Highly Parallel Surface Reconstruction

Kun Zhou Minmin Gong

Xin Huang

Baining Guo

Microsoft Research Asia

Abstract

We present a parallel surface reconstruction algorithm that runs
entirely on the GPU. Like existing implicit surface reconstruction
methods, our algorithm first builds an octree for the given set of ori-
ented points, then computes an implicit function over the space of
the octree, and finally extracts an isosurface as a water-tight triangle
mesh. A key component of our algorithm is a novel technique for
octree construction on the GPU. This technique builds octrees in
real-time and uses level-order traversals to exploit the fine-grained
parallelism of the GPU. Moreover, the technique produces octrees
that provide fast access to the neighborhood information of each
octree node, which is critical for fast GPU surface reconstruction.
With an octree so constructed, our GPU algorithm performs Pois-
son surface reconstruction, which produces high quality surfaces
through a global optimization. Given a set of 500K points, our al-
gorithm runs at the rate of about five frames per second, which is
over two orders of magnitude faster than previous CPU algorithms.
To demonstrate the potential of our algorithm, we propose a user-
guided surface reconstruction technique which reduces the topo-
logical ambiguity and improves reconstruction results for imperfect
scan data. We also show how to use our algorithm to perform on-
the-fly conversion from dynamic point clouds to surfaces.

Keywords: surface reconstruction, octree, marching cubes, free-
form deformation, boolean operation

1 Introduction

Surface reconstruction from point clouds has been an active re-
search area in computer graphics. This reconstruction approach is
widely used for fitting 3D scanned data, filling holes on surfaces,
and remeshing existing surfaces. So far, surface reconstruction has
been regarded as an off-line process. Although there exist a number
of algorithms capable of producing high-quality surfaces, none of
these can achieve interactive performance.

In this paper we present a parallel surface reconstruction algorithm
that runs entirely on the GPU. Following previous implicit surface
reconstruction methods, our algorithm first builds an octree for the
given set of oriented points, then computes an implicit function
over the space of the octree, and finally extracts an isosurface as
a water-tight triangle mesh using the marching cubes. Unlike pre-
vious methods which all run on CPUs, our algorithm performs all
computation on the GPU and capitalizes on modern GPUs’ massive
parallel architecture. Given a set of 500K points, our algorithm runs
at the rate of about five frames per second. This is over two orders
of magnitude faster than previous CPU algorithms.

The basis of our algorithm is a novel technique for fast octree con-
struction of the GPU. This technique has two important features.
First, it builds octrees in real-time by exploiting the fine-grained
parallelism on the GPU. Unlike conventional CPU octree builders,
which often construct trees by depth-first traversals, our technique
is based on level-order traversals: all octree nodes at the same tree
level are processed in parallel, one level at a time. Modern GPU ar-
chitecture contains multiple physical multi-processors and requires
tens of thousands of threads to make the best use of these processors
[NVIDIA 2007]. With level-order traversals, our technique maxi-
mizes the parallelism by spawning a new thread for every node at
the same tree level.

Figure 1: Our GPU reconstruction algorithm can generate high
quality surfaces with fine details from noisy real-world scans. The
algorithm runs at interactive frame rates. Top left: Bunny, 350K
points, 5.2 fps. Top right: Dragon, 1500K points, 1.3 fps. Bottom
left: Buddha, 640K points, 4 fps. Bottom right: Armadillo, 500K
points, 5 fps.

The second feature of our technique is that it constructs octrees that
supply the information necessary for GPU surface reconstruction.
In particular, it is critical for the octree data structure to provide
fast access to tree nodes as well as the neighborhood information
of each node (i.e., links to all neighbors of the node). While infor-
mation of individual nodes is relatively easy to collect, computing
the neighborhood information requires a large number of searches
for every single node. Collecting neighborhood information for all
nodes of the tree is thus extremely expensive even on the GPU. To
address this problem, we make the observation that a node’s neigh-
bors are determined by the relative position of the node with respect
to its parent and its parent’s neighbors. Based on this observation,
we build two look up tables (LUT) which record the indirect point-
ers to a node’s relatives. Unlike direct pointers, indirect pointers
are independent of specific instances of octrees and hence can be
precomputed. At runtime, the actual pointers are quickly generated
by querying the LUTs.

Based on octrees built as above, we develop a GPU algorithm for
the Poisson surface reconstruction method [Kazhdan et al. 2006].
We choose the Poisson method because it can reconstruct high qual-
ity surfaces through a global optimization. As part of our GPU
algorithm, we derive an efficient procedure for evaluating the di-
vergence vector in the Poisson equation and an adaptive marching

cubes procedure for extracting isosurfaces from an implicit function
defined over the volume spanned by an octree. Both of these pro-
cedures are designed to fully exploit modern GPUs’ fine-grained
parallel architecture and make heavy use of the octree neighbor-
hood information. Note that GPU algorithms can also be read-
ily designed for classical implicit reconstruction methods such as
[Hoppe et al. 1992] by using our octree construction technique and
the adaptive marching cubes procedure for extracting isosurfaces
on the GPU.

Our GPU surface reconstruction can be employed immediately in
existing applications. As an example, we propose a user-guided re-
construction algorithm for imperfect scan data where many areas of
the surface are either under-sampled or completely missing. Similar
to a recent technique [Sharf et al. 2007], our algorithm allows the
user to draw strokes around poorly-sampled areas to reduce topo-
logical ambiguities. Benefiting from the high performance of GPU
reconstruction, the user can view the reconstructed mesh immedi-
ately after drawing a stroke, while [Sharf et al. 2007] requires sev-
eral minutes to update the reconstructed mesh.

GPU surface reconstruction also opens up new possibilities. As an
example, we propose an algorithm for generating surfaces for dy-
namic point clouds on the fly. The reconstructed meshes may be
directly rendered by the traditional polygon-based display pipeline.
We demonstrate the application of our algorithm in two well-known
modeling operations, free-form deformation and boolean opera-
tions. Since our algorithm is linearly scalable to the GPU’s compu-
tational resources, real-time surface reconstruction will be realized
in the near future with advancements in commodity graphics hard-
ware. In view of this, our technique may be regarded as a bridging
connection between point- and polygon-based representations.

2 Related Work

Surface reconstruction from point clouds has a long history. Here
we only cover references most relevant to our work.

Early reconstruction techniques are based on Delaunay triangula-
tions or Voronoi diagrams [Boissonnat 1984; Amenta et al. 1998]
and they build surfaces by connecting the given points. These tech-
niques assume the data is noise-free and densely sampled. For noisy
data, postprocessing is often required to generate a smooth surface
[Bajaj et al. 1995; Kolluri et al. 2004]. Most other algorithms re-
construct an approximating surface represented in implicit forms,
including signed distance functions [Hoppe et al. 1992; Curless
and Levoy 1996; Hornung and Kobbelt 2006; Sharf et al. 2007],
radial basis functions [Carr et al. 2001; Turk and O’Brien 2002;
Ohtake et al. 2004], moving least square surfaces [Alexa et al. 2001;
Amenta and Kil 2004; Lipman et al. 2007], and indicator functions
[Kazhdan et al. 2006; Alliez et al. 2007]. These algorithms mainly
focus on generating high quality meshes to optimally approximate
or interpolate the data points.

Existing fast surface reconstruction methods are limited to simple
smooth surfaces or height fields. [Randrianarivony and Brunnett
2002] proposed a parallel algorithm to approximate a point set with
NURBS surfaces. [Borghese et al. 2002] presented a real-time re-
construction algorithm for height fields. For CAD applications,
[Weinert et al. 2002] used a parallel multi-population algorithm to
find a CSG representation that best fits data points. None of these
techniques is appropriate for reconstructing complex surfaces from
point clouds.

Recently, Buchart et al. [2007] proposed a GPU interpolating re-
construction method by using local Delaunay triangulation [Gopi
et al. 2000]. First, the k-nearest neighbors to each point are com-
puted on the CPU. Then, for each point on the GPU, its neighbors

are ordered by angles around the point and the local Delaunay trian-
gulation is computed. The authors reported 6 ~ 18 times speed ups
over the CPU implementation. For a moderate-sized data set (e.g.,
250K points), their algorithm needs over 10 seconds, which is still
far from interactive performance. Moreover, the algorithm can only
handle noise-free and uniformly-sampled point clouds. For noisy
data, this method may fail to produce a water-tight surface.

With real-world scan data, some areas of the surface may be under-
sampled or completely missing. Automatic techniques will fail to
faithfully reconstruct the topology of the surface around these areas.
Recently [Sharf et al. 2007] introduced a user-assisted reconstruc-
tion algorithm to solve this problem. It asks the user to add local
inside/outside constraints at weak regions of unstable topology. An
optimal distance field is then computed by minimizing a quadric
function combining the data points, user constraints, and a regu-
larization term. This system allows the user to interactively draw
scribbles to affect the distance field at a coarse resolution, but the
final surface reconstruction at finer resolutions takes several min-
utes, prohibiting immediate viewing of the reconstructed mesh.

Octree is an important data structure in surface reconstruction al-
gorithms. It is used for representing the implicit function [Ohtake
et al. 2004; Kazhdan et al. 2006] and for adaptively extracting iso-
surfaces [Wilhelms and Gelder 1992; Westermann et al. 1999]. Cre-
ating an octree for point clouds directly on the GPU, however, is
very difficult, mainly because of memory allocation and pointer
creation. Recently, [DeCoro and Tatarchuk 2007] proposed a real-
time mesh simplification algorithm based vertex clustering on the
GPU. A probabilistic octree is built on the GPU to support adaptive
clustering. This octree, however, does not form a complete parti-
tioning of the volume and only contains node information. More
importantly, other elements such as faces, edges, and the neighbor-
hood information are missing. Such octrees are not suitable for fast
surface reconstruction.

Our parallel surface reconstruction algorithm is implemented us-
ing NVIDIA’s CUDA [NVIDIA 2007]. In addition to providing a
general-purpose C language interface to the GPU, CUDA also ex-
poses new hardware features which are very useful for data-parallel
computation. One important feature is that it allows arbitrary gather
and scatter memory access from GPU programs. Based on CUDA’s
framework, researchers have developed a set of parallel primitives,
such as scan, compact and sort [Harris et al. 2007a]. Our GPU
algorithm makes heavy use of these parallel primitives.

3 GPU Octree Construction

In this section, we describe how to build an octree © with maximum
depth D from a given set of sample points Q@ = {¢; |7 = 1,...N}.
We first explain the design of the octree data structure. Next we
present a procedure for the parallel construction of an octree with
only individual nodes. Then we introduce an LUT-based technique
for efficiently computing the neighborhood information of every
octree node in parallel. Finally, we discuss how to collect informa-
tion of vertices, edges, and faces of octree nodes.

3.1 Octree Data Structure

The octree data structure consists of four arrays: vertex array, edge
array, face array, and node array. The vertex, edge, and face arrays
record the vertices, edges, and faces of the octree nodes respec-
tively. These arrays are relatively simple. In the vertex array, each
vertex v records v.nodes, the pointers to all octree nodes that share
vertex v. Following v.nodes we can easily reach related elements
such as all edges sharing v. In the edge array, each edge records
the pointers to its two vertices. Similarly in the face array each face
records the pointers to its four edges.

2 1 3 2
0 3 ® 1
1 0 2 0
0 2
(a) (b) ()

Figure 2: Element ordering for quadtrees. (a) the ordering of
vertices and edges (in blue) in a node; (b) the ordering of a node’s
children as well as the ordering of nodes sharing a vertex; (c) the
ordering of a node’s neighboring nodes.

The node array, which records the octree nodes, is more complex.
Each node ¢ in the node array Node Array contains three pieces of
information:

e The shuffled zyz key [Wilhelms and Gelder 1992], t.key.
e The sample points contained in ¢.

e Pointers to related data including its parent, children, neigh-
bors, and other information as explained below.

Shuffled xyz Key: Since each octree node has eight children, it is
convenient to number a child node using a 3-bit code ranging from
zero to seven. This 3-bit code encodes the subregion covered by
each child. We use the xyz convention: if the x bit is 1, the child
covers an octant that is “right in x”; otherwise the child covers an
octant that is “left in x”. The y and z bits are similarly set. The
shuffled xyz key of a node at tree depth D is defined as the bit
string

T1Y12122Y222 * - - TDYDZD,

indicating the path from the root to this node in the octree. There-
fore a shuffled zyz key at depth D has 3D bits. Currently we use
32 bits to represent the key, allowing a maximum tree depth of 10.
The unused bits are set to zero.

Sample Points: Each octree node records the sample points en-
closed by the node. The sample points are stored in a point array
and sorted such that all points in the same node are contiguous.
Therefore, for each node ¢, we only need to store the number of
points enclosed, t.pnum, and the index of the first point, ¢.pidz, in
the point array.

Connectivity Pointers: For each node we record the pointers to
the parent node, 8 child nodes, 27 neighboring nodes including it-
self, 8 vertices, 12 edges, and 6 faces. All pointers are represented
as indices to the corresponding arrays. For example, ¢’s parent
node is NodeArray[t.parent] and t’s first neighboring node is
NodeArray[t.neighs[0]]. If the pointed element does not exist,
we set the corresponding pointer to —1. Since each node has 27
neighbors at the same depth, the array ¢.neighs is of size 27.

For consistent ordering of the related elements, we order these el-
ements according to their shuffled zyz keys. For example, t’s first
child node t.children|0] has the smallest key among ¢’s eight chil-
dren and the last child ¢.children[7] has the largest key. For a
vertex, we define its key value as the sum of the keys of all nodes
sharing the vertex. This way vertices can also be sorted. Similarly,
edges and faces can be sorted as well. Fig. 2 illustrates the order-
ing of the related elements for quadtrees; the case with octrees is
analogous.

3.2 Building Node Array

We build the node array using a reverse level-order traversal of the
octree, starting from the finest depth D and moving towards the
root, one depth at a time.

Listing 1 Build the Node Array

: // Step 1: compute bounding box
: Compute @’s the bounding box using Reduce primitive

: /] Step 2: compute shuffled xyz key and sorting code
code < new array
for each? = 0to N — 1 in parallel
Compute key, ¢;’s shuffled zyz key at depth D
codeli] = key << 32+

: // Step 3: sort all sample points

: sortCode < new array

. Sort(sortCode, code)

: Generate the new point array according to sortCode

—_—

: // Step 4: find the unique nodes

. mark < new array

. uniqueCode < new array

: for each element 7 in sortcode in parallel

if sortCodeli].key # sortCodeli — 1].key then
mark[i] = true

else
mark[i] = false

. Compact(uniqueCode, mark, sortCode)

: Create uniqueN ode according to uniqueC'ode

el e

SIS
— O

N
NS}

. // Step 5: augment uniqueN ode

: nodeNums < new array

: nodeAddress < new array

: for each element ¢ in unique Node in parallel

if element ¢ — 1 and ¢ share the same parent then
nodeNums(i] = 0

else
nodeNums[i] = 8

: Scan(nodeAddress, nodeNums, +)

(SN SIS I SIS S S Y]

W
—_

: /I Step 6: create NodeArrayp

: Create NodeArrayp

. for each element ¢ in unique Node in parallel
t = uniqueN odeli

address = nodeAddressli] + t.xpypzp
NodeArraypladdress] =t

W W L W W
AN B W

At Depth D: Listing 1 provides the pseudo code for the construc-
tion of Node Arrayp, the node array at depth D. This construction
consists of six steps. In the first step, the bounding box of the point
set @ is computed. This is done by carrying out parallel reduc-
tion operations [Popov et al. 2007] on the coordinates of all sample
points. The Reduce primitive performs a scan on an input array
and outputs the result of a binary associative operator, such as min
or max, applied to all elements of the input array.

In the second step, we compute the 32-bit shuffled xyz keys at
depth D for all sample points in parallel. Given a point p, its shuf-
fled xyz key is computed in a top-down manner. The x bit at depth
d,1 < d < D, is computed as:

S 0, ifpx<Cyux,
4= 1, otherwise,

where Cj is the centroid of the node that contains p at depth d — 1.
The y and z bits yq and z4 are similarly computed. All unused
bits are set to zero. We also concatenate the shuffled xyz key and
the 32-bit point index to a 64-bit code for the subsequent sorting
operation.

In the third step, all sample points are sorted using the sort primitive
in [Harris et al. 2007a]. This primitive first performs a split-based

radix sort per block and then a parallel merge sort of blocks [Harris
et al. 2007b]. After sorting, points having the same key are con-
tiguous in the sorted array. Then the index of each sample point
in the original point array is computed by extracting the lower 32
bits of the point’s code. The new point array is then constructed
by copying the positions and normals from the original point array
using the extracted indices.

In the fourth step, a unique node array is generated by removing
duplicate keys in the sorted array, as follows. First, for each element
of the sorted array, the element is marked as invalid if its key value
equals that of its preceding element in the array. Then, the compact
primitive from [Harris et al. 2007a] is used to generate the unique
node array which does not contain invalid elements. During this
process, the relationship between the point array and the node array
can be easily built. Specifically, for each element of the node array,
we record the number of points contained by this node and the index
of the first point in the point array.

In the fifth step, the unique node array obtained in the last step is
augmented to ensure that each node’s seven siblings are also in-
cluded, since each octree node has either eight or zero children.
In lines 25 ~ 29 of the pseudo code, each element in the unique
node array is checked to see if it shares the same parent with the
preceding element. This is done by comparing their keys. If the re-
sult is yes, node Nums|i] is set to zero; otherwise it is set to eight.
Then a parallel prefix sum/scan primitive is performed on the array
nodeNums, and the result is stored in the array nodeAddress.
Each element of nodeAddress thus holds the sum of all its pre-
ceding elements in nodeNums. In other words, nodeAddress
contains the starting address of every unique node in the final node
array.

In the final step, the node array NodeArrayp is created. For
each node that is added in the fifth step, only the key value is
computed and the number of points contained is set to zero. For
each node in uniqueN ode, we locate its corresponding element in
NodeArrayp through node Address and its 3-bit x pypzp key,
and copy the node’s data to this element. For each sample point
in the point array, we also save the pointer to the octree node that
contains it.

At Other Depths: The node array at depth D — 1 can be eas-
ily built from NodeArrayp. Recall that the eight siblings hav-
ing the same parent are contiguous in NodeArrayp. For every
eight sibling nodes in NodeArrayp, a parent node is generated
by setting the last three bits of the keys of these nodes to zero.
Again, the resulting parent nodes are augmented as in the fifth step
above to generate the final array NodeArrayp—1. At this point,
each node in NodeArrayp can get the index of its parent node in
NodeArrayp—1. For each node ¢ in NodeArrayp—_1, the point-
ers to its children are saved. The number of points t.pnum is com-
puted as the sum of that of ¢’s children, and the index of the first
point t.pidx is set to be that of ¢’s first child.

The node arrays at other depths can be built the same way. The
node arrays of all depths are then concatenated to form a single
node array, NodeArray. Another array BaseAddressArray is
also created, with each element of the array recording the index of
the first node at each depth in Node Array.

3.3 Computing Neighborhood Information

For each octree node in NodeArray, we wish to find its neighbor-
ing octree nodes at the same depth. This neighborhood information
is not only critical for computing the implicit function and running
the marching cubes procedure as described in Section 4, but also
important for building the vertex, edge, and face arrays.

Listing 2 Compute Neighboring Nodes

1: for each node ¢ at depth d in parallel

2 for each j = 0 to 26 in parallel

3 i« t’s 3-bit xyz key

4: p «— NodeArraylt.parent]

5: if p.neighs[LUTparent[i][j]] # —1 then

6: h «— NodeArray[p.neighs[LUT parent[i][5]]]
7 t.neighs[j] = h.children[LU T child[i][j]]
8

9

else
t.neighs[j] = —1
LUTparent[4][9] = {
{0,1,1,3,4,4,3,4,4,
{1,1,2,4,4,5,4,4,5),
{3,4,4,3,4,4,6,7,7},
{4,4,5,4,4,5,7,7,8} }; r
LUTchild[4][9] = { s b p
{3,2,3,1,0,1,3,2,3},
{2,3,2,0,1,0,2,3,2},
{1,0,1,3,2,3,1,0,1},
{0,1,0,2,3,2,0,1,0}
(a) LUTs for quadtrees (b) compute node ¢’s neighboring nodes

Figure 3: Compute neighboring nodes for quadtrees.

Each node has up to 26 neighbors at the same depth, distributed
among its sibling nodes and the child nodes of its parent’s neigh-
bors. A naive approach for computing the neighbors is to enumer-
ate all these candidate nodes, which requires 26 x 27 x 8 = 5616
searches for each node (26 neighbors, its parent and 26 neighbors
of its parent, each neighbor having 8 children). Our observation is
that a node’s neighbors are determined by the relative position of
the node with respect to its parent and its parent’s neighbors. Based
on this observation we precompute two look up tables to signifi-
cantly speed up this neighborhood computation. These two LUTs
are defined as follows

Parent Table The parent table LUTparent is a 2D array pro-
viding the following information: For an octree node ¢
whose parent is p, if ¢’s index (or xyz key) in p.children
is 4, then the index of t.neighs[j]’s parent in p.neighs is
LUTparent[i][j].

Child Table The child table LU T child is a 2D array with the fol-
lowing information: For the node ¢ with parent p and index ¢
in p.children as above, if node ¢’s j-th neighbor t.neighs[j],
whose parent node is h, the index of t.neigh[j] in h.children
is LUTchild][i][5).

The size of both tables is 8 x 27. For convenience we regard a node
as a neighbor of itself with index 13 in neighs.

Note that we distinguish two kinds of pointers. The direct pointers
are those represented as indices into one of the “global” arrays: the
node, vertex, edge, and face arrays. For example, t.parent is a
direct pointer. The indirect pointers are those represented as indices
into one of the “local” arrays of a node: t.neighs, t.children,
t.vertices, t.edges, and t. faces. The above two tables both record
only indirect pointers, which are independent of specific instances
of octrees and hence can be precomputed.

Listing 2 provides the pseudo code for computing the neighboring
nodes for each node ¢ at depth d in parallel. First, we fetch ¢’s
parent p and its zyz key, which is ¢’s index in p.children. To com-
pute t’s j-th neighbor ¢.neighs[j], we get this neighbor’s parent
node h by querying LUT parent and then get the neighbor using
a second query to LUT'child. Compared with the naive enumer-
ation approach, our technique only needs 27 searches and is over
two orders of magnitude faster.

For clarity we use quadtrees to illustrate Listing 2. The two ta-
bles for quadtrees, LU T'parent and LU T child, are of size 4 x 9
as shown in Fig. 3(a). As shown in Fig. 3(b), the quadtree node
t’s parent is p, and t’s index in p.children is 0 (i.e., i = 0).
To compute ¢’s 2-th neighbor (i.e., 7 = 2), we first get p’s 1-th
neighbor, which is b, according to LUT'parent[0][2] = 1. Since
LUTchild[0][2] = 3, b’s 3-th child, which is r, is the neighboring
node we want. Therefore, t.neighs[2] = b.children|[3] = r.

To compute t’s 7-th neighbor (i.e., j = 7), we first get p’s 4-th
neighbor, which is p itself, according to LU Tparent|0][7] = 4.
Since LUT'child[0][7] = 1, p’s 1-th child, which is s, is the node
we want. Therefore, t.neighs[7] = p.children[l] = s.

When computing a node’s neighbors, its parent’s neighbors are re-
quired. For this reason we perform Listing 2 for all depths using a
(forward) level-order traversal of the octree. If node ¢’s j-th neigh-
bor does not exist, ¢.neighs[j] is set as —1. For the root node, all
its neighbors is —1 except its 13-th neighbor which is the root itself.

3.4 Computing Vertex, Edge, and Face Arrays

Vertex Array: Each octree node has eight corner vertices. Simply
adding the eight vertices of every node into the vertex array will in-
troduce many duplications because a corner may be shared by up to
eight nodes. A simple way to create a duplication-free vertex array
is to sort all the candidate vertices by their keys and then remove
duplicate keys, just as we did for the node array in Section 3.2. This
approach, however, is inefficient due to the large number of nodes.
For example, for the Armadillo example shown in Fig. 1, there are
around 670K nodes at depth 8 and the number of candidate vertices
is over 5M. Sorting such a large array takes over 100ms.

We present a more efficient way to create the vertex array by mak-
ing use of node neighbors computed in Section 3.3. Building the
vertex array at octree depth d takes the following steps. First, we
find in parallel a unique owner node for every corner vertex. The
owner node of a corner is defined as the node that has the smallest
shuffled xyz key among all nodes sharing the corner. Observing
that all nodes that share corners with node ¢ must be ¢’s neighbors,
we can quickly locate the owner of each corner from ¢’s neighbors.
Second, for each node ¢ in parallel, all corner vertices whose owner
is ¢ itself are collected. The unique vertex array is then created.
During this process, the vertex pointers t.vertices are saved. For
each vertex v in the vertex array, the node pointers v.nodes are also
appropriately set.

To build the vertex array of all octree nodes, the above process is
performed at each depth independently, and the resulting vertex ar-
rays are concatenated to form a single vertex array. Unlike the node
array, the vertex array so obtained still has duplicate vertices be-
tween different depths. However, since this does not affect our sub-
sequent surface reconstruction, we leave these duplicate vertices as
they are in our current implementation.

Other Arrays: The edge and face arrays can be built in a similar
way. For each edge/face of each node, we first find its owner node.
Then the unique edge/face array is created by collecting edges/faces
from the owner nodes.

4 GPU Surface Reconstruction

In this section we describe how to reconstruct surfaces from sample
points using the octree constructed in the last section. The recon-
struction roughly consists of two steps. First, an implicit function
¢ over the volume spanned by the octree nodes is computed us-
ing Poisson surface reconstruction [Kazhdan et al. 2006]. Then, an
adaptive marching cubes procedure extracts a watertight mesh as an
isosurface of the implicit function.

Note that, instead of Poisson surface reconstruction, we may use
other methods (e.g., [Hoppe et al. 1992] and [Ohtake et al. 2004])
for GPU surface reconstruction. We chose the Poisson approach
because it can reconstruct high quality surfaces through a global op-
timization. In addition, the Poisson approach only requires solving
a well-conditioned sparse linear system, which can be efficiently
done on the GPU.

Specifically, we perform the following steps on the GPU:

1. Build a linear system Lx = b, where L is the Laplacian ma-
trix and b is the divergence vector;

2. Solve the above linear system using a multigrid solver,

3. Compute the isovalue as an average of the implicit function
values at sample points,

4. Extract the isosurface using marching cubes.

The mathematical details of Poisson surface reconstruction (Step 1
and 2) are reviewed in Appendix A. In the following, we describe
the GPU procedures for these steps.

4.1 Computing Laplacian Matrix L

As described in Appendix A, the implicit function ¢ is a weighted
linear combination of a set of blending functions { F,} with each
function F, corresponding to a node of the octree. An entry of
the Laplacian matrix L, ,» = (F,, AF,/) is the inner product of
blending function F;, and the Laplacian of F,.

The blending function Fj, is given by a fixed basis function F":

q—o.c) 1

o.w o.w3’

Fola) = F (

where o.c and o.w are the center and width of the octree node o.
F is non-zero only inside the cube [—1,1]*. As explained in Ap-
pendix A, F'is a separable function of z, y and 2. As a result, the
blending function F7j is separable as well and can be expressed as:

Fo(ma Y, Z) = fa.z,o/w(1')fo.y,o.w(y)fo.z,o.w(2)~
. . . o%F, 9°F, | 8%F,
Given the definition of Laplacian AF,r = ——¢- + a5 T 5
the Laplacian matrix entry L, ,/ can be computed as:

0*F,, 8%F,, 8%F,,
L,,={F,, =2 F,, =2 Fo, =%
< oa >+< oy >+< 522

<fo.ac,o4w7 fz/)l’.w,o’.w><f0~y,0-wv foﬂy,oﬂw) <fo'z,o'w7 fo’4z,o/4w> +
<fo.z,o4w, fo’.w,o’.w><f0-y,0»w7 f(l7//4y,o/4w> <fo'Z,o'w» fo’.z,o’.w> +
<f0~$70~'w7 fo'.z,o’.w> <foAy,ko> f0’4y,o/4w> <f0-z,0-wﬂ ftl)/’.z,oﬂ'u))'

All the above inner products can be efficiently computed by looking
up two precomputed 2D tables: one for (f,, f,) and the other for
(fo, f2). These two tables are queried using the z-bits, y-bits, or
z-bits of the shuffled xyz keys of node o and o’. This reduces the
table size significantly. For a maximal octree depth 9, the table size
is (2% — 1) x (2'° — 1). The table size may be further reduced
because the entries of the tables are symmetric.

4.2 Evaluating Divergence Vector b

As described in Appendix A, the divergence coefficients b, can be

computed as:
bo = E ot Ug. o
o o'cOD o 0,0"»

where @, = (F,(q), VF,). OF is the set of all octree nodes
at depth D. The inner product (F,(q), VF,/) can be quickly com-

Listing 3 Compute Divergence Vector b

Listing 4 Compute Implicit Function Value ¢, for Point ¢

1: // Step 1: compute vector field

2: for each node o at depth D in parallel
3 Uo =10

4 for j = 0to 26

5: t — NodeArraylo.neighs[j]]

6 for k£ = 0 to t.pnum

7 i =t.pide + k

8 Uo + = M Fy; 0.w(0.C)

Ne)

: // Step 2: compute divergence for finer depth nodes
10: ford =D to5
11: for each node o at depth d in parallel

12: b, =0

13: for j = 0to 26

14: t — NodeArraylo.neighs|j]]
15: for k = 0 to t.dnum

16: tdr = t.dide + k

17: o' « NodeArraylidz)

18: bo + = 170/11070/

19: // Step 3: compute divergence for coarser depth nodes
20: ford =410 0

21: divg < new array

22: for node o at depth d

23: for each depth-D node o’ covered by all nodes in
o.neighs in parallel

24: divg[i] = Uy 1_1:0,0/

25: b, = Reduce(divg, +)

puted using a precomputed look up table for { fo, f.,) as in the com-
putation of L, /. As for ¥/, it is computed as

170/ = E ao/’qiﬁi, (1)
i €Q

where a4, is the weight by which each sampling point g; dis-
tributes the normal 77; to its eight closest octree nodes at depth-D.

Listing 3 provides the pseudo code for computing the divergence
vector b. This computation takes three steps. In the first step, the
vector field ¥,/ is computed for each octree node o’ according to
Eq. (1). Since Eq. (1) essentially distributes sample point g;’s nor-
mal 77; to its eight nearest octree nodes at depth D, vector 9,/ is only
affected by the sample points that are contained in either node o’ or
its 26 neighbors. The pointers to the node neighbors as recorded in
Section 3.3 are used to locate these neighbors.

In the second step, the divergence at every finer depth, which is de-
fined as any depth greater than four, is computed in parallel for all
nodes, as shown in Step 2 of Listing 3. The most obvious way to
accumulate b, for each octree node o is to iterate through all nodes
o’ at depth D. However, this costly full iteration is actually not nec-
essary. Since the basis function F’s domain of support is the cube
[~1,1]*, @, equals zero for a large number node pairs (0,0’).
Specifically, we can easily prove that, for node o, only the depth-D
nodes whose ancestors are either o or o’s neighbors have nonzero
U,,o'. These nodes can be located by iterating over o’s neighbors.
Note that t.dnum and t.didx are the number of depth-D nodes
covered by ¢ and the pointer to ¢’s first depth-D node respectively.
These information can be easily obtained and recorded during tree
construction.

In the third step, the divergence at every coarser depth, which is de-
fined as any depth no greater than four, is computed. For nodes at a
coarser depth, the approach taken in the second step is not appropri-
ate because it cannot exploit the fine-grained parallelism of GPUs.

¥qg =10

: nodestack < new stack

: nodestack.push(proot)

: while nodestack is not empty

0 — NodeArray[nodestack.pop()]

Pt = Fo(q)po

fori =0to7
t «— NodeArraylo.children]i]]
ifgr—tox <twandqy—ty <twandq.z—t.z < tw
then

nodestack.push(o.childreni))

VRN R LN

._
4

The node number at coarser depths is much smaller than that at
finer depths, and the divergence of a node at a coarser depth may
be affected by many depth-D nodes. For example, at depth zero,
there is only one root node and all depth-D nodes contribute to its
divergence. To maximize parallelism, we parallelize the computa-
tion over all covered depth-D nodes for nodes at coarser depths.
As shown in Step 3 of Listing 3, we first compute the divergence
contribution for each depth-D node in parallel and then perform a
reduction operation to sum up all contributions.

4.3 Multigrid Solver and Implicit Function Value

The GPU multigrid solver is rather straightforward. For each depth
d from coarse to fine, the linear system L%x? = b? is solved using
a conjugate gradient solver for sparse matrices [Bolz et al. 2003].
L< contains as many as 27 nonzero entries in a row. For each
row, the values and column indices of nonzero entries are stored
in a fixed-sized array. The number of the nonzero entries is also
recorded.

Note that the divergence coefficients at depth d need to be up-
dated using solutions at coarser depths according to Eq. (7) in Ap-
pendix A. For the blending function F, of an arbitrary octree node
o, it can be easily shown that only the blending functions of 0’s an-
cestors and their 26 neighbors may overlap with F,,. Therefore, we
only need to visit these nodes through the pointers stored in parent
and neighs fields of node o.

To evaluate the implicit function value at an arbitrary point q in the
volume, we need to traverse the octree. Listing 4 shows the pseudo
code of a depth-first traversal for this purpose. A stack is used to
store the pointers to all nodes to be traversed. For this traversal, a
stack size of 8D is enough for octrees with a maximal depth D.

Note that the implicit function value of a sample point ¢; can be
evaluated in a more efficient way, because we already know the
depth-D node o where g¢; is located. In other words, we only need
to traverse octree nodes whose blending function may overlap with
that of 0. These nodes include o itself, o’s neighbors, o’s ances-
tors, and the neighbors of o’s ancestors. Once we get the implicit
function values at all sample points, the isovalue is computed as an

average: ¢ = » . ¢(q:)/N.
4.4 Isosurface Extraction

We use the marching cubes technique [Lorensen and Cline 1987]
on the leaf nodes of the octree to extract the isosurface. The output
is a vertex array and a triangle array which can be rendered directly.

As shown in Listing 5, the depth-D nodes are processed in five
steps. First, the implicit function values are computed for all oc-
tree vertices in parallel. As in the case with the sample points, each
vertex v’s implicit function value can be efficiently computed by
traversing only the related nodes, which can be located through the

Listing 5 Marching Cubes

: // Step 1: compute implicit function values for octree vertices
. vvalue < new array

: for each octree vertex 7 at depth-D in parallel

Compute the implicit function value vvalue]i]

vvalueli] — = @

. // Step 2: compute vertex number and address

: vexNums < new array

: vexAddress < new array

: for each edge ¢ at depth-D in parallel

if the values of i’s two vertices have different sign then
vexNums[i] =1

else
vexNums[i] = 0

: Scan(vexAddress, vexrNums, +)

0N AW =

—_—
PR 20

wn

: // Step 3: compute triangle number and address

. triNums < new array

: triAddress < new array

: for each node ¢ at depth-D in parallel

Compute the cube category based the values of ¢’s vertices
Compute triNums][i] according to the cube category

: Scan(triAddress, triNums, +)

PN = —
— S © oo

[38)
(3]

: /] Step 4: generate vertices
: Create Vertex Buf fer according to vex Address
. for each edge 7 at depth-D in parallel
if vex Nums[i] == 1 then
Compute the surface-edge intersection point g
VertexBuf fer[vex Addressli]] = q

S SIS AN
A

[\
o0

. // Step 5: generate triangles

: Create Triangle Buf fer according to triAddress

: for each node i at depth-D in parallel

Generate triangles based on the cube category

Save triangles to Triangle Buf fer[triAddress]i]]

W W W N

pointers stored in v.nodes. Second, the number of output vertices
is computed with a single pass over the octree edges and the output
address is computed by performing a scan operation. Third, each
node’s cube category is calculated and the number and addresses of
output triangles are computed. Finally, in Step 4 and 5 the vertices
and triangles are generated and saved. During this process, for each
face of each node, if one of its four edges has a surface-edge in-
tersection, the face is deemed to contain surface-edge intersections
and we mark the face. This information is propagated to the node’s
ancestors.

For all leaf nodes at other depths, we first filter out nodes that do
not produce triangles in parallel. For each node, if the implicit func-
tion values at its eight corners have the same sign and none of its six
faces contain surface-edge intersections, the node does not need any
further processing. Otherwise, we subdivide the node to depth D.
All the depth-D nodes generated by this subdivision are collected
to build the new node, vertex and edge arrays. Then, we perform
Listing 5 to generate vertices and triangles. This procedure is car-
ried out iteratively until no new triangles are produced. Note that
in each iteration, we do not need to handle the nodes subdivided in
previous iterations.

Finally, to remove duplicate surface vertices and merge vertices lo-
cated closely to each other, we compute the shuffled zyz key for
each vertex and use the keys to sort all vertices. Vertices having the
same key values are merged by performing a parallel compact op-
eration. The elements in the triangle array are updated accordingly
and all degenerated triangles are removed. Each triangle’s normal

is also computed.

Discussion Besides the Poisson method, we can also design GPU
algorithms for other implicit reconstruction methods. For example,
an early technique [Hoppe et al. 1992] calculates a signed distance
field and reconstructs a surface by extracting the zero set of the dis-
tance field using the marching cubes. With the octrees we construct,
the distance field can be quickly estimated on the GPU: processing
each octree vertex in parallel, we locate its nearest sample point
by traversing the octree using a procedure similar to that shown in
Listing 4 and compute the signed distance between the vertex and
a plane defined by the position and normal of this sample point.
Then our adaptive marching cubes procedure is applied to extract
the zero set surface. As noted in [Kazhdan et al. 2006], the quality
of surfaces reconstructed this way is not as good as those produced
by the Poisson method.

5 Results and Applications

We have implemented the described surface reconstruction algo-
rithm on an Intel Xeon 3.7GHz CPU with a GeForce 8800 ULTRA
(768MB) graphics card.

Implementation Details: The G80 GPU is a highly parallel pro-
cessor working on many threads simultaneously. CUDA structures
GPU programs into parallel thread blocks of up to 512 parallel
threads. We need to specify the number of thread blocks and threads
per block for those parallel primitives (e.g., Sort, Compact and
Scan) and the programs marked in parallel. In our current imple-
mentation, we use 256 threads for each block. The block number
is computed by dividing the total number of parallel processes by
the thread number per block. For example, in Step 2 (line 5) of
Listing 1, the block number is N/256.

Reconstruction Results: We tested our algorithm on a variety of
real-world scan data. As a preprocess, normals are computed us-
ing Stanford’s Scanalyze system. As shown in Fig. 1, our GPU
algorithm is capable of generating high quality surfaces with fine
details from noisy real-world scans, just like the CPU algorithm in
[Kazhdan et al. 2006].

In terms of performance, the GPU algorithm is over two orders of
magnitude faster than the CPU algorithm. For example, for the
Stanford Bunny, the GPU algorithm runs at 5.2 frames per second,
whereas the CPU algorithm takes 39 seconds for a single frame.

As summarized in Table 1, the GPU algorithm achieves interactive
performance for all examples shown in the paper. Currently, the im-
plicit function computation, especially the stage of building the lin-
ear system, is the bottleneck of our algorithm. The time for octree
construction occupies a relatively small fraction. Compared with
the CPU octree construction algorithm, our GPU octree builder is
also over two orders of magnitude faster.

One limitation of our GPU reconstruction is that currently it can
only handle octrees with a maximal depth of 9 due to the limited
memory of current graphics cards. This limitation, however, can be
solved with the rapid improvements in graphics hardware.

5.1 User-Guided Surface Reconstruction

Using our GPU reconstruction technique, we develop a user-guided
surface reconstruction algorithm for imperfect scan data. The algo-
rithm allows the user to draw strokes to reduce topological ambi-
guities in areas that are under-sampled or completely missing in
the input data. Since our GPU reconstruction technique is interac-
tive, the user can view the reconstructed surface immediately after
drawing a stroke. Compared with a previous user-assisted method

l Model [# Points [Tree Depth[# Triangles [Memory [Tot [Trunc [Tiso [Tiotal [FPS [Tc[’;u [Tepu ‘
Bunny 353272 8 228653 290MB 40ms | 144ms 6ms | 190ms | 5.26 8.5s 39s
Buddha 640735 8 242799 320MB 50ms | 167ms | 35ms | 252ms | 3.97 | 16.1s 38s
Armadillo 512802 8 201340 288MB 43ms | 149ms Sms | 197ms | 5.06 | 12.8s 42s
Elephant 216643 8 142197 391MB 46ms | 209ms | 41ms | 296ms | 3.38 5.5s 34s
Hand 259560 8 184747 253MB 36ms | 143ms | 27ms | 206ms | 4.85 6.4s 26s
Dragon 1565886 9 383985 460MB | 251ms | 486ms | 23ms | 760ms | 1.31 | 39.1s | 103s

Table 1: Running time and memory performance for some examples shown in the paper. # Triangles is the number of triangles in the

reconstructed surface. Toi, Trune, Tiso and Tiorar are the time for building octree, implicit function computation (including both linear
system building and solving), isosurface extraction and total time respectively, using our GPU algorithm. FPS is the frame rates of our
algorithm. For comparison, Tgy, and Tep., are the octree building time and total time using the CPU algorithm [Kazhdan et al. 2006].

[Sharf et al. 2007] which takes several minutes to update the recon-
structed mesh, our approach is more effective and provides better
user experience.

Our basic idea is to first add new oriented sample points to the orig-
inal point cloud based on user interaction. Then a new isosurface is
generated for the augmented point cloud. Suppose @ is the original
point set and @’ is the current point set after each user interaction.
After the user draws a stroke, our system takes the following steps
to generate the new surface:

1. Compute the depth range of)’s bounding box under the cur-
rent view.

2. Iteratively extrude the stroke along the current view direction
in the depth range, with a user-specified interval w. For each
extruded stroke, a set of points are uniformly distributed along
the stroke, also with interval w. Denote this point set as .S.

3. For points in S, compute their implicit function values in par-
allel using the procedure in Listing 4.

4. Remove points from .S whose implicit function values are not
less than the current isovalue @.

5. Compute normals for all points in .S.
6. Add S to the current point set Q'

7. Perform GPU reconstruction with @’ as input and generate
the new isosurface.

In Step 2, the interval w is set to be the width of an octree node at
depth D by default. Step 4 removes points outside of the current re-
constructed surface because we only wish to add new points in inner
regions, where topological ambiguity is found. This scheme works
well for all tested data shown in this paper. Note that unwanted
points may be accidentally introduced in some inner regions. When
this happens, the user can remove those points manually. In Step 7,
the new isovalue is always computed as the average of the implicit
function values of points in the original point set) because we
want to restrict the influence of newly-added points to local areas.
The new points are only used to change the local vector field.

Our current system provides two ways to compute the normals for
points in .S in Step 5. One is based on normal interpolation. For
each point s; € S, we traverse the octree of @’ and find all points
of Q' which are enclosed by a box centered at s;. Then s;’s normal
is computed as an interpolation of the normals of these points. The
interpolation weight of a point ¢’ is proportional to the reciprocal
of the squared distance between ¢’ and s;. The box size is a user-
specified parameter. If no point is found given the current box size,
the algorithm automatically increases the box size and traverses the
octree again. The other scheme for computing the normals is rela-
tively simple. The normals are restricted to be orthogonal to both
the current viewing direction and the tangents of the stroke. We
always let the normals point to the right side of the stroke.

Note that for the first normal computation scheme, the user’s inter-
action is not limited to drawing strokes. We also allow users to draw

Figure 4: User-guided reconstruction of a scanned elephant
model. (a) The input scan. (b) The result from automatic recon-
struction. The head and trunk are mistakenly connected. (c) The
improved surface after the user draws the stroke shown in (b). (d)
A tail copied from the Armadillo is added around the rear end of the
elephant. A new elephant surface with the new tail is immediately
reconstructed. See the companion video for live demos.

a rectangle or any closed shape to define an area where they want
to insert new points. This shape is then extruded and a set of points
is uniformly distributed inside the extruded shape. After that, Steps
3 ~ T are performed to generate a new isosurface.

User-Guided Reconstruction Results: We tested our algorithm
on a variety of complex objects including the Buddha (Fig. 1), Ele-
phant (Fig. 4), and Hand (Fig. 5). For all examples, we were able to
generate satisfactory results after several strokes. See the compan-
ion video for examples of user interaction sessions.

While the user-specified inside/outside constraints in [Sharf et al.
2007] only correct the local topology, our system also allows the
user to specify the geometry of missing areas of the surface. The
user first copies a set of points from another point cloud and places
the points around the target area. The new isosurface can be then
generated. Note that in this case, we do not remove the points out-
side of the surface as in Step 4 above. Fig. 4(d) shows such an
example.

5.2 Point Cloud Modeling

Our GPU reconstruction algorithm can also be integrated into point
cloud modeling tools to generate meshes for dynamic point clouds
on the fly. The reconstructed meshes can be directly rendered using
conventional polygon-based rendering methods.

Figure 5: User-guided reconstruction of a scanned hand model.
Left: the automatic reconstruction result. Several fingers are mis-
takenly connected. Right: the improved surface after the user draws
two rectangles.

Free-Form Deformation: We first implemented the free-form de-
formation tool described in [Pauly et al. 2003]. The GPU recon-
struction is performed on the deformed point cloud at each frame
to produce a triangular mesh. As shown in Fig. 6 and the compan-
ion video, our system is capable of generating high quality surfaces
for large deformation at interactive frame rates, even as dynamic
sampling is enabled.

Boolean Operations: Boolean operations are useful for combining
several shapes to build complex models. Suppose ()1 and Q)2 are
two point clouds. First, two implicit functions (@1 and 2) are com-
puted for Q1 and Q)2 respectively and two isosurfaces My and Mo
are extracted. Second, for each point g5 € Q2 in parallel, the im-
plicit function value o1 (g3) is computed using the pseudo code in
Listing 4. Similarly, for each point ¢i € Q1, ¢2(g}) is computed.
Third, the inside/outside classification is done by comparing each
»1(q3) with @1, and each p2(q]) with @2. Fourth, based on the
inside/outside classification, a new point cloud @ is produced by
collecting points from)1 and ()2 according to the definition of the
specific Boolean operation being performed. At this point, we may
need to flip point normals for some Boolean operations. For exam-
ple, for My — Mo, the new point set consists of Q1 ’s points that are
outside of Mo, plus QQ2’s points that are inside of M;. The normals
of Q2’s points need to be flipped. Finally, GPU reconstruction is
performed on () to generate a surface for the Boolean operation.

Fig. 6 shows some results generated using our algorithm. Please
refer to the companion video for interactive demos.

6 Conclusion and Future Work

We have presented a parallel surface reconstruction algorithm that
runs entirely on the GPU. For moderate-sized scan data, this GPU
algorithm generates high quality surfaces with fine details at inter-
active frame rates, which is over two orders of magnitude faster
than CPU algorithms. Our GPU reconstruction algorithm not only
enhances existing applications but also opens up new possibilities.
To demonstrate its potential, we integrate the algorithm into a user-
guided reconstruction system for imperfect scan data and thus en-
able interactive reconstruction according to user input. We also
show how to employ the algorithm in point cloud modeling tools
for generating polygonal surfaces from dynamic point clouds on
the fly.

For future work, we are interested in exploring the scenario with un-
reliable normals given at the sample points. In this case, a possible
approach is to use the inside/outside constraints [Sharf et al. 2007]
instead of normal constraints in implicit function optimization. We

Figure 6: Free form deformation and boolean operations. Top left:
a Neptune model is bent. Top right: several tentacles are pulled out
from an ellipsoid. Bottom left: a hole and a face mask are created
on the bunny’s surface. Bottom right: an interesting creature is cre-
ated from the armadillo using free-form deformation and boolean
operations.

are also interested in enhancing our user-guided surface reconstruc-
tion by developing an automatic method for detecting problematic
regions as in [Sharf et al. 2007]. Such a method will save the user
the trouble of having to locate these topologically unstable regions.
Finally, we believe that our GPU technique for real-time octree con-
struction could be useful in a wide variety of graphics applications
since the constructed octrees provide fast access to all tree nodes
as well as their neighborhood information. Therefore, an important
part of our future plan is to investigate the applications of our octree
technique.

References

ALEXA, M., BEHR, J., COHEN-OR, D., FLEISHMAN, S., LEVIN, D.,
AND SILVA, C. T. 2001. Point set surfaces. In Proceedings of IEEE
Visualization’01, 21-28.

ALLIEZ, P., COHEN-STEINER, D., TONG, Y., AND DESBRUN, M. 2007.
Voronoi-based variational reconstruction of unoriented point sets. In
Proceedings of SGP’07, 39—48.

AMENTA, N., AND KIL, Y. J. 2004. Defining point-set surfaces. ACM
Trans. Graph. 22, 3, 264-270.

AMENTA, N., BERN, M., AND KAMVYSSELIS, M. 1998. A new
Voronoi-based surface reconstruction algorithm. In Proceedings of SIG-
GRAPH’98, 415-421.

Baijal, C. L., BERNARDINI, F., AND XU, G. 1995. Automatic recon-
struction of surfaces and scalar fields from 3d scans. In Proceedings of
SIGGRAPH’95, 109-118.

BOISSONNAT, J.-D. 1984. Geometric structures for three-dimensional
shape representation. ACM Trans. Graph. 3, 4, 266-286.

BoLz, J., FARMER, 1., GRINSPUN, E., AND SCHRODER, P. 2003. Sparse
matrix solvers on the GPU: conjugate gradients and multigrid. ACM
Trans. Graph. 22, 3, 917-924.

BORGHESE, N. A., FERRARI, S., AND PIURI, V. 2002. Real-time surface
reconstruction through HRBF networks. In Proceedings of the Fourth
IEEE International Workshop on Haptic Virtual Environments and Their
Applications, 19-24.

BUCHART, C., BORRO, D., AND AMUNDARAIN, A. 2007. A GPU inter-
polating reconstruction from unorganized points. In ACM SIGGRAPH
2007 posters.

CARR, J. C., BEATSON, R. K., CHERRIE, J. B., MITCHELL, T. J.,
FRIGHT, W. R., MCcCALLUM, B. C., AND EVANS, T. R. 2001. Recon-
struction and representation of 3d objects with radial basis functions. In
Proceedings of SIGGRAPH’01, 67-76.

CURLESS, B., AND LEVOY, M. 1996. A volumetric method for building
complex models from range images. In SIGGRAPH 96, 302-312.

DECORO, C., AND TATARCHUK, N. 2007. Real-time mesh simplification
using the gpu. In Proceedings of I3D’07, 161-166.

GoprI1, M., KRISHNAN, S., AND SILVA, C. 2000. Surface reconstruction
based on lower dimensional localized Delaunay triangulation. In Pro-
ceedings of Eurographics’00, 467-478.

HARRIS, M., OWENS, J., SENGUPTA, S., ZHANG, Y., AND DAVIDSON,
A.,2007. CUDPP homepage. http://www.gpgpu.org/developer/cudpp/.

HARRIS, M., SENGUPTA, S., AND OWENS, J. 2007. Parallel prefix sum
(scan) in CUDA. In GPU Gems 3, Addison Wesley, H. Nguyen, Ed.,
Ch.31.

HorpE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND STUET-
ZLE, W. 1992. Surface reconstruction from unorganized points. In
Proceedings of SIGGRAPH’92, 71-78.

HORNUNG, A., AND KOBBELT, L. 2006. Robust reconstruction of water-
tight 3d models from non-uniformly sampled point clouds without nor-
mal information. In Proceedings of SGP’06, 41-50.

KAZHDAN, M., BOLITHO, M., AND HOPPE, H. 2006. Poisson surface
reconstruction. In Proceedings of SGP’06, 61-70.

KOLLURI, R., SHEWCHUK, J. R., AND O’BRIEN, J. F. 2004. Spectral
surface reconstruction from noisy point clouds. In SGP’04, 11-21.

LIPMAN, Y., COHEN-OR, D., AND LEVIN, D. 2007. Data-dependent MLS
for faithful surface approximation. In Proceedings of SGP’07, 59-67.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes: A high
resolution 3d surface construction algorithm. In Proceedings of SIG-
GRAPH’87, 163-169.

NVIDIA, 2007. CUDA programming guide 1.0.
http://developer.nvidia.com/object/cuda.html.

OHTAKE, Y., BELYAEV, A., ALEXA, M., TURK, G., AND SEIDEL, H.-P.
2004. Multi-level partition of unity implicits. ACM Trans. Graph. 22, 3,
463-470.

PAULY, M., KEISER, R., KOBBELT, L. P., AND GROSS, M. 2003.
Shape modeling with point-sampled geometry. In Proceedings of SIG-
GRAPH’03, 641-650.

Poprov, S., GUNTHER, J., SEIDEL, H.-P., AND SLUSALLEK, P. 2007.
Stackless kd-tree traversal for high performance GPU ray tracing. In
Proceedings of Eurographics’07, 415-424.

RANDRIANARIVONY, M., AND BRUNNETT, G., 2002. Parallel implemen-
tation of surface reconstruction from noisy samples. Preprint Sonder-
forschungsbereich 393, SFB 393/02-16.

SHARF, A., LEWINER, T., SHKLARSKI, G., TOLEDO, S., AND COHEN-
OR, D. 2007. Interactive topology-aware surface reconstruction. ACM
Trans. Graph. 26, 3, Article 43, 9 pages.

TURK, G., AND O’BRIEN, J. F. 2002. Modelling with implicit surfaces
that interpolate. ACM Trans. Graph. 21, 4, 855-873.

WEINERT, K., SURMANN, T., AND MEHNEN, J. 2002. Parallel surface re-
construction. In Proceedings of the 5th European Conference on Genetic
Programming, 93—102.

WESTERMANN, R., KOBBELT, L., AND ERTL, T. 1999. Real-time explo-
ration of regular volume data by adaptive reconstruction of isosurfaces.
The Visual Computer 15,2, 100-111.

WILHELMS, J., AND GELDER, A. V. 1992. Octrees for faster isosurface
generation. ACM Trans. Graph. 11, 3, 201-227.

A Review of Poisson Surface Reconstruction

Given an input point cloud @) with each sample point ¢; having a normal
vector 7i;, the Poisson surface reconstruction technique [Kazhdan et al.
2006] computes an implicit function ¢ whose gradient best approximates
a vector field V defined by the samples, i.e., miny, [V — V||. This mini-
mization problem can be restated as solving the following Poisson equation:

Ap=V-V,
i.e., compute a scalar function ¢ whose Laplacian (divergence of gradient)
equals the divergence of V. The algorithm first defines a set of blending
functions based on octree O. For every node o € O, a blending function
FY is defined by centering and stretching a fixed basis function F':

—o. 1
Fo(q) = Fo.c,o.w(q) =F (%) o.w37 (2)

where o.c and o.w are the center and width of node o.

The vector field V is then defined as:

V@)=Y Y conFol@ii= Y TFola) O

2, €Q ocOP ocOD

where OP are the octree nodes at depth D, ao,q, is the interpolation
weight. Each sample point g; only distributes its normal to its eight closest
octree nodes at depth D. This works well for all scan data we tested, al-
though it is preferable to also “splat” the samples into nodes at other depths
for non-uniformly distributed point samples.

The implicit function ¢ is also expressed in the function space spanned by

{Fo}:
(@)=Y poFo(a).)

ocO

The Poisson equation thus reduces to a sparse linear system:

Lx = b, ©)
where x = {¢o} and b = {b,} are |O|-dimensional vectors. The Lapla-
cian matrix entries are the inner products L, ,» = (Fo, AF,/), and the

divergence coefficients are

bo = Y (FoV(BuFy)) = Y (For(Ty - VE,))

o’eoP P=tel
= > / Fo(@)(For -V (@)dg = Y T o0r,
o’eoP o’eoD

where @, , = f Fo(q)VF, (q)dg.
The linear system can be transformed into successive linear systems
Lix? = b4, ©)

one per octree depth d. Since L% is symmetric and positive definite, each
linear system can be solved using a conjugate gradient solver. The diver-
gence at finer depths is updated as:

bl Y Logeo, ™)

d'<d ot c0d!
where O is the set of octree nodes at depth d.

The basis function F' used in [Kazhdan et al. 2006] is the n-th convolution
of a box filter with itself:
1, if|t] < 0.5;
— *n _) 5
Fle,.2) = (B@BEE)™ Bo={ o L=

®)
Kazhdan et al. used n = 3 in their implementation. In our implementation
we choose n = 2 instead. This reduces the support of F' to the domain
[—1, 1] without noticeable degradation of the reconstructed surfaces. Note
that F' is a separable function and can be expressed as:

F(z,y,2) = f(@)f(y) f(2), ©

where f is the n-th convolution of B with itself.

