 1: Tetrahedra with poor angles. Needles and wedges have
edges of greatly disparate length; caps have a large solid angle; sliv-
ers have neither, but can have good circumradius-to-shortest edge
ratios.

Two other tetrahedral mesh generation algorithms (not based
on Delaunay refinement) have provable bounds. The octree-based
algorithm of Mitchell and Vavasis [11, 12] is a theoretical tour de
force, obtaining provable bounds on dihedral angles and grading,
but its bounds are too weak to offer any practical reassurance (and
have not been explicitly stated). An algorithm by Miller, Talmor,
Teng, Walkington, and Wang [10] generates its final vertex set be-
fore triangulating it. Their algorithm has provable bounds similar
to those of the algorithm described herein, but the algorithm herein
has the opportunity to stop early if fewer vertices are needed than
the theory suggests. As a result, the present algorithm typically
uses fewer vertices by several orders of magnitude; details are pro-
vided elsewhere [14].
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Miller, Talmor, Teng, and Walkington [9] have pointed out that the
most natural and elegant measure for analyzing Delaunay refine-
ment algorithms is the circumradius-to-shortest edge ratio of a tri-
angle or tetrahedron. The circumsphere of a simplex is the unique
circle or sphere that passes through all its vertices. The circumcen-
ter and circumradius of a simplex are the center and radius of its
circumsphere, respectively. The quotient of a simplex’s circumra-
dius and the length of its shortest edge is the metric that is naturally
optimized by Delaunay refinement algorithms. One would like this
ratio to be as small as possible.

But does optimizing this metric aid practical applications? In
two dimensions, the answer is yes. A triangle’s circumradius-to-
shortest edge ratio ����� is related to its smallest angle ����� � by the
formula ����� ( $ ��!
%#"%$'&(� ��� �*) . The smaller a triangle’s ratio, the
larger its smallest angle. Chew’s two-dimensional algorithms pro-
duce meshes whose triangles’ circumradius-to-shortest edge ratios
are bounded below one, and hence their angles are bounded be-
tween # ��� and $&% ��� . Ruppert’s algorithm can produce meshes
whose triangles’ ratios are bounded below + % , and hence their an-
gles range between % �-, . � and $�#�/ , 0 � .

In three dimensions, however, a mesh of tetrahedra whose cir-
cumradius-to-shortest edge ratios are bounded is not entirely ade-
quate for the needs of interpolation. As Dey et al. illustrate, most
tetrahedra with poor angles have circumcircles much larger than
their shortest edges, including the needle, wedge, and cap illus-
trated in Figure 1, but there is one type called a sliver or kite tetra-
hedron that does not. The canonical sliver is formed by arranging
four vertices, equally spaced, around the equator of a sphere, then
perturbing one of the vertices slightly off the equator. A sliver can
have a circumradius-to-shortest edge ratio as low as $���+ % , yet be
considered awful by most other measures, because its volume and
its shortest altitude can be arbitrarily close to zero, and its dihedral
angles can be arbitrarily close to

� �
and $�/ � � .

Despite slivers, Delaunay refinement methods are valuable for
generating three-dimensional meshes. Slivers having good circum-
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Figure 2: Any triangle whose circumradius-to-shortest edge ratio is
larger than some bound 1 is split by inserting a vertex at its cir-
cumcenter. The Delaunay property is maintained, and the triangle is
thus eliminated. Every new edge has length at least 1 times that of
shortest edge of the poor triangle.

radius-to-shortest edge ratios typically arise in small numbers in
practice. As Section 8 will demonstrate, the worst slivers can of-
ten be removed by Delaunay refinement, even if there is no the-
oretical guarantee. Meshes with bounds on the circumradius-to-
shortest edge ratios of their tetrahedra are an excellent starting point
for mesh smoothing and optimization methods that remove slivers
and otherwise improve the quality of an existing mesh [6]. Even
if slivers are not removed, the Voronoi dual of a tetrahedraliza-
tion with bounded circumradius-to-shortest edge ratios has nicely
rounded cells, and is sometimes ideal for use in the control volume
method [9].
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The central operation of Chew’s, Ruppert’s, Dey’s, and my own
Delaunay refinement algorithms is the insertion of a vertex at the
circumcenter of a triangle or tetrahedron of poor quality. The De-
launay property is maintained, perhaps by the Bowyer/Watson al-
gorithm for the incremental update of Delaunay triangulations [1,
16]. The poor simplex cannot survive, because its circumsphere is
no longer empty. For brevity, the act of inserting a vertex at a sim-
plex’s circumcenter is called splitting a simplex. If poor simplices
are split one by one, either all will eventually be eliminated, or the
algorithm will run forever.

The main insight of all these Delaunay refinement algorithms
is that Delaunay refinement is guaranteed to terminate if the notion
of “poor quality” includes only simplices that have a circumradius-
to-shortest edge ratio larger than some appropriate bound ' . The
only new edges created by the Delaunay insertion of a vertex B are
edges connected to B (see Figure 2). Because B is the circumcen-
ter of some Delaunay simplex C , and there were no vertices inside
the circumsphere of C before B was inserted, no new edge can be
shorter than the circumradius of C . Because C has a circumradius-
to-shortest edge ratio larger than ' , every new edge has length at
least ' times that of the shortest edge of C .

Ruppert’s Delaunay refinement algorithm [13] employs a bound
of ' ( + % , and Chew’s second Delaunay refinement algorithm [3]
employs a bound of ' ( $ . Chew’s first Delaunay refinement al-
gorithm [2] splits any triangle whose circumradius is greater than
the length of the shortest edge in the entire mesh, thus achieving
a bound of ' ( $ , but forcing all triangles to have uniform size.
In the same manner, the three-dimensional algorithms of Dey et al.
and Chew achieve a bound of ' ( % . With these bounds, every
new edge created is at least as long as some other edge already in
the mesh. Hence, no vertex is ever inserted closer to another ver-
tex than the length of the shortest edge in the initial triangulation.
Delaunay refinement must eventually terminate, because the aug-
mented triangulation will run out of places to put vertices.
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Figure 3: (a) Any facet of a PLC may contain holes, slits, and ver-
tices; these may support intersections with other facets and seg-
ments or allow a user of the finite element method to apply boundary
conditions. (b) When a PLC is tetrahedralized, each facet of the PLC
is partitioned into triangular subfacets, which respect the holes, slits,
and vertices.

This idea generalizes without change to higher dimensions. Un-
fortunately, my description of Delaunay refinement thus far has a
gaping hole: mesh boundaries have not been accounted for. The
flaw in the procedure presented above is that the circumcenter of a
poor simplex might not lie in the mesh at all. Delaunay refinement
algorithms, including those of Chew, Ruppert, and Dey et al., are
distinguished primarily by how they handle boundaries.
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The input upon which my three-dimensional Delaunay refinement
algorithm operates is called a piecewise linear complex (PLC). See
Miller, Talmor, Teng, Walkington, and Wang [10] for a definition in


	 . In three dimensions, a PLC is a set of vertices, segments, and
facets. A segment is a constraining edge that must be represented
by a sequence of contiguous edges in the final mesh. A facet is a
constraining planar surface that must be represented by a set of tri-
angular faces in the final mesh. A facet can be quite complicated in
shape; it is a polygon (not necessarily convex), possibly augmented
by holes, slits, and vertices in its interior. Figure 3(a) demonstrates
some of the possibilities.

A piecewise linear complex � is required to have the following
properties. First, � contains both endpoints of each segment of � .
Similarly, facets of � are segment-bounded: for any facet in � ,
every edge and vertex of the facet must be a segment or vertex of
� .

Second, � is closed under intersection. For example, if two
facets of � intersect at a line segment, that line segment must be a
segment of � . Third, if a segment of � intersects a facet of � at
a point in the segment’s interior, then the segment must be entirely
contained in the facet.

The process of tetrahedral mesh generation necessarily divides
each segment into smaller edges called subsegments. (Each seg-
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Figure 4: The orthogonal projections of points and sets of points
onto facets and segments.

ment is initially represented by one subsegment, until it is subdi-
vided.) The bold edges of the tetrahedralization illustrated in Fig-
ure 3(b) are subsegments; other edges are not. Similarly, each facet
is subdivided into triangular faces called subfacets. All of the tri-
angular faces visible in Figure 3(b) are subfacets, but most of the
faces in the interior of the tetrahedralization are not.

Any vertex inserted into a segment or facet during Delaunay
refinement remains there permanently. However, keep in mind that
the edges that partition a facet into subfacets are not permanent, are
not treated like subsegments, and are subject to flipping according
to the Delaunay criterion.

Many approaches to tetrahedral mesh generation permanently
triangulate the input facets as a separate step prior to tetrahedral-
izing the interior of a region. The problem with this approach
is that these independent facet triangulations may not be collec-
tively ideal for forming a good tetrahedralization. The algorithm
discussed herein uses an alternative approach, wherein facet trian-
gulations are refined in conjunction with the tetrahedralization. The
tetrahedralization process is not beholden to poor decisions made
earlier.
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The following sections use the notion of the orthogonal projection
of a geometric entity onto a line or plane. Given a facet or subfacet�

and a point � , the orthogonal projection proj �<!�� ) of � onto
�

is the point that is coplanar with
�

and lies in the line that passes
through � orthogonally to

�
, as illustrated in Figure 4. The projec-

tion exists whether or not it falls in
�

.
Similarly, the orthogonal projection proj �?!�� ) of � onto a seg-

ment or subsegment � is the point that is collinear with � and lies
in the plane through � orthogonal to � .

Sets of points may be projected as well. If
�

and � are facets,
then proj � !�� ) is the set � proj � !�� )�� ��� �"! .
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In this section, I describe a three-dimensional Delaunay refinement
algorithm that produces well-graded tetrahedral meshes satisfying
any circumradius-to-shortest edge ratio bound greater than two.

The algorithm takes a facet-bounded PLC as its input. Tetrahe-
dralized and untetrahedralized regions of space must be separated
by facets so that, in the final mesh, any triangular face not shared
by two tetrahedra is a subfacet.

The first step is to form a Delaunay tetrahedralization of the
input vertices. Some input segments and facets might be miss-
ing (or partly missing) from this mesh. The tetrahedralization is
refined by inserting additional vertices into the mesh, using the
Bowyer/Watson algorithm to maintain the Delaunay property, until
all segments and facets are respected and all constraints on tetrahe-
dron quality are met. Vertex insertion is governed by three rules.



(a) (b)

(c)

Figure 5: Three operations for three-dimensional Delaunay refine-
ment. (a) Splitting an encroached subsegment. The original subseg-
ment is encroached because there is a vertex in its diametral sphere.
In this example, the two subsegments created by bisecting the orig-
inal subsegment are not encroached. (b) Splitting an encroached
subfacet. The triangular faces shown are subfacets of a larger facet,
with tetrahedra (not shown) atop them. In this example, all equato-
rial spheres (included the two illustrated) are empty after the split.
(c) Splitting a skinny tetrahedron.

� The diametral sphere of a subsegment is the (unique) small-
est sphere that encloses the subsegment. Following Rup-
pert [13], a subsegment is said to be encroached if a vertex
other than its endpoints lies inside or on its diametral sphere.
A subsegment may be encroached whether or not it actually
appears as an edge of the tetrahedralization. It is a property
of Delaunay tetrahedralizations that if a subsegment is miss-
ing from the tetrahedralization, then it is encroached. Any
encroached subsegment that arises is immediately split into
two subsegments by inserting a vertex at its midpoint, as il-
lustrated in Figure 5(a). These subsegments may or may not
be encroached themselves; splitting continues until no sub-
segment is encroached.

� The equatorial sphere of a triangular subfacet is the (unique)
smallest sphere that passes through the three vertices of the
subfacet. A subfacet is encroached if a non-coplanar vertex
lies inside or on its equatorial sphere. It is a property of De-
launay tetrahedralizations that if a subfacet does not appear
in the tetrahedralization, and it is not covered by other faces
that share the same equatorial sphere, then it is encroached.
(The question of what subfacets should not be missing from
the mesh will be considered shortly.) Each encroached sub-
facet is normally split by inserting a vertex at its circumcen-
ter; see Figure 5(b). However, if the new vertex would en-

Figure 6: Missing segments are recovered through the same recur-
sive splitting procedure used for encroached subsegments that aren’t
missing. In this sequence of illustrations, the thin line represents a
segment missing from the triangulation. Segment recovery is illus-
trated here in two dimensions for clarity, but operates no differently
in three.

croach upon any subsegment, it is not inserted; instead, all
the subsegments it would encroach upon are split.

� A tetrahedron is said to be skinny if its circumradius-to-short-
est edge ratio is larger than some bound ' . Each skinny
tetrahedron is normally split by inserting a vertex at its cir-
cumcenter, thus eliminating the tetrahedron; see Figure 5(c).
However, if the new vertex would encroach upon any sub-
segment or subfacet, then it is not inserted; instead, all the
subsegments it would encroach upon are split. If the skinny
tetrahedron is not eliminated as a result, then all the subfacets
its circumcenter would encroach upon are split.

Encroached subsegments are given priority over encroached sub-
facets, which have priority over skinny tetrahedra. These encroach-
ment rules are intended to recover missing segments and facets, and
to ensure that all vertex insertions are valid. Although the proof is
omitted here, one can show that if there are no encroached subseg-
ments, then each subfacet circumcenter lies in the containing facet;
and if there are no encroached subfacets, then each tetrahedron cir-
cumcenter lies in the mesh.

Because encroached subsegments have priority, the algorithm
begins by recovering all the segments that are missing from the
initial tetrahedralization. Each missing segment is bisected by in-
serting a vertex into the mesh at the midpoint of the segment (more
accurately, at the midpoint of the place where the segment should
be). After the mesh is adjusted to maintain the Delaunay prop-
erty, the two resulting subsegments may appear in the mesh. If not,
the procedure is repeated recursively for each missing subsegment
until the original segment is represented by a contiguous linear se-
quence of edges of the mesh, as illustrated (in two dimensions) in
Figure 6. We are assured of eventual success because the Delau-
nay triangulation always connects a vertex to its nearest neighbor;
once the spacing of vertices along a segment is sufficiently small,
its entire length will be represented. In the engineering literature,
this process is sometimes called stitching.

When no encroached subsegment remains, missing facets are
recovered in an analogous manner. The main complication is that
if a facet is missing from the mesh, it is difficult to say what its
subfacets are. With segments there is no such problem; if a segment
is missing from the mesh, and a vertex is inserted at its midpoint,
one knows unambiguously where the two resulting subsegments
are. But how may we identify subfacets that do not yet exist?

The solution is straightforward. For each facet, it is necessary
to maintain a two-dimensional Delaunay triangulation of its ver-
tices, independently from the tetrahedralization in which we hope
its subfacets will eventually appear. By comparing the triangles
of a facet’s triangulation against the faces of the tetrahedralization,
one can identify subfacets that need help in forcing their way into
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Figure 7: The top illustrations depict a rectangular facet and its tri-
angulation. The bottom illustrations depict the facet’s position as an
interior boundary of a PLC, and its progress as it is inserted into the
tetrahedralization. Most of the vertices and tetrahedra of the mesh
are omitted for clarity. The facet triangulation and the tetrahedral-
ization are maintained separately. Shaded triangular subfacets in
the facet triangulation (top center) are missing from the tetrahedral-
ization (bottom center). The bold dashed line (bottom center) rep-
resents a tetrahedralization edge that passes through the facet. A
missing subfacet is forced into the mesh by inserting a vertex at its
circumcenter (top right and bottom right). The vertex is indepen-
dently inserted into both the triangulation and the tetrahedralization.

the mesh. For each triangular subfacet in a facet triangulation, look
for a matching face in the tetrahedralization; if the latter is miss-
ing, insert a vertex at the circumcenter of the subfacet (subject to
rejection if subsegments are encroached), as illustrated in Figure 7.
The new vertex is independently inserted into both the facet trian-
gulation and the tetrahedralization. Similarly, the midpoint of an
encroached subsegment is independently inserted into the tetrahe-
dralization and into each facet triangulation that contains the sub-
segment.

In essence, the same procedure is used to recover missing seg-
ments. However, the process of forming a one-dimensional trian-
gulation is so simple that it passes unnoticed.

Which vertices of the tetrahedralization need to be considered
in a facet triangulation? If a facet appears in a Delaunay tetrahe-
dralization as a union of faces, then the triangulation of the facet is
determined solely by the vertices of the tetrahedralization that lie
in the plane of the facet. If a vertex lies near a facet, but is not
coplanar with the facet, it may cause a subfacet to be missing (as
in Figure 7, bottom center), but it cannot otherwise affect the shape
of the triangulation. If a facet appears as a union of faces in a De-
launay tetrahedralization, then those faces form a two-dimensional
Delaunay triangulation of the facet.

Furthermore, because each facet is segment-bounded, and seg-
ments are recovered (in the tetrahedralization) before facets, each
facet triangulation can safely ignore vertices that lie outside the
facet (coplanar though they may be). The requirements set forth
in Section 4 ensure that all of the vertices and segments of a facet
must be explicitly identified in the input PLC. The only additional
vertices to be considered are those that were inserted in segments to
help recover those segments and other facets. The algorithm main-
tains a list of the vertices on each segment, ready to be called upon
when a facet triangulation is initially formed.
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Figure 8: If a vertex � encroaches upon a Delaunay subfacet � of a
facet � , but its projection into the plane containing � lies outside � ,
then � encroaches upon some subsegment � of � as well.

Unfortunately, if a facet’s Delaunay triangulation is not unique
because of cocircularity degeneracies, then the facet might be rep-
resented in the tetrahedralization by faces that do not match the
independent facet triangulation. An implementation must detect
these cases and correct the triangulation so that it matches the tetra-
hedralization.

When no encroached subsegment or subfacet remains, every
input segment and facet is represented by a union of edges or faces
of the mesh. The first time the mesh reaches this state, all external
tetrahedra (lying in the convex hull of the input vertices, but outside
the region enclosed by the facet-bounded PLC) are removed prior
to splitting any skinny tetrahedra. This measure prevents problems
that might arise if superfluous skinny tetrahedra are split, such as
overrefinement and failure to terminate because of spurious small
angles formed between the PLC and its convex hull.

One further amendment to the algorithm is necessary to obtain
the best possible bound on the circumradius-to-shortest edge ratios
of the tetrahedra. When several encroached subfacets exist, they
should not be split in arbitrary order. If a vertex � encroaches upon
a subfacet � of a facet

�
, but the projected point proj � !�� ) does not

lie in � , then splitting � is not the best choice. One can show (with
the following lemma) that there is some other subfacet � of

�
that is

encroached upon by � and contains proj � !�� ) . (The lemma assumes
that there are no encroached subsegments in the mesh, as they have
priority.) A better bound is achieved if the algorithm splits � first
and delays the splitting of � indefinitely.

Lemma 1 (Projection Lemma) Let � be a subfacet of the Delau-
nay triangulated facet

�
. Suppose that � is encroached upon by

some vertex � , but � does not encroach upon any subsegment of�
. Then proj � !�� ) lies in the facet

�
, and � encroaches upon a

subfacet of
�

that contains proj � !�� ) .
Proof: First, I prove that proj � !�� ) lies in

�
. Suppose for the sake

of contradiction that proj � !�� ) lies outside the facet
�

. Let � be
the centroid of � ; � clearly lies inside

�
. Because all facets are

segment-bounded, the line segment connecting � to proj � !�� ) must
intersect some subsegment � in the boundary of

�
. Let � be the

plane that contains � and is orthogonal to
�

, as illustrated in Fig-
ure 8.

Because � is a Delaunay subfacet of
�

, its circumcircle (in the
plane containing

�
) encloses no vertex of

�
. However, its equa-

torial sphere may enclose vertices—including � —and � might not
appear in the tetrahedralization.

It is apparent that � and proj � !�� ) lie on the same side of � , be-
cause the projection is defined orthogonally to

�
. Say that a point

is inside � if it is on the same side of � as � , and outside � if it is
on the same side as � and proj � !�� ) . The circumcircle of � cannot
enclose the endpoints of � , because � is Delaunay in

�
. Further-

more, the circumcenter of � lies in
�

; otherwise, a vertex of �
would encroach upon some boundary segment of

�
. It follows that
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Figure 9: If a vertex � encroaches upon a subfacet � of a Delaunay
triangulated facet � , but does not encroach upon any subsegment
of � , then � encroaches upon the subfacet(s) � of � that contains
proj ��� ��� .

the portion of � ’s equatorial sphere outside � lies entirely inside or
on the diametral sphere of � (as the figure demonstrates). Because
� is inside or on the equatorial sphere of � , � also lies inside or
on the diametral sphere of � , contradicting the assumption that �
encroaches upon no subsegment of

�
.

It follows that proj � !�� ) must be contained in some subfacet �
of
�

. (The containment is not necessarily strict; proj � !�� ) may fall
on an edge interior to

�
, and be contained in two subfacets.) To

complete the proof of the lemma, I shall show that � encroaches
upon � . If � ( � the result follows immediately, so assume that

���( � .
Again, let � be the centroid of � . The line segment connect-

ing � to proj � !�� ) must intersect some edge � of the subfacet � , as
illustrated in Figure 9. Let � be the plane that contains � and is
orthogonal to

�
. Say that a point is on the � -side if it is on the

same side of � as � . Because the triangulation of
�

is Delaunay,
the portion of � ’s equatorial sphere on the � -side lies entirely inside
or on the equatorial sphere of � . The point � lies on the � -side or in� (because proj � !�� ) lies in � ), and � lies inside or on the equatorial
sphere of � , so it must also lie inside or on the equatorial sphere of
� , and hence encroaches upon � . 	

If � encroaches upon some subfacet of
�

but no subfacet of�
contains proj � !�� ) , then � also encroaches upon some boundary

subsegment of
�

. Because encroached subsegments have priority,
subsegments encroached upon by � are split until none remains.
The Projection Lemma guarantees that any subfacets of

�
that were

encroached upon by � are eliminated in the process.
On the other hand, if proj � !�� ) lies in a subfacet � of

�
, and

no subsegment is encroached, then splitting � is a good choice. As
a result, several new subfacets will appear, at least one of which
contains proj � !�� ) ; if this subfacet is encroached, then it is split
as well, and so forth until the subfacet containing proj � !�� ) is not
encroached. The Projection Lemma guarantees that any other sub-
facets of

�
that were encroached upon by � are eliminated in the

process.
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The proof of termination for this algorithm is related to that of Rup-
pert’s. Ruppert’s analysis requires that any two incident input seg-
ments be separated by an angle of at least

�����
. Similarly, the three-

dimensional analysis requires that the input PLC satisfy the follow-
ing projection condition: if two constraints (each being a segment
or facet) in � intersect, then the orthogonal projection of either one
onto the other cannot intersect the interior of the other. (Here, “in-
terior” is defined to exclude all boundaries, including isolated slits
and input vertices in the interior of the facet.) For example, if two
convex facets intersect along a segment, they must be separated by

Figure 10: The radius of each disk illustrated is the local feature size
of the point at its center.

a dihedral angle of at least
�+� �

. Thanks to the Projection Lemma,
this rule ensures that no vertex in the interior of one segment or
facet can cause the splitting of a subsegment or subfacet in an inci-
dent segment or facet, except that a vertex in the interior of a facet
may encroach upon a subsegment of that facet. In theory (and more
so in practice), the projection condition can be relaxed somewhat,
although the analysis becomes too complicated to present here.

Ruppert’s algorithm and the three-dimensional algorithm de-
scribed here produce nicely graded meshes, in the sense that a small
feature in one part of a mesh does not unreasonably reduce the edge
lengths at other, distant parts of the mesh. To formalize this idea,
Ruppert introduces a function called the local feature size, defined
on all points.

Given a PLC � , the local feature size lfs !�� ) at any point �
is the radius of the smallest ball centered at � that intersects two
nonincident features of � (where each of the two features might be
a vertex, segment, or facet). Figure 10 illustrates the notion in two
dimensions (with no facets) by giving examples of such balls for a
variety of points.

The function lfs !�
 ) is continuous and has the property that its
directional derivatives (where they exist) are bounded in the range��� $���$�� , as the following lemma shows. This property sets a lower
bound (within a constant factor to be derived shortly) on the rate at
which edge lengths grade from small to large as one moves away
from a small feature.

Lemma 2 (Ruppert [13]) For any PLC � , and any two points �
and B , lfs ! B )�� lfs !�� )���� � B � .
Proof: The ball having radius lfs !�� ) centered at � intersects two
nonincident features of � . The ball having radius lfs !�� )���� � B �
centered at B contains the prior ball, and thus also intersects the
same two features. Hence, the smallest ball centered at B that
contains two nonincident features of � has radius no larger than
lfs !�� )���� � B � . 	

With each vertex B , associate an insertion radius �! equal to
the length of the shortest edge connected to B immediately after B
is introduced into the tetrahedralization. Consider what this means
in each possible circumstance. If B is an input vertex, then �  is
the Euclidean distance between B and the input vertex nearest B .
If B is a vertex inserted to split a subsegment or subfacet, then �! 
is the distance between B and the nearest encroaching mesh ver-
tex. If there is no encroaching vertex in the mesh (a vertex was
considered for insertion but rejected as encroaching), then �  is the
radius of the diametral/equatorial sphere of the encroached subseg-
ment/subfacet. If B is a vertex inserted at the circumcenter of a
skinny tetrahedron, then �  is the circumradius of the tetrahedron.
If a vertex is considered for insertion but rejected because of an



encroachment, its insertion radius is defined the same way, even
though it is never actually inserted.

Each vertex B , whether inserted or rejected, has a parent vertex
� ! B ) , unless B is an input vertex. Intuitively, for any non-input
vertex B , � ! B ) is the vertex that is “responsible” for the insertion ofB .

If B is a vertex inserted to split a subsegment or subfacet, then
� ! B ) is the encroaching vertex, whether that vertex is inserted or
rejected. If there are several encroaching vertices, choose the one
nearest B . If B is a vertex inserted (or rejected) at the circumcen-
ter of a skinny tetrahedron, then � ! B ) is the most recently inserted
endpoint of the shortest edge of that tetrahedron.

Lemma 3 Let B be a vertex of the mesh, and let � ( � ! B ) be its
parent, if one exists. Then either �  �� lfs ! B ) , or �  ���� ��� , where

� � (*' if B is the circumcenter of a skinny tetrahedron;

� � ( �� 	 if B is the midpoint of an encroached subsegment
or the circumcenter of an encroached subfacet.

Proof: If B is an input vertex, there is another input vertex a dis-
tance of �  from B , so lfs ! B )�� �  , and the theorem holds.

If B is inserted in an encroached subsegment or subfacet, and
its parent � is an input vertex or lies on another subsegment or sub-
facet, then there are two cases to consider. The case in which B
lies in a boundary segment of a facet that contains � will be consid-
ered shortly. Otherwise, B and � must lie on nonincident features
(because � satisfies the projection condition), so lfs ! B )�� �  .

If B is inserted at the circumcenter of a skinny tetrahedron, then
its parent � ( � ! B ) is the most recently inserted endpoint of the
shortest edge of the tetrahedron; see Figure 11(a). Hence, the
length of the shortest edge of the tetrahedron is at least � � . Be-
cause the tetrahedron is skinny, its circumradius-to-shortest edge
ratio exceeds ' , so its circumradius is �  �
 ' � � .

If B is inserted at the midpoint of an encroached subsegment
� , and its parent � is a tetrahedron/subfacet circumcenter that was
considered for insertion but rejected because it encroaches upon

� , then � lies inside or on the diametral sphere of � . Because
the tetrahedralization/facet triangulation is Delaunay, the circum-
sphere/circumcircle centered at � encloses no vertices, and in par-
ticular does not enclose the endpoints of � . Hence, ��� � + %*�  ; see
Figure 11(b) for an example where the relation is equality.

If B is inserted at the circumcenter of an encroached subfacet
� , and its parent � is a tetrahedron circumcenter that was consid-
ered for insertion but rejected because it encroaches upon � , then
� lies inside or on the equatorial sphere of � . Because the tetrahe-
dralization is Delaunay, the circumsphere centered at � encloses no
vertices, including the vertices of � . Recall that the algorithm splits

� only if � contains proj � !�� ) . Given these facts, one can show that

��� � + % �  ; see Figure 11(c) for an example where the relation is
equality. 	

Lemma 3 limits how quickly the insertion radius can decrease
as one traverses a sequence of descendants of a vertex. If vertices
with ever-smaller insertion radii cannot be generated, then edges
shorter than existing ones cannot be introduced, and Delaunay re-
finement is guaranteed to terminate. Figure 12 expresses this notion
as a dataflow graph. Mesh vertices are divided into four classes: in-
put vertices (which are omitted from the figure because they cannot
contribute to cycles), vertices inserted into segments, vertices in-
serted into facet interiors, and vertices inserted at circumcenters of
tetrahedra. Labeled arrows indicate how a vertex can cause the in-
sertion of a child whose insertion radius is some factor times that
of its parent. If the graph has no cycle whose product is less than
one, termination is guaranteed. This goal is achieved by choosing
' to be at least % .
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Figure 11: The relationship between the insertion radii of a child and
its parent. (a) When a skinny tetrahedron is split, the child’s insertion
radius is at least 1 times larger than that of its parent. (b) When a
subsegment is encroached upon by a circumcenter, the child’s inser-
tion radius may be a factor of 
 � smaller than its parent’s. (c) When
a subfacet is encroached upon by the circumcenter of a skinny tetra-
hedron, the child’s insertion radius may be a factor of 
 � smaller
than its parent’s.
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Figure 12: Dataflow diagram illustrating the worst-case relation be-
tween a vertex’s insertion radius and the insertion radii of the chil-
dren it begets. If no cycle has a product smaller than one, Delaunay
refinement will terminate.

A guarantee of termination alone is not satisfying when a graded
mesh is required. What follows is a proof that each edge of the out-
put mesh has length proportional to the local feature sizes of its
endpoints. Hence, edge lengths are determined by local consider-
ations; features lying outside the ball that defines the local feature
size of a point can only weakly influence the sizes of edges that
contain that point.

Lemma 3 was concerned with the relationship between the in-
sertion radii of a child and its parent; the next lemma is concerned

with the relationship between lfs �  ����� and lfs � � ���� . For any vertex B ,

define   ( lfs �  ����� . Think of   as the one-dimensional density



of vertices near B when B is inserted, weighted by the local fea-
ture size. One would like this density to be as small as possible.
  � $ for any input vertex, but   tends to be larger for a vertex
inserted late.

Lemma 4 Let B be a vertex with parent � ( � ! B ) . Suppose that
�  ���� ��� (following Lemma 3). Then   � $ ��� �� .

Proof: By Lemma 2, lfs ! B ) � lfs !�� )�� � B � � . By definition, the
insertion radius �  is � B � � if � is a mesh vertex, whereas if � is
rejected, then �  �� � B � � . Hence, we have

lfs ! B ) � lfs !�� ) � �  
(  ������ � �  
�  ��

� �  � �  ,
The result follows by dividing both sides by �  . 	
Theorem 5 Suppose the quality bound ' is strictly larger than % ,
and the input PLC satisfies the projection condition. Then there
exist fixed constants  �� � $ ,  � � $ , and  � � $ such that, for
any vertex B inserted (or rejected) at the circumcenter of a skinny
tetrahedron,   �  �� ; for any vertex B inserted (or rejected) at
the circumcenter of an encroached subfacet,   �  � ; and for
any vertex B inserted at the midpoint of an encroached subsegment,
  �  � . Hence, the insertion radius of every vertex has a lower
bound proportional to its local feature size.

Proof: Consider any non-input vertex B with parent � ( � ! B ) . If

� is an input vertex, then  �� ( lfs � � ���� � $ by Lemma 3. Other-
wise, assume for the sake of induction that the lemma is true for � .
Hence,  � �����
	 �  ����  � �  � ! .

First, suppose B is inserted or considered for insertion at the
circumcenter of a skinny tetrahedron. By Lemma 3, �  � ' ��� .
Therefore, by Lemma 4,   � $ � �
����� �
��� �
��� ���

�
� ,

It follows
that one can prove that   �  �� if  �� is chosen sufficiently large
that

$ � ����	 �  � �  � �  � !
' �  � ,

(1)

Second, suppose B is inserted or considered for insertion at the
circumcenter of a subfacet � . If its parent � is an input vertex or
lies on a segment or facet not incident to the facet containing � ,
then lfs ! B ) � �  , so   � $ and the theorem holds. If � is the
circumcenter of a skinny tetrahedron (rejected for insertion because
it encroaches upon � ), �  � ���� 	 by Lemma 3, so by Lemma 4,

  � $ � + %  � . It follows that one can prove that   �  � if
 � is chosen so that

$ � + %  �� �  � , (2)

Third, suppose B is inserted at the midpoint of a subsegment
� . If its parent � is an input vertex or lies on a segment or facet
not incident to the segment containing � , then lfs ! B ) � �  , and the
theorem holds. If � is the circumcenter of a skinny tetrahedron or
encroached subfacet (rejected for insertion because it encroaches
upon � ), �  � � �� 	 by Lemma 3, so by Lemma 4,   � $ �
+ % ���
	 �  ����  � ! . It follows that one can prove that   �  �
if  � is chosen so that

$ � + % ���
	 �  � �  � ! �  � , (3)

If the quality bound ' is strictly larger than % , Inequalities 1, 2,
and 3 are simultaneously satisfied by choosing

 �� ( ' � $ � + %
' � % �  � ( ! $ � + % ) ' � + %

' � % �

 � ( !�# � + % ) '
' � %

, 	
Theorem 6 (Ruppert [13]) For any vertex B of the output mesh,

the distance to its nearest neighbor � is at least lfs �  ��
���

� � .
Proof: Inequality 3 indicates that  � is larger than  �� and  � ,

so Theorem 5 shows that lfs �  �� � �  � for any vertex B . If B was

added after � , then � B�� � ( �  � lfs �  ��
���

, and the theorem holds.
If � was added after B , apply the theorem to � , yielding

� B�� � � �
� � lfs ! � )
 �

,

By Lemma 2, lfs ! � )���� B�� � � lfs ! B ) , so

� B�� � � lfs ! B ) � � B�� �
 �

,

It follows that � B�� � � lfs �  �
���

� � . 	
To provide an example, suppose ' ( % , ! . Then  "�

,
( �-, / ,

 �
,
( $�# , � , and  �

,
( %�% , $ . Hence, the spacing of vertices is

at worst about % # times smaller than the local feature size. Note
that as ' approaches % , the values of  � ,  � , and  � approach
infinity.

As Figure 13 shows, the algorithm performs much better in
practice. In this example, as soon as all encroached subsegments
and subfacets have been eliminated (upper left), the largest circum-
radius-to-shortest edge ratio is already less than % , $ . The shortest
edge length is $ , and lfs �
��� ( + !

, so the spectre of edge lengths
%�# times smaller than the local feature size has not materialized.
As the quality bound ' decreases, the number of tetrahedra in the
final mesh increases gracefully until ' drops below $ , �$!

. With
')( $ , � # , the algorithm fails to terminate on this example.

Figure 14 offers a demonstration of the grading of a tetrahe-
dralization generated by Delaunay refinement. A cube has been
truncated at one corner, cutting off a portion whose width is one-
millionth that of the cube. Although this mesh satisfies a bound on
circumradius-to-shortest edge ratio of ' ( $ , % , reasonably good
grading is apparent. For this bound there is no theoretical guaran-
tee, but the worst edge is

. # times shorter than the local feature size
at one of its endpoints. If a bound of ' ( % , ! is applied, the worst
edge is

�
(rather than % # ) times smaller than the local feature size

at one of its endpoints.
After the initial Delaunay tetrahedralization has been formed,

my implementation runs in constant time per vertex insertion—in
practice. The theoretical worst-case running time is surely much
worse, and may be % ! & 	 ) time per vertex insertion, even after
amortization, in pathological cases. I do not know how to devise
such a case, however. In practice, the first few vertex insertions usu-
ally banish any large vertex-free regions, after which further vertex
insertions tend to be well-localized and thus execute in constant
time.

' � � ! (*	�� >?	=� �)( 	�� ���
:<	=� 	�� � 	*��>?	*@ � 	=�A	 � �
The only known theoretical guarantee about Delaunay refinement’s
ability to remove sliver tetrahedra is provided by Chew [4], whose
bound on tetrahedron quality is too weak to provide any practical
assurance. Nonetheless, it is natural to wonder whether Delaunay
refinement might be effective in practice. If one inserts a vertex
at the circumcenter of any tetrahedron with a small dihedral angle,
will the algorithm fail to terminate?



')(*% , ���$!
, ����� � ( $ , ��0 � ,� �
��� ( $ .�0-, � % � , � ��� � ( $ ,

143 vertices, 346 tetrahedra.

' ( $ , % , � ��� � ( $ , % � � ,� �
��� ()$ . / , � $ � ,
� ��� � ( �-, . #�# , 334 vertices,
1009 tetrahedra.

')( $ , ��. , � ��� � ( $ , �+� � ,� �
��� ( $ .*.�, $+$ � ,
� ��� � ( ��, # 0+� , 1397 vertices,
5596 tetrahedra.

' ( $ , � # $ , � ��� � ( ��, � # � ,� �
��� ()$ . / , # � � ,
� ��� � ( �-, $ � % , 3144 vertices,
13969 tetrahedra.

Figure 13: Several meshes of a ��������������� PLC generated with
different bounds ( 1 ) on circumradius-to-shortest edge ratio. Below
each mesh is listed the smallest dihedral angle � ��� � , the largest di-
hedral angle � �
��� , and the shortest edge length 	 ��� � . The algorithm
does not terminate on this PLC for the bound 1�
���
 ��� .

Figure 14: At left, a mesh of a truncated cube. At right, a cross-
section through a diagonal of the top face.

As Figure 15 demonstrates, Delaunay refinement can succeed
for useful dihedral angle bounds. Each of the meshes illustrated
was generated by enforcing a lower bound � ��� � on dihedral angles,
rather than a circumradius-to-shortest edge ratio bound. However,
the implementation prioritizes poor tetrahedra according to their ra-
tios, and thus slivers are split last. I suspect that the program gener-
ates meshes with fewer tetrahedra this way, and that the likelihood
of termination is greater. Intuitively, one expects that a vertex in-
serted at the circumcenter of the tetrahedron with the largest ratio
is more likely to eliminate more bad tetrahedra.

Both meshes illustrated have dihedral angles bounded between

' ( $ , /�/ , � ��� � (*% # , ! � ,� �
��� ( $�# # , / � , � ��� � ( ��, .*0$!
,

307 vertices, 891 tetrahedra.

')(*% , � % , � ��� � (*% $ , # � ,� �
��� ( $�#�/ , / � , � ��� � ( �-, $ / ! ,
1761 vertices, 7383 tetrahedra.

Figure 15: Meshes created by Delaunay refinement with bounds on
the smallest dihedral angle � ��� � .

% $ � and $�# � � . The mesh on the right was generated with bounds on
both tetrahedron volume and dihedral angle, so that enough tetra-
hedra were generated to ensure that the mesh on the left wasn’t
merely a fluke. (The best attainable lower bound drops by % , % � as
a result.) Experiments with very large meshes suggest that a mini-
mum angle of $ � � can be obtained reliably. See Chew [4] for some
intimations as to why slivers might be eliminated so readily. One
of his useful observations is that the region in which a tetrahedron’s
apex must lie so that the tetrahedron can simultaneously have poor
dihedral angles and a good circumradius-to-shortest edge ratio is
relatively small.

Unfortunately, my success in removing slivers is probably due
in part to the severe restrictions on input angles I have imposed.
Practitioners report that they have the most difficulty removing sliv-
ers at the boundary of a mesh, especially near small angles. Mesh
improvement techniques such as optimization-based smoothing and
topological transformations can likely remove some of the imper-
fections that cannot be removed directly by Delaunay refinement.

� � � � �*� ��� ! � � �
Delaunay refinement is an effective technique for three-dimensional
mesh generation. Its theoretical guarantees on tetrahedron qual-
ity and grading make it attractive. However, these guarantees are
not entirely satisfying. There is no guarantee that slivers can be
eliminated. The bounds on edge length are reassuring, but might
not be strong enough for all practical purposes, as the number of
tetrahedra is inversely proportional to the cube of the edge length.
Although Ruppert uses Theorem 6 to prove the size-optimality of
the triangular meshes his algorithm produces, an analogous result
is not possible in three dimensions.

Fortunately, Delaunay refinement algorithms outperform their
worst-case bounds. There is a great deal of “slack” in the analysis;
the relationship between the insertion radii of a child and its par-
ent is usually looser than in the worst case. This slack accumulates
as one traces a sequence of descendants from an input vertex, and
makes it possible to achieve better bounds on tetrahedron quality
and edge length than the theory promises. (Miller et al. [10] can-
not exploit this slack, and thus require about 8,000 times as many
vertices to guarantee a bound of ')(*% , ! on the PLC in Figure 13).

The main outstanding problem in three-dimensional Delaunay
refinement is the question of how best to handle small input angles.
The difficulty is that if vertices lying in segments or facets can en-
croach upon incident subsegments and subfacets, then additional
arcs appear in the dataflow diagram of Figure 12, creating cycles
of ever-diminishing insertion radii. Fortunately, it is possible to
modify the algorithm so that it always terminates, even when the



Figure 16: A counterexample demonstrating that the three-
dimensional Delaunay refinement algorithm is not size-optimal.

projection condition is not satisfied. The insertion radius of each
vertex can be explicitly computed. A vertex should be rejected if
its insertion radius is too small compared to its parent’s. As a re-
sult, some skinny tetrahedra may remain in the final mesh, but only
in the vicinity of small input angles. A few other tricks are needed
to ensure that all segments and facets are recovered: segments are
recovered by using a technique based on concentric spherical shells
suggested by Ruppert [13], then facets are recovered by forming a
constrained Delaunay tetrahedralization [15].

The reason why a size-optimality result cannot be established
is worth exploring. Gary Miller and Dafna Talmor (private com-
munication) have pointed out the counterexample depicted in Fig-
ure 16. Inside this PLC, two segments pass very close to each other
without intersecting. The PLC might reasonably be tetrahedral-
ized with a few dozen tetrahedra having bounded circumradius-to-
shortest edge ratios, if these tetrahedra include a sliver tetrahedron
whose four vertices are the endpoints of the two internal segments.
However, the best the present Delaunay refinement algorithm can
promise is to fill the region with tetrahedra whose edge lengths
are proportional to the distance between the two segments. Be-
cause this distance may be arbitrarily small, the algorithm is not
size-optimal. However, if guaranteed bounds could be established
for the dihedral angles, and not merely the circumradius-to-shortest
edge ratios, then size-optimality might be proven using ideas like
those with which Mitchell and Vavasis [11, 12] demonstrate the
size-optimality of their octree-based algorithms.

Many theoretical improvements can be made to the core algo-
rithm described here. The bound on circumradius-to-shortest edge
ratio can be improved to $ , 0 # by replacing equatorial spheres with
narrower protective shells called equatorial lenses. (This technique
also requires the use of constrained Delaunay tetrahedralizations.)
The bound can be further improved to $ , $ ! with a technique called
range-restricted segment splitting, albeit by sacrificing good grad-
ing in theory (not in practice). With or without these improvements,
a bound as small as $ can be applied to any tetrahedron that does
not intersect the interior of a segment or facet, and thus only bound-
ary tetrahedra are subject to the weaker bound of % , $ , 0 # , or $ , $ ! .
The projection condition can be somewhat weakened; for exam-
ple, a

0+� �
separation between incident segments suffices. All these

improvements are described in detail elsewhere [14]. The improve-
ments in circumradius-to-shortest edge ratio, in particular, are sig-
nificant and further propel the approach described here beyond the
pioneering tetrahedral mesh generation algorithms of Dey et al.,
Chew, and Miller et al.
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