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Fig. 1. Five-Component Vector Field Decomposition. On a tetrahedral mesh of the kitten with a spherical cavity, a vector field is decomposed into a
gradient field with zero potential on the boundary, a curl field with its vector potential orthogonal to the boundary, a pair of tangential and normal harmonic
fields, and a harmonic field that is both a gradient and a curl field. Potential fields are shown in the corners of their corresponding components.

We present a compendium of Hodge decompositions of vector fields on
tetrahedral meshes embedded in the 3D Euclidean space. After describing
the foundations of the Hodge decomposition in the continuous setting, we
describe how to implement a five-component orthogonal decomposition
that generically splits, for a variety of boundary conditions, any given dis-
crete vector field expressed as discrete differential forms into two potential
fields, as well as three additional harmonic components that arise from the
topology or boundary of the domain. The resulting decomposition is proper
and mimetic, in the sense that the theoretical dualities on the kernel spaces
of vector Laplacians valid in the continuous case (including correspondences
to cohomology and homology groups) are exactly preserved in the discrete
realm. Such a decomposition only involves simple linear algebra with sym-
metric matrices, and can thus serve as a basic computational tool for vector
field analysis in graphics, electromagnetics, fluid dynamics and elasticity.
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1 INTRODUCTION
The existence of orthogonal decompositions of a given vector field
into gradient and curl terms (that can be integrated into potentials)
along with non-integrable parts (that are due to the topology of
the domain) is a fundamental property leveraged in a variety of
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static and dynamical problems — for instance, fluid simulation to
enforce incompressibility. The mathematical foundations behind
such decompositions were developed using the theory of differential
forms for any finite-dimensional compact manifold without bound-
ary early on [Hodge 1941], but were fully extended to manifolds
with boundaries much more recently [Shonkwiler 2009].

In computer graphics, the analysis and processing of vector fields
over surfaces have received plenty of attention in recent years. Con-
sequently, the resulting computational tools needed to achieve a
Hodge decomposition have been well documented and tested on
various applications; see, e.g., recent surveys on surface vector field
analysis [Vaxman et al. 2016; de Goes et al. 2016a]. For the case
of vector fields over 3D bounded domains, discussions about the
Hodge decomposition are significantly scarcer: while the usefulness
of the Hodge decomposition is as prevalent as in 2D, the existing
literature lacks a rigorous computational treatment of the full-blown
decomposition over 3D domains of arbitrary topology. Our paper
fills this void by offering both the theoretical foundations and a
practical linear-algebra based implementation of a five-term Hodge
decomposition of vector fields expressed as dicrete forms for the
most common boundary conditions used in computational science.

1.1 Related work
A variety of books present detailed expositions of the Hodge de-
composition from a mathematical perspective (see [Abraham et al.
1988; Schwarz 1995] for two examples using a formulation based
on differential forms), but provide no hints on computational ap-
proaches to implementing a discrete decomposition in the case of
finite-dimensional vector field representations. Even more applied
treatments (such as [Cantarella et al. 2002] which discusses the case
of complicated topology at length) are often based on a Biot-Savart
construction relying on volume integrals to prove the existence
and uniqueness of the decomposition, but leave the computational
aspects to realize such a decomposition mostly unaddressed. For
the simpler case of a two-component decomposition (known as
the Helmholtz decomposition), a number of papers describe how
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Fig. 2. Helmholtz decomposition. Vector field in a vase with a spherical
cavity decomposed into a gradient and a curl field, but with a nonzero L2
inner product between these two resulting components.

to compute the scalar and potential vector potentials [Amrouche
et al. 1998], but no mention is made of the validity of the implied
discretization of the cohomology and whether its dimensionality
matches the continuous case based on the discrete choices of di-
vergence, curl and gradient operators. Yet, the numerical issues
generated by a failure to capture the proper cohomologies are well
documented by now – see, e.g., the spurious (i.e., aphysical) modes
in computational electromagnetism [Caorsi et al. 2001], or the typi-
cal checkerboard patterns in Poisson solves.

The most common use in computer graphics of a 3D vector field
decomposition is arguably in incompressible fluid simulation; how-
ever, not all components are needed in this context since a simple
pressure projection is typically used to remove all divergence [Stam
1999; Colin et al. 2006]. Most approaches in fluid dynamics discuss
the case of ball-like topology, with the exception of methods using
vorticity to reconstruct the velocity field, e.g., [Elcott et al. 2007;
Chern 2017], which contain discussions on the treatment of do-
mains with nonzero genus. Even in these cases, the decomposition
is not comprehensive due to the specificities of typical boundary
conditions in fluid animation. Finally, [Bhatia et al. 2013] provides a
thorough survey of recent progress on 2D and 3D vector field decom-
positions in graphics and visualization, but also laments the lack of
computational methods providing a five-component decomposition
with proper discrete cohomology: until recently, 3D decompositions
were mostly achieved for piecewise-constant vector fields on tetra-
hedral meshes as in [Tong et al. 2003], extending the 2D variational
approach of [Polthier and Preuß 2000]); however, this decomposi-
tion overly inflates the size of the space of harmonic fields [de Goes
et al. 2016a], leading to the wrong dimensionality of the cohomol-
ogy. A cohomologically-correct five-component decomposition was
very recently introduced for 2D surfaces in [Poelke and Polthier
2016; Razafindrazaka et al. 2018] under the name of “boundary-
aware” Hodge decomposition; a corresponding 3D five-component
decomposition was proposed in [Poelke 2017], extending the 2D
decomposition from [Arnold and Falk 1989] and 3D decomposition
from [Monk 1991]. However, it assumes piecewise-constant vector
fields, making its extension to higher order basis functions unclear
and its ability to handle mixed types of boundary condition (com-
mon in applications like fluid simulation) limited. Moreover, gauge
conditions were not discussed, thus preventing efficient implemen-
tations purely based on symmetric positive definite matrices in 3D.
Finally, an alternative way for visualization and analysis of 2D or
3D vector fields in bounded domains is to create a natural bound-
ary condition for the gradient and curl components as suggested

in [Bhatia et al. 2014]. However, the lack of orthogonality between
the resulting components limits its use in other applications.

1.2 Contributions at a glance
In this paper, we describe both the mathematical formulations and
practical computations of a five-component decomposition of vector
fields in�3.We beginwith a review ofHodge theory expressed using
differential forms, then provide its discretization using Discrete
Exterior Calculus (DEC [Desbrun et al. 2008]). We offer:
• a practical procedure for five-component decompositions based
on discrete vector fields provided as discrete 1-forms (edge values)
or 2-forms (face values) on a tetrahedral mesh;

• a thorough discussion on the enforcement of boundary condi-
tions using DEC discretization to ensure the correct cohomology
(with the proper dimensionality of the topology-induced non-
integrable parts of the vector field);

• and an effective method for solving the relevant Poisson equa-
tions with rank deficiency using only symmetric matrices.

Our exposition aims at serving both practitioners (as we spell out
all the matrices involved and numerical treatments of their rank
deficiency) and theoretically-minded researchers (as we carefully
explain how the discrete setting mimics both boundary conditions
and cohomologies). Thus, readers already well-versed in Hodge
decomposition and DEC are invited to directly head to Sec 3.3,
where our contributions are introduced.

2 BACKGROUND
Before delving into the actual discrete notion of Hodge decomposi-
tion, we present some background on the continuous notions that
we wish to numerically emulate.

2.1 Helmholtz decomposition
In a bounded domain embedded in 3D Euclidean space, any vec-
tor field v can be expressed as the sum of the gradient of a scalar
potential f and the curl of a vector potential u, a two-component
decomposition known as the Helmholtz decomposition, i.e.,

v = ∇f + ∇ × u.

The fields f and u can be constructed, for instance, using Green’s
functions of the Laplacian operator through volume and boundary
surface integrals. However, this decomposition is, in general, not
an orthogonal decomposition, i.e., the L2-inner product between ∇f
and ∇×u is not necessarily 0, and is not even unique without impos-
ing proper boundary conditions (see Fig. 2). In practical problems,
boundary conditions are often crucial, e.g., the slip wall (tangential)
boundary conditions for fluid simulation, and the normal boundary
condition for the electric field at an ideal conductor boundary. As
the orthogonality between the gradient and curl parts are highly
relevant for efficiency and accuracy in computational applications, a
more general decomposition, called the Helmholtz-Hodge decomposi-
tion is called for; but it now involves components that are no longer
integrable. Yet, these non-integrable parts are finite-dimensional and
directly related to the topology of the domain through correspon-
dences established by Poincaré, de Rham, and Hodge, as we briefly
discuss next before spelling out the five-component decomposition.
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order 0 order 1 order 2 order 3
form f 0 v1(a) v2(a, b) f 3(a, b, c)

f v · a v · (a × b) f [(a × b) · c]
d df 0 dv1 dv2 df 3

[dd = 0] (∇f )1 (∇ × v)2 (∇ · v)3 0
⋆ ⋆f 0 ⋆v1 ⋆v2 ⋆f 3

[⋆⋆ = 1] f 3 v2 v1 f 0

δ δ f 0 δv1 δv2 δ f 3
[δδ = 0] 0 (−∇ · v)0 (∇ × v)1 (−∇f )2

∧ f 0∧д0 f 0∧v1 f 0∧v2 , v1∧u1 f 0∧д3 , v1∧u2
[(anti-)commute] (f д)0 (f v)1 (f v)2 , (v×u)2 (f д)3 , (v · u)3

Fig. 3. Exterior vs. traditional calculus: odd rows show exterior calculus
notations, and even rows give their more conventional expressions in 3D.

2.2 Vector fields through differential forms
Hodge theory is more conveniently and concisely described by dif-
ferential k-forms and the exterior calculus based on these forms.
While this notational formalism ismore involved than the traditional
vector notation, both are strictly equivalent, and exterior calculus
more clearly identifies topological vs. metric operators; the reader
unfamiliar with this equivalence is referred to tutorials [Desbrun
et al. 2008; Lessig 2012]; we also provide a lookup table to peruse in
Fig. 3 that summarize relevant equivalences (specific to 3D).
Forms as scalar or vector fields. A k-form ωk is a pointwise mul-

tilinear mapping from k vectors to a scalar such that if two input
vectors are swapped, the sign of the output is switched. Thus a 0- or
3-form in our R3 setting has only one degree of freedom (DoF) per
point, and can be simply identified with a single-component field f
(since they represent, respectively, a scalar field and a density field),
while a 1- or 2-form has three DoF per point, and can be identified
with a vector field v. We will use f 0, f 3, v1, and v2 to denote f
seen as a 0- or 3-form and v as a 1- or 2-form respectively.∗ How
the DoFs are used in the antisymmetric linear map is listed in Fig. 3.

Operators on forms. Due to their antisymmetric tensorial nature,
k-forms can be integrated on any k-submanifold. Additionally, the
exterior derivative (or differential) dk is an antisymmetrization of
the partial derivatives of a k-form to produce a (k+1)-form that
satisfies the Stokes’ theorem over any (k+1)-submanifold R inM :∫

R

dkωk =

∫
∂R

ωk .

Consequently, one can readily verify that dkdk−1 = 0. Depending
on the form degree that it is applied to, it encompasses the classical
gradient, curl and divergence operators in one consistent type. In
the remainder of this paper, we will often omit the superscript of d
since it can be directly inferred from the type of its operand. Note
that we conventionally call a form closed if its differential is zero.
Additionally, the wedge product ∧ is defined as an antisymmetriza-
tion of the tensor product of two mappings (a p-form and a q-form)
to produce a (p+q)-form: for p+q > 3, it is 0 since no degrees of
freedom are left after antisymmetrization. Finally, the Hodge k-star
⋆k (or Hodge dual; we will also omit its superscript at times since
the operand disambiguates its identity) is an isomorphism from a
k-form ωk to a (3−k)-form (⋆ω)3−k by treating them as the same
DoF used in mapping 3−k vectors (instead of k vectors in the same
Euclidean coordinate system) to a scalar. Combinations of the basic

∗This notation will allow us to keep the “musical” isomorphisms ♯ and ♭ hidden to
simplify expressions.

Fig. 4. Helmholtz-Hodge decomposition. On this example, a tangential
field is decomposed into the orthogonal sum of a tangential gradient field,
a tangential curl field, and a tangential harmonic field.

operators can be constructed. For instance, δk = (−1)k⋆k+1dk⋆k is
usually called the codifferential operator (acting on a k-form and
returning a (k−1)-form).
Inner products of forms. On a compact manifoldM , the space of

k-forms Ωk (M) is a Hilbert space when equipped with the inner
product between two k-forms α and β defined as:

⟨α, β⟩ =

∫
M
α ∧⋆β =

∫
M
β ∧⋆α .

In our setting, it corresponds to the L2-inner product between scalar
fields for 0- or 3-forms, and to the L2-inner product between vector
fields for 1- or 2-forms.

2.3 Hodge decomposition for boundaryless manifolds

Based on the linear map dk on a boundaryless manifold, there exists
an orthogonal decomposition of the space Ωk written as

Ωk = kerdk ⊕ im δk+1,

where ker denotes the kernel of an operator, ⊕ indicates an orthog-
onal sum of subspaces, and im denotes the image of an operator.
This decomposition is simply a consequence of the fact that the
kernel of a linear operator is the orthogonal complement of the
range of its adjoint operator. Note that we have

⟨dα, β⟩ = ⟨α, δβ⟩ +

∫
∂M

α ∧⋆β, (1)

which implies that δ is formally the adjoint of d only for boundary-
less manifolds, i.e., when ∂M = ∅.
The kernel component can be further decomposed by noticing

that kerdk = im dk−1+Hk , where Hk = kerdk/ im dk−1 is the
quotient space between the kernel of dk and the image of dk−1
(also known as the de Rham cohomology). This property is simply a
consequence of the important property dkdk−1 = 0. As observed by
Hodge, we can turn the direct sum into an orthogonal sum instead
by picking one particular representative for each equivalence class
in Hk : the unique one that is orthogonal to im dk−1. As Ωk =

kerδk ⊕ im dk−1, one realizes that, in fact, Hk is isomorphic to
kerdk ∩ kerδk , i.e., to the space of harmonic k-forms that are both
closed and coclosed—we will also denote it asHk due to the natural
isomorphism. Given this newfound orthogonality, we reach the
Hodge decomposition theorem, which states:

Ωk = im dk−1 ⊕ im δk+1 ⊕ Hk . (2)
In other words, a k-formω ∈Ωk can be decomposed into the orthog-
onal sum of an exact form dα , a coexact form δβ , and a harmonic
form h ∈Hk (a form is “exact” if it is the differential of another form;
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it is “coexact” if it is a codifferential instead). When k = 1, 2, this
decomposition can be identified with its vector calculus equivalent,
often referred to as the Helmholtz-Hodge decomposition in 3D:

v = ∇f + ∇ × u + h. (3)
According to de Rham’s theorem, Hk is isomorphic to a space

called the singular cohomology Hk (M), which is in turn isomorphic
to the homology Hn−k (M) by Poincaré duality, where Hk can be
understood as the space of non-contractible k-dimensional closed
manifolds. The dimensionality of Hk (M) is a finite topological in-
variant, often referred to as the k-th Betti number βk =dimHk (M).
Based on Eq. (1), Hk can also be equivalently defined through
Hk = {α ∈Ωk |∆α =0}, where the (de Rham) Laplacian ∆ is defined
as ∆=dδ + δd , with thus a finite-dimensional kernel. In fact, ∆ is
self-adjoint due to Eq. (1), and we can decompose k-forms as

Ωk = im ∆k ⊕ ker∆k . (4)
This fact suggests a simple computational approach to theHelmholtz-
Hodge decomposition: if we can fix the finite rank deficiency of the
Laplacian ∆, by projecting v to ker∆ to get h, and get w through
∆w=v−h, we can have the Hodge decomposition through f =∇·w
and u=∇ ×w. However, in practice, our domain in 3D Euclidean
space is always bounded and thus with a boundary—in which case,
the boundary condition and orthogonality of the subspaces must be
treated very carefully as we describe next.

2.4 Hodge decomposition for manifolds with boundary
To ensure adjointness of operators in the presence of boundary,
there certainly are a variety of choices. A choice consistent with
physical boundary conditions is to force the form α in the decompo-
sition to be tangential to the boundary (we call a form α “tangential”
or “parallel” if ⋆α is zero when applied to tangent vectors of the
boundary), or normal to the boundary (we call a form α “normal” if
α is zero when applied to tangent vectors of the boundary).

type f 0 v1 v2 f 3

tangential unrestricted v · n = 0 v ∥ n f |∂M = 0
normal f |∂M = 0 v ∥ n v · n = 0 unrestricted

Consequently, we can construct a Hodge decomposition as pro-
posed in [Morrey 1956] through

Ωk = dΩk−1
n ⊕ δΩk+1

t ⊕ Hk , (5)
where Ωk+1

t is the space of tangential forms (also known as Neu-
mann forms since their normal components are fixed), Ωk−1

n is the
space of normal forms (or Dirichlet forms), andHk =kerdk ∩ kerδk .
Note that being both closed and coclosed is stronger than satisfy-
ing ∆ω = 0 when ∂M , ∅. (This point is important in our context,
and we will come back to it in Sec. 4.) Nevertheless, one still has
the orthogonality between the subspaces, using the adjointness of
the operators with Dirichlet and Neumann boundary conditions
for the potentials (sometimes called parallel and normal boundary
conditions). However,Hk is infinite-dimensional in this case.

Complete decomposition. Friedrichs [1955] proposed two ways to
decompose Hk orthogonally based on tangential or normal bound-
ary conditions: Hk =Hk

t ⊕ (dΩk−1 ∩Hk ) as shown in Fig. 5, or
Hk =Hk

n ⊕ (δΩk+1 ∩Hk ), which can be combined into the follow-
ing five-component (Hodge-Morrey-Friedrichs) decomposition:

Ωk = dΩk−1
n ⊕ δΩk+1

t ⊕ (Hk
t +H

k
n ) ⊕ (dΩk−1 ∩ δΩk+1), (6)

where the sum of the latter three terms spans the harmonic space
Hk , while Hk

t is the tangential harmonic space, Hk
n is the nor-

mal harmonic space, and the last term is both exact and coexact.
Friedrichs also noted thatHk

t � Hk (M) andHk
n � Hk (M, ∂M), i.e.,

these two special harmonic spaces are isomorphic to, respectively,
the aforementioned (absolute) cohomology Hk (M) now for a man-
ifold with boundary, and the relative cohomology Hk (M, ∂M) for
which two k-forms differing only by a k-form on the boundary are
treated as equivalent. In general,Hk

t andHk
n are not L2-orthogonal

with each other. However, they are orthogonal for domains in R3
according to [Shonkwiler 2009], as both the absolute and relative
homologies are due to the boundary (we can always patch up the
boundary to turn the domain into a ball). This indicates that we
have a 5-component orthogonal decomposition, which is consistent
with the work of [Cantarella et al. 2002]:

ωk = dαk−1n ⊕ δβk+1t ⊕ hkt ⊕ hkn ⊕ ηk , (7)
where ηk is the part that is both exact and coexact. Note that three
components can be expressed through potentials under boundary
conditions that ensure orthogonality (η being exact and coexact, it
can be written as the differential or the codifferential of a poten-
tial), while the other two components hkt and hkn belong to finite-
dimensional spaces spanned by harmonic basis fields determined by
topology (resp., absolute and relative homologies). As a reminder,
the dimensionality of the spaces of both the hkt and h3−kn compo-
nents in our 3D setup is the Betti number βk , with a rather intuitive
topological meaning: it is the number of components for k = 0,
tunnels for k=1, cavities for k=2, or simply 0 for k=3.

Equations defining the potentials. Applying the codifferential δ to
both sides of Eq. (7), one finds that the form potential αk−1n satisfying

δωk = δdαk−1n . (8)

This equation can be highly underdetermined as dαk−1n =d
(
αk−1n +

dγ
)
for any γ ∈Ωk−2. As dγ does not influence the exact component,

it is referred to as a gauge field and can be arbitrarily fixed through
various gauge conditions. For example, we can enforce δαk−1=0,
turning the above equation into δω= (δd + dδ )αk−1=∆αk−1. Since
the rank deficiency of ∆ restricted to the space of normal forms
Ωk−1
n is dimHk−1

n , it is finite, so we can leverage this property to
solve the corresponding linear system as we will see in Sec. 3.7 when
we discuss discretizations and computations. Similarly, applying the
differential d to both sides of Eq. (7) shows that

dωk = ∆βk+1t , (9)
which has a rank deficiency of dimHk+1

t on tangential forms. We
will also show in Sec. 3.8 that seeking a potential in dΩ ∩ δΩ for
k=1, 2 (i.e., for vector fields) can be achieved by solving a Laplace
equation with Neumann boundary condition.

3 DISCRETE DECOMPOSITION OF VECTOR FIELDS
We now assume that our 3D domainM is discretized in the form of
a tetrahedral mesh. We can then use the discrete exterior calculus
(DEC [Desbrun et al. 2003, 2008; Crane et al. 2013]) as our primary
tool to represent discrete differential forms, as DEC preserves the key
identityd◦d = 0 for simplicial meshes.Wewill show that our discrete
five-component decomposition exhibits the desired orthogonality
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Fig. 5. Hodge-Morrey-Friedrichs decomposition. For any 3D bounded domain, a vector field can always be decomposed into the orthogonal sum of the
gradient of a scalar field vanishing on the boundary, the curl of a normal field, a tangential harmonic fields, and a harmonic gradient field.

defined by the L2-inner product between discrete differential forms,
as well as the proper cohomology dimensionality for tangential
and normal forms—thus exactly mimicking the continuous case and
preventing the presence of spurious terms.

Given a tetrahedral meshM , we denote the set of vertices, edges,
faces and tets as V/E/F /T respectively. We refer to the boundary
(triangle) mesh as B, with the boundary vertex/edge/face sets as
Vb /Eb /Fb . Finally, we assume w.l.o.g that the domain is connected;
otherwise one can treat each connected component separately.

3.1 Discrete forms as values on mesh elements
A continuous k-form can be discretized very naturally on a mesh:
one can integrate it against every oriented k-simplex of the tet mesh.
The resulting set of scalar values (one per oriented k-simplex) can
then be seen as a discrete k-form; see [Desbrun et al. 2008; Wang
et al. 2006] for details on how to reconstruct a continuous vector
or scalar field from such discrete forms. In 3D, as we discussed
in Sec. 2.2, vector fields can be interpreted as 1- or 2- forms, while
scalar fields are 0- or 3- forms. So we will consider as an input vector
field either a set of edge values (where each edge is given a fixed,
but arbitrary orientation), or a set of face values (where, again, each
face is given an arbitrary fixed orientation) encoding the associated
discrete form. The whole discrete decomposition will then split the
input discrete form into values on vertices, edges, faces, and/or tets,
plus a few non-integrable components depending on the topology
of the domain and the boundary condition.

Fig. 6. Discrete de Rham cohomology. The DEC linear operators provide
a cohomology associated to the combinatorial operators Dk such that
Dk+1Dk = 0 and the Hodge duality through the discrete Hodge stars Sk .

3.2 de Rham complex
Based on Stokes’ theorem, the integral of dω for a k-form ω on a
(k+1)-simplex is simply the signed sum of the integral of ω on the
boundary faces of the simplex, where the sign is determined by
the relative orientation between the simplex and a particular face.
Thus, the exterior derivative dk is simply encoded in the discrete
setting as a matrix Dk which stores the signed incidence between
(k+1)-simplices and k-simplices [Desbrun et al. 2008]; it is thus

very sparse and completely combinatorial. The identity d ◦ d = 0
can be easily verified to hold (Dk+1Dk =0) with this discrete defi-
nition since the boundary of a boundary of an element is always
empty. The Hodge star ⋆k is treated as a mapping from a discrete
form ωk (one value per k-simplex) to one value per corresponding
(n−k)-cells on a dual mesh—typically, the Voronoi dual structure
of the tet mesh. The values on dual Voronoi (n−k)-cells are treated
as the integral of an (n − k)-form stored on the dual mesh, and
referred to as a dual discrete form. Thus, we will have two types
of discrete forms (called primal forms ∈Ωk and dual forms ∈ Ω̃k ).
Their isomorphism is through the Hodge duality ⋆k , which, in the
discrete setting, can be implemented as a diagonal matrix Sk , with
diagonal entries representing the ratio between the (n−k)-volume
of the Voronoi cell and the k-volume of the corresponding primal
k-simplex. Other more accurate Hodge star matrices can be used
(such as the Galerkin Hodge star [Bossavit 2000]), but they must
remain symmetric positive definite (SPD) to guarantee the correct
dimensionality of the discrete cohomologies. We discuss how to
construct sparse linear systems for non-diagonal Hodge stars after
the exposition based on diagonal Hodge stars. We refer to the collec-
tion of discrete form spaces connected by the discrete counterparts
of the d and⋆ operators as the discrete de Rham complex, mimicking
its continuous counterpart, see Fig. 6.

3.3 On the subtleties of boundary treatment
In order to provide a correct computational procedure to find the
desired five-component decomposition, boundary values must be
treated with caution: a naive derivation of operators without careful
boundary treatment can lose the key adjoint properties that we seek
to preserve. For instance, the general Laplacian operator for 1-forms
is expressed in the continuous setting as ∆1 =dδ+δd , the analog
of the component-wise scalar Laplacian ∆=−∇∇· +∇× ∇×≡−∇2

of vector fields. Since we have discrete operators for d and δ , one
could be tempted to directly define a discrete Laplacian L1 as the
symmetric matrix (corresponding to ⋆∆1) through:

L1 = DT
1 S2D1 + S1D0S

−1
0 DT

0 S1.

This term-by-term conversion then corresponds to a discrete Dirich-
let energy for discrete 1-forms V ∈Ωk

P defined as
1
2V

T L1V =
1
2 (D1V )T S2(D1V ) + 1

2 (S
−1
0 DT

0 S1V )T S0(S
−1
0 DT

0 S1V ).

However, one realizes that this energymimics only the non-boundary
part of the continuous identity (where n is the boundary normal):∫

M
v ·∆v=

∫
M
(∇ · v)2+

∫
M
(∇ × v)2−

∫
∂M

[
v∇· v+ v × ∇× v

]
·n. (10)
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In other words, the continuous de
Rham Laplacian (inset) implicitly
contains boundary terms that are
not zero except for very specific
types of vector fields, thus adding
spurious terms. In the following two sections, we describe how to
construct discrete operators that properly treat the typical boundary
conditions required in practical computations. We begin with the
tangential Laplace operator, i.e., the de Rham Laplace operator for
vector fields that are tangent to the domain boundary, before turning
our attention to the normal Laplace operator.

3.4 Tangential vector Laplacian operator
Note that we have the choice between a primal 1-form or a pri-
mal 2-forms to represent a 3D vector field u, which is equivalent
to choosing a dual 2-form or a dual 1-form respectively. In order
to assemble a proper discrete tangential vector Laplacian, we first
discuss the case when our input is a primal 2-form V ∈ Ω2

n ⊂ Ω2

(recall that v is tangential means that its corresponding 2-form v2

is normal), followed by the case of a primal 1-form.
2-form version. For an input primal 2-form V ∈Ω2

n to be normal
(and thus corresponding to a tangential vector field v) simply means
that the boundary face values are zero, i.e., the flux through bound-
ary triangle faces is null: ∀f∈ Fb ,Vf= 0. Forcing the divergence
calculation to consider the fluxes through boundary faces as zero is
equivalent to simply removing the columns of D2 that correspond
to the boundary faces in order to keep only the interior face values.
We denote the resulting matrix as D2,int.

This idea is trivial to generalize: for k=0, 1, 2, 3, we can create a
version of Dk restricted to the interior elements using

Dk ,int = Pk+1DkP
T
k ,

where Pk is the projection (or selection) matrix turning a discrete k-
form to a restricted k-form containing only the values assigned to in-
teriork-simplices. (Notewhile we useDk ,int for conciseness, one can
also implement this idea through amatrixDk ,int=P

T
k+1Pk+1DkP

T
k Pk

(this time, without altering the size of the original matrix Dk ), as
it directly zeroes out the elements in the rows and columns corre-
sponding to boundary elements.)

Similar toD2,int for divergence, one can show thatD1,int provides
the correct curl calculation for tangential vector fields. In addition

Fig. 7. Absolute and relative homologies. Homology generators and
corresponding harmonic fields on a topological torus with a spherical cavity
inside. The red loop (left) around tunnel represents the first homology, and
the blue membrane is its dual in the second relative homology. The red
curve (first relative homology generator, right) is a loop when the boundary
is considered as a point, and the blue membrane is its dual in the second
homology. Each harmonic field has the same circulation (resp., flux) on all
loops (resp., membranes) that can deform into each other in the domain.

to removing the columns of DT
1 corresponding to boundary faces,

it is necessary to remove the rows in DT
1 that correspond to the

boundary edges: otherwise, the term corresponding to ∇× v would
include a fictitious term assuming the tangential components along
the boundary to be zero. More precisely, as shown in the inset, DT

1
sums up the integrals along the yellow dual
polyline around the red boundary edge.
Defining this term as the curl would amount
to setting to zero the line integral along the
dotted boundary path that forms a closed
loop with the yellow polyline.

We also denote the discrete Hodge star for interior k-forms as
Sk ,int = PkSkP

T
k .

Notice that S3,int=S3, since all tets are interior tets. Now the normal
2-form Laplacian can be expressed as

L2,n = DT
2,int S3 D2,int + S2,int D1,int S

−1
1,int D

T
1,int S2,int,

With this expression, we can verify that the harmonic forms defined
by h ∈ kerL2,n indeed correspond to the relative cohomology

H2(M, ∂M) = kerD2,int/im D1,int.
Indeed, we first note that both terms in L2,n are semi-positive

definite. Thus hT L2,nh=0 indicates (D2,inth)
T S3(D2,inth)=0, which

meansh ∈kerD2,int as S3 is positive definite. Similarly,DT
1,intS2,inth=

0, which implies ∀V ∈ im D1,int,V
TS2,inth=W

TDT
1,intS2,inth = 0

(whereV =D1,intW ), thush is orthogonal to imD1,int. Consequently,
h is the unique representative for its equivalence class in the quotient
space, and we have the following theorem.

Discrete de Rham’s Theorem for Normal 2-Forms. The space of
discrete harmonic 2-forms normal to the boundary (i.e., our
discrete counterpart to the de Rham cohomologyH2

dR,n ) is iso-
morphic to the second (singular) relative cohomology group
kerL2,n �H2(M, ∂M).

By Lefschetz duality,H2(M, ∂M)�H1(M), the first homology group,
which represents the independent “tunnels” of the shapeM (see Fig. 7).
So the dimension of kerL2,n is β1≡dimH1(M), exactly the sum of
the genus for each connected component of the boundary ∂M . We
can thus safely use a typical eigensolver to find the β1 unit eigenvec-
tors associated with the smallest eigenvalues of L2,nh=λS2h (these
eigenvalues will be 0 up to numerical accuracy): these are the basis
of all harmonic 2-forms normal to the boundary. We assemble them
into a (tall) matrix H2,n of size |F \Fb | × β1 as: H2,n = [h1 . . .hβ1 ].

1-form version. If a 1-form discretization is used for input tangen-
tial vector fieldsV ∈Ω1

t , a direct term-by-term discretization actually
holds, i.e., the discrete tangential 1-form Laplacian is simply:

L1,t = DT
1 S2D1 + S1D0S

−1
0 DT

0 S1.

This is, in light of the previous case, not surprising: a full discretiza-
tion of the vector field as a discrete one-form should also include one
value per boundary Voronoi region (the intersection of the dark dual
polyhedra dual to the red boundary ver-
tex on the boundary surface as shown to
the right), stored as Ub : otherwise, the dual
2-form S1U cannot be integrated over the
boundary by lack of information. Conse-
quently, the matrices D1 and DT

0 should be
augmented accordingly; but forcing the 1-form to be tangential
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means that the extra rows/columns must be suppressed anyway
just like in the previous case: the use of the original discrete exterior
derivatives is thus justified. Since S−10 DT

0 S1 is now the divergence op-
erator, and at the boundary, the fluxes through interior dual faces are
summed while getting no contribution from boundary (tangential
condition), the resulting operator properly captures its continuous
counterpart. We thus have a similar isomorphism theorem.

Discrete de Rham’s Theorem for Tangential 1-Forms. The space of
discrete harmonic 1-forms tangential to the boundary is isomor-
phic to the first cohomology group kerL1,t �H1(M).

Since the Hodge duality holds for singular cohomology (H1(M)�
H2(M, ∂M)), kerL2,n and kerL1,t are isomorphic (see Fig. 7). The
dimensionality of kerL1,t is again dimH2(M, ∂M)=dimH1(M)=β1.
Solving for the first β1 eigenvectors associated with the smallest
eigenvalues of L1,th = λS1h (which will be 0 up to numerical accu-
racy) is thus also a viable approach to computing a basis. We assem-
ble them into a (tall) matrixH1,t of size |E |×β1 as:H1,t = [h1 . . .hβ1 ].

3.5 Normal vector Laplacian operator
The discrete expressions of the two normal Laplacian operators can
be obtained by basically mirroring the arguments used earlier, as
we now review for completeness.

1-form version. For an input primal 1-form V ∈Ω1
n to represent

a normal vector field (i.e., a 1-form normal to the boundary), one
must clearly have: ∀e ∈ EB,Ve =0. Thus, modifying D1 to become
D1,int by removing the columns of the boundary edges as earlier is
required. Moreover, the discrete dual divergence operator DT

0 must
also be altered to becomeDT

0,int by removing the rows corresponding
to boundary vertices: otherwise, a fictitious term in divergence ∇ · v
would (erroneously) assume the boundary fluxes to be zero. The
discrete 1-form normal Laplacian is then

L1,n = DT
1,int S2,int D1,int + S1,int D0,int S

−1
0,int D

T
0,int S1,int.

2-form version. Similar to the tangential 1-form V ∈ Ω2
n case,

we can augment the discrete tangential 2-form (corresponding to
a normal vector field) with additional variables—this time, values
of the line integral along each boundary dual edge to encode the
tangential components of the 1-form. Setting these extra terms to 0
turns out to be equivalent to using the original Dk and Sk matrices
to assemble the Laplacian, hence:

L2,t = DT
2 S3D2 + S2D1S

−1
1 DT

1 S2.
Like in the tangential case, the two related theorems follow.

Discrete de Rham’s Theorem for Normal 1-Forms. The space of
discrete harmonic 1-forms normal to the boundary is isomorphic
to the first relative cohomology group kerL1,n �H1(M, ∂M).

Discrete de Rham’s Theorem for Tangential 2-Forms. The space of
discrete harmonic 2-forms tangential to the boundary is isomor-
phic to the second cohomology group kerL2,t �H2(M).

The dimension of the harmonic space is dimH2(M)=dimH2(M)≡

β2, which is the number of connected components of the boundary
minus 1 (see Fig. 7). Solving for the first β2 eigenvectors associated
with the smallest eigenvalues of L1,nh = λS1h and L2,th = λS2h
(which will be 0 up to numerical accuracy) provides us with the
basis of these tangential harmonic spaces. As earlier, we assemble
them into two (tall) matrices H1,n and H2,t of size |E\Eb |×β2 and
|F |×β2.

3.6 Normal and tangential scalar Laplacian operators
For the case of the Laplacian operator of scalar functions (repre-
sented as 0- or 3-forms), the exact same construction applies—but
the expressions are simpler as only one part of the dδ+δd general
expression is nonzero in these cases. We find:
L0,t = DT

0 S1D0 L3,n = S3,int D2,int S
−1
2,int D

T
2,int S3,int

L0,n = DT
0,int S1,int D0,int L3,t = S3 D2 S

−1
2 DT

2 S3.

As in the continuous case, the rank deficiency of L0,t and L3,n is
dimH0(M)=dimH3(M, ∂M)=dimH0(M) ≡ β0, i.e., the number of
connected components of the domain. The rank deficiency of L0,t
and L3,n is, instead, dimH3(M) = dimH0(M, ∂M) = dimH3(M) ≡

β3=0 as we cannot have a non-empty boundary of the 3D domain.
The reader may notice that just like for vector Laplacians, the

normal Laplacians (where “normal” is meant in the differential form
sense, i.e., with an n subscript) involve interior elements only, while
the tangential Laplacians are assembled from full-blown differential
and star operators. Thus the following formula can be used for any
k (where terms containing an index <0 or >3 are considered null):
Lk ,t = DT

k Sk+1Dk + SkDk−1S
−1
k−1D

T
k−1Sk

Lk ,n = DT
k ,intSk+1,intDk ,int + Sk ,intDk−1,intS

−1
k−1,intD

T
k−1,intSk ,int.

3.7 Five-component decomposition
We are now ready to introduce our computational approach to
evaluate the five-component decompositions, which depending on
whether we start from a 1-form V 1 or 2-form V 2 input, reads

V k = Dk−1α
k−1 + S−1k DT

k Sk+1β
k+1 + hkt + h

k
n + η

k for k=1, 2.
They both correspond to the same vector field decomposition in
vector calculus, i.e., v = ∇f + ∇×u + ht + hn + ∇e , where f is a
scalar function that vanishes on ∂M (therefore, ∇f is orthogonal
to the boundary), u is a vector potential that is orthogonal to ∂M (
and thus ∇×u is a tangential vector field at the boundary), ht is a
tangential harmonic field, hn is a normal harmonic field, and e is a
harmonic scalar function (because of the exact and coexact nature
of this last term, one can equivalently write it in vector calculus
also as the curl ∇×e of a harmonic vector field e).
Equations to solve for potentials. For the 1-form decomposition,

one uses our preassembled Laplacian matrices to solve the two
discrete form potentials α0 (on vertices) and β2 (on faces):

L0,n α
0 = DT

0,intP1S1V
1, L2,t β

2 = S2D1V
1.

For the 2-form decomposition, we solve for α1 (on edges) and β3
(on tets) instead through:

L3,t β
3 = S3D2V

2, L1,n α
1 = DT

1,intP2S2V
2.

Fig. 8. Harmonic field basis. Shown are (β1 = 1) tangential and (β2 = 3)
normal harmonic basis fields spanning the corresponding harmonic spaces.
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Fig. 9. Resolving rank deficiency. Randomly selected index sets to re-
move degeneracy of linear systems may result in very large inaccuracies in
the solution of the linear system, unless our simple heuristic is used.

Topological parts. The next two parts are evaluated by just pro-
jecting the input form onto the eigenvectors of the vector Laplacian:

hkt = Hk ,tH
T
k ,tSkV

k , hkn = PTk Hk ,nH
T
k ,nPkSkV

k ,

since HHT is a projection over the rows of H.

Last term. The fifth element, i.e., the 1-form η1 or 2-form η2, can
finally be deduced from the other four components by subtracting
them from the input. Note that η is completely determined by either
its normal component at the boundary or its tangential components
at the boundary. We will also introduce two alternative ways to
directly compute it through either of its potentials in Sec. 3.8.

Resolving rank deficiency. The only technical issue in implement-
ing the above linear solves is that some of the Laplacian matrices
involved do not have full rank. Fortunately, we know exactly their
rank deficiency, as well as a basis of their kernel (the associated
harmonic forms). For instance, for an equation of the form L2,tx =y,
we know that the linear system is indefinite since L2,t has a rank
deficiency of β2. One way to get a definite linear system is to add
the constraint HT2,tS2x =0; but the system is now rectangular. One
could instead solve

(
L2,t + S2H2,tHT2,tS2

)
x =y efficiently with an

iterative solver since S2H2,tHT2,tS2 is dense but can be multiplied
with a vector in O(n) time, where n is the number of faces.

Inspired by numerical strategies to pick a subset of columns in
order to obtain an optimal condition number with high probabil-
ity [Tropp 2009], we propose instead a simpler alternative since we
already know the kernel and its topological origin. We randomly
pick β2 face indices of x . We assemble the small square sub-block of
H2,t corresponding to these indices, and check its condition number.
After having tried 10β2 such randomly selected index sets, we pick
the one with the lowest condition number among those with a deter-
minant higher than the lowest 10% determinants — or we stop early
if a condition number happens to be below a given safe threshold
(we pick 5.0). This simple procedure has always performed reliably
in all of our tests (see Fig. 9). Once we find a good set of indices, we
remove these indices from x , along with the corresponding rows and
columns of L2,t , project the right hand side to b−S2H2,tHT2,tb, and
remove the β2 indices of this resulting vector as well. This smaller
(yet still symmetric) linear system will then have full rank (since
we fixed the null space), and a solution of the original equation is
the solution of this non-degenerate system where the few missing
indices are set to 0. Note that we can finally project this solution
to the space containing no harmonic fields using H2,t , if needed.
Other rank deficiencies are fixed similarly.

Fig. 10. Vector potential for tangential harmonic field. For a tangential
harmonic vector field (left) inside his kitten model forming a torus, we can
compute its vector potential (right) whose curl is the original field.

3.8 Potentials for the harmonic components
While we proposed a simple eigen-based procedure to compute the
tangential and normal harmonic spaces, we can exploit the fact that
our domain is embedded in R3 to directly compute potentials that
define the two topological and harmonic terms ht and hn†. Depend-
ing on how the decomposition is used in practical applications, this
alternative approach may be more efficient. For completeness, we
also describe how to extract the potential (either as a gradient or a
curl) of the fifth term η.

Tangential harmonic space. If one has already computed the gen-
erators for H2(M, ∂M), i.e., a set of independent surfaces inM that
have their boundary loops in ∂M , we can construct one gradient
field per generator that will be a tangential harmonic field. The
gradient field is constructed by simulating a cut through the gen-
erator, allowing the potential to have two different (edge or face)
values on the generator that differ exactly by 1 as done in global
parameterization methods for quad meshing purposes [Tong et al.
2006]; we can then solve a Laplace equation with a single element
fixed to remove the null space. Once these gradients are found,
we run a Gram-Schmidt procedure to obtain an orthonormal ba-
sis for these tangential harmonic fields. Another simple strategy
is to first restrict the computation to the nonzero genus boundary
components. For each handle loop (that is, a non-contractible loop
of the boundary which can be contracted inside the domain vol-
ume), one may build a tangential harmonic vector field ht on the
surface such that the circulation around the handle loop is 1; one
can then extend ht to the volume by solving a vector Laplace equa-
tion ∆ht =0 (i.e., either L1,th1t =0 or L2,nh

2
n =0 depending on the

decomposition being targeted) with Dirichlet boundary condition
on all components of ht at the boundary (for all other connected
components of the boundary, it is set to 0). We will have β1 such
vector potentials, and they will span the entire space of tangential
harmonic field, providing an alternative to the construction of H1,t
and H2,n . Moreover, the vector potentialψt of each basis element
can be solved through ∆ψt = ∇ × ht with boundary conditions
(∇ ×ψt ) × n=ht × n and by forcing the normal component ofψt
to be 0 to impose the gauge condition,; e.g., for h2n , we can solve for

†These potentials are not of the same nature as α and β : from Eq. (5), one can see that
harmonic parts can not be written as thed of a normal form or the δ of a tangential form.
But they are, however, in the range of d and the range of δ , so we can find potentials
for them—just not with the same boundary conditions, hence the commonly-used term
of “non-integrable” to describe these topological terms.
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Fig. 11. Potentials for the exact and coexact field. In any 3D volume,
the fifth vector component η in our decomposition (left) can be expressed
both as a gradient field (middle) and a curl field (right).

the potential ψ 1
t through L1,tψ 1

t = DT
1 S2h

2
n , where the righthand

side computes the tangential component of h2n (i.e., it generates the
tangential component of h2n across the dual of boundary edges and
produces 0 for the interior); we proceed for h1t in a similar fashion,
with L2,nψ 2

n = S2,intD1,intP1h
1
t this time (where D1,intP1h

1
t contains

only the negative tangential component along boundary edges).
Normal harmonic space. We can similarly construct the elements

of the kernels of the normal Laplacian matrices directly. Through
the duality to H1(M, ∂M), we can represent these harmonic func-
tions as combinations of simple gradient fields hn = ∇ϕ ( where
ϕ be a discrete 3-form (resp., 0-form) when the input is a 2-form
(resp., 1-form)), which are the solution of ∆ϕ = 0 with Dirichlet
boundary conditions ϕ=1 on one of the connected component of
the boundary mesh, and ϕ=0 on the rest of the boundary. This is a
3D extension of the procedure proposed in the Appendix of [Tong
et al. 2006], and essentially corresponds to the problem of finding a
static electric field with ideal conductor boundary for given poten-
tials on the boundary. For 1-form inputs, it is solved on the graph
of primal vertices and edges, while for 2-form inputs, it is solved
on the dual graph for tets and faces. An additional Gram-Schmidt
procedure is also necessary if one requires an orthonormal basis. If
the potentials of these normal harmonic basis elements are needed,
we can solve them in a mirrored way to the tangential case through:
L0,tϕ0t =D

T
0 S1h

1
n and L3,nϕ3n =S3D2,intP2h

2
t .

Potential(s) for fifth term. From η1/η2, we can solve for their scalar
potential e (η1=D2e0t ≡de

0
t or η

2=S−12,intD
T
2,intS3e

3
n ≡δe

3
n ) through:

L0,te
0
t = DT

0 S1η
1, or L3,ne

3
n = S3D2,intP2η

2,

where the right hand side only contains nonzero terms at the bound-
ary (enforcing ∇e ·n=η ·n). This is essentially the same setup as
solving for potentials of normal harmonic fields. For such Neumann
boundary conditions, we also need to fix β0=dimH0(M) variables,
since we can add one constant function to each connected compo-
nent of the domain without changing the actual fifth component.
Likewise for the vector potential e (η1=S−11,intD

T
1,intP2S2e

2
n ≡δe

2
n or

η2=D1e1t ≡de
1
t ) by solving the same type of Laplace equation with

boundary conditions ∇×e ×n=η×n as for potentials of tangential
harmonic fields, i.e.,

L2,ne
2
n =S2,intD1,intP1η

1 or L1,te
1
t = DT

1 S2η
2.

Observe that directly applying δ to e3n (resp., e2n ) only provides
correct values for η2 (resp., η1) on interior elements . Still, these
potentials offer enough information for extrapolation to boundary
elements through harmonicity of η2: if each tet contains at most one
boundary face, η2 on that face is the negated sum of the other three
fluxes; likewise for η1 if each boundary edge is incident to at least

one triangle with only one boundary edge. If the input mesh does not
satisfy these conditions, local splits of offending tets and triangles
can be applied. Alternatively, e3n (resp., e2n ) can be supplemented
with one value per boundary face (resp., edge) for δ to generate the
correct gradient (resp., curl) on each boundary element.

3.9 Counting argument
Both to further enhance the understanding of our discrete vector
decomposition and to offer yet another approach to convince oneself
that the counting is correct, we now review the number of degrees
of freedom (DoFs) within each component in both representations.
For the 1-form representation, dα0 contains |V|−|VB | DoFs, i.e. one
value per interior vertex; δβ2 contains |F |−|T |−β2 since we start
with |F | values but need to get rid of dim kerδ2=dim im δ3+dimH2.
The non-integrable components h1t and h

1
n provide β1 and β2 DoFs

respectively. Finally, η1 provides |VB |−β2−β0 DoFs, because β2 + β0
is the number of connected components of the boundary, and on
each of them the total flux is 0. From the Poincaré-Euler formula

|V| − |E| + |F | − |T | = β0 − β1 + β2 − β3,
we can then verify that the number of values of the input 1-form
(|E |) is indeed the sum of the above DoFs (with β3 = 0 in 3D) . For
the 2-form representation, following similar arguments, the DoFs for
the five components are in the same order: |E |−|EB |−|V|−|VB |−β2,
|T |, β2, β1, and |FB | − β2 − β0. Noting that |VB | − |EB | + |FB | =

2(β0−β1+β2) as it is the sum of the Euler characteristic 2−2д of each
boundary component (one should not use the Euler characteristic
of the volumetric domain!), we can again verify that they sum up to
|F |, as expected. We recap the various numbers of DoFs in Tab. 1.

1-form DoFs 2-form DoFs

ω |E | |F|
dα |V |− |VB | |E |− |EB |+ |V |− |VB |−β2
δ β |F |− |T | − β2 |T |

ht β1 β2
hn β2 β1
η |VB |−β2−β0 |FB |−β2−β0

Table 1. List of DoFs for 1-form and 2-form decompositions.

4 VARIATIONAL NATURE OF OUR DECOMPOSITION
Because we made sure our discrete treatment is closely mimicking
the continuous five-component Hodge decomposition, it is directly
related to variational approaches to vector decomposition based on
L2 energies. In particular, we point out that our discrete treatment
can be understood as a particular enforcement of harmonicity with
zero divergence and curl boundary conditions to enforce proper
orthogonal projections.

Continuous notion of harmonicity. Because we are in �3, recall
from Eq. (10) that the Laplace quadratic form satisfies:∫

M
v · ∆v =

∫
M
(∇ · v)2 + (∇ × v)2 (11)

only if the boundary integral vanishes, i.e.:∫
∂M

(v∇ · v + v × ∇ × v) · n = 0

Our choice of gauge in the decomposition proposed in Sec. 3.7, in
fact, enforces the latter equality since it implies that we discretely
enforce ∇ × v=0 (with tangential v) or ∇ · v=0 (with normal v) to
make this boundary integrand identically zero. This is precisely why
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our harmonic forms are not only harmonic (∆v=0) in the interior
of the domain, but have these boundary conditions enforced as well
— explaining why we stated in Sec. 2.4 that forcing the forms in
Hk to be closed and coclosed (hence, curl- and divergence-free) is
stronger than just the notion of interior harmonicity. In the continu-
ous setting, the consequence of these boundary conditions is that
our construction can then be understood as forcing the tangential
vector fields to satisfy one Dirichlet condition v·n=0 (tangentiality)
and two Neumann conditions n·∇t1v=0, n·∇t2v = 0 (where t1 and t2
are two local tangent direction forming a coordinate frame with the
surface normal n) to enforce a zero curl. On the other hand, the nor-
mal vector fields are constrained to satisfy two Dirichlet conditions
v·t1=0 and v·t2=0, and one Neumann condition n·∇vn=0 to enforce
a zero divergence. These conditions are consistent with the formu-
lation on generic manifold cases from [Demlow and Hirani 2014].
With these three conditions on the boundary added to the condition
of harmonicity, the space of harmonic forms is finite-dimensional.

Dirichlet energy. In flat�3, the oft-used Dirichlet energy of vector
fields can be converted to a volume integration using the Laplacian
and a boundary term through integration by part:∫

M
|∇v|2 =

∫
M
v · ∆v +

∫
∂M

v · ∇nv. (12)

Notice now that with the boundary conditions we enforced, by
Eq. (11), we have three energies that match: the harmonic energy,
the Laplace quadratic form, and the Dirichlet energy, i.e.,∫

M
(∇ · v)2 + (∇ × v)2 =

∫
M
v · ∆v =

∫
M

|∇v|2.

Variational nature. Due to its L2-orthogonality, one can conceive
our decomposition as orthogonal projections onto subspaces — and
thus as a variational problem. For instance the projection ofV 1 onto
D0α0 can be seen as minimization of
⟨V 1−D0α

0,V 1−D0α
0⟩ = ⟨V 1,V 1⟩ − 2⟨V 1,D0α

0⟩ + ⟨D0α
0,D0α

0⟩.

The scalar function α0 is then entirely determined by adding a
gauge to enforce that α is zero on the boundary. This type of vari-
ational arguments were already leveraged for a three-component
3D decomposition in [Tong et al. 2003] (extending the 2D work
of [Polthier and Preuß 2000]); however, their choice of space of dis-
crete vector fields (piecewise linear vector potential) did not lead to
a cohomology-preserving discretization. Using DEC, instead, allows
a discretization that captures the topological aspects correctly.

Our discrete Laplacian can really be seen as the counterpart of the
continuous Laplacian, with particular boundary conditions (compat-
ible with gauge conditions) added at the boundary to offer proper
L2-orthogonality of the various terms of the Hodge decomposition.

5 EXTENSIONS AND SPECIALIZATIONS
While we described a discrete decomposition of vector fields given
as 1- or 2-forms with a particularly canonical choice of gauges, we
can extend our approach to different gauges in order to get different
potentials, derive smaller, more specialized decompositions, or use
non-diagonal Hodge star matrices without hindering efficiency.

5.1 Helmholtz decomposition
Our five-component decomposition can be trivially condensed into
the two-componentHelmholtz decompositionwe described in Sec. 2.1:

∇f , hn , and η can all be expressed as a gradient field, and ∇ × u, ht ,
and η can be expressed as a curl field; no matter how we split the η
term, we will get the expected decomposition of the type

v = ∇ϕ + ∇ ×ψ.
However, if one wishes to ensure the orthogonality between the two
components, we must put η entirely in the gradient part (resulting
in a tangential curl field), or entirely in the curl part (resulting in a
normal gradient field).

5.2 Specialized inputs
In some contexts, we can assume the input to be a tangential or
normal vector field. In these cases, it is possible to specialize our de-
composition andmake it a three-component or even two-component
decomposition instead. We provide a few examples to illustrate how
this can be useful (and more efficient) in practice.

Tangential inputs. If we know that input vector field v is tan-
gential, we can directly solve for a tangential vector field (called
Newtonian potential) w, such that the continuous decomposition
becomes: v=∆w + ht . The discrete version is straightforward: one
can solve for a 1-formw1 or a 2-formw2 based on the degree of the
input form through:

L1,tw
1
t = S1(V

1 − h1t ) or L2,nw
2
n = P2S2(V

2 − h2n ),

since v−ht is in the image of ∆ for tangential fields; note that
the (tangential) harmonic part is computed directly by projection
with the basis H. This decomposition can be turned into a three-
component decomposition as well through

v = −∇(∇ ·w) + ∇ × (∇ ×w) + ht .
We can further shift part of the curl field to the gradient field to
make every component tangential: we can solve for the normal
vector potential, and shift the rest to the gradient part.

Normal inputs. For normal vector fields, a similar approach leads
to a two- or three-component decomposition:

v = ∆w + hn or v = −∇(∇·w) + ∇ × (∇ ×w) + hn .
The discrete treatment to find the normal vector field w as a 1- or
2-form becomes then:

L1,nw
1
n = P1S1(V

1 − h1n ) or L2,tw
2
t = S2(V

2 − h2n ),

Again, one can shift part of the gradient field in the three-term de-
composition to make the gradient field part normal to the boundary,
which will make the curl field part normal to the boundary.

5.3 Mixed boundary conditions
Mixed and/or partial boundary conditions are sometimes required.
Orthogonal decomposition into gradient and curl fields with bound-
ary conditions and topology-determined finite-dimensional har-
monic space can be established in the same fashion through relative
homologies. In general, the boundary is the disjoint union of tangen-
tial, normal, and unconstrained regions: ∂M =∂Mt ∪ ∂Mn ∪ ∂Mu .

Sticking to the original full decomposition will lead to some compo-
nents not satisfying the boundary conditions. One can make each
component follow the given boundary conditions by replacing the
original boundary conditions to enforce, instead:
⋆dα |∂Mt =⋆hn |∂Mt =⋆η |∂Mt =0, δβ |∂Mn =ht |∂Mn =η |∂Mn =0,
α |∂Mn∪∂Mu=hn |∂Mn∪∂Mu=0, ⋆β |∂Mt∪∂Mu=⋆ht |∂Mt∪∂Mu=0.
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Fig. 12. Mixed boundary conditions. Our orthogonal decomposition extends naturally to mixed boundary conditions as well; in this example, no constraints
are set on the blue regions, but tangential conditions are set on the rest of the boundary.

From a practical standpoint, we simply have to impose the typical
conditions on α , β , hn and ht on the unconstrained regions to pro-
vide orthogonality and the uniqueness of the decomposition; one
can add η to any combination of the other components to create
the “natural” unconstrained behavior for chosen components as
we described for the three-component decomposition. In order to
solve for the various potentials, we can define an altered Laplacian
Lk ,A for k-forms that are normal on a boundary region A⊂ ∂M and
tangential on ∂M\A through the following matrix expression:

Lk ,A = DT
k ,A Sk+1,A Dk ,A + Sk ,A Dk−1,A S−1k−1,A DT

k−1,A Sk ,A,

where Sk ,A=Pk ,ASkP
T
k ,A, Dk ,A=Pk+1,ADkP

T
k ,A, and Pk ,A is the

projection of a full k-form onM to a k-form restricted toM\A. With
this definition, we can solve for α using Lk−1,∂Mn∪∂Mu , for β using
Lk+1,∂Mn , for hn using Lk ,∂Mn∪∂Mu , and for ht using Lk ,∂Mn .
Note that ht and hn are no longer necessarily L2-orthogonal

for general mixed boundary conditions as in the generic Hodge-
Morrey-Friedrichs decomposition (Eq. (6)). Nevertheless, we can
either combine the two components and create an orthonormal basis
for the span of both low dimensional subspaces, and/or combine
one of them to the other components. Let’s use the case ∂M =
∂Mt ∪ ∂Mu (i.e., where we only want to impose tangential forms on
parts of the boundary) as an illustrative example. We propose the
following decomposition by combining some of the components,

ω1 = dα0 + δβ2 + h1n

All three components are tangential on ∂Mt , α0 is 0 on ∂Mu , β2 is
tangential on ∂Mt (i.e., the corresponding vector field is normal), and
h1n is normal on ∂Mu . Following the derivation of typical boundary
conditions, we find that h1n correspond to the relative homology
H2(M, ∂Mt ), or equivalently through its Hodge dual, toH1(M, ∂Mu ).
Thus, the space for h1n is finite dimensional; Fig. 12 shows such an
example where it is two dimensional.

Finally, the orthogonality of the various terms of the resulting
five-component decomposition is properly enforced. E.g.,

⟨dα0,h1n⟩ = ⟨α0, δh1n⟩ +

∫
∂M

α0 ∧⋆h1n,

which is zero since δh1n =0, the boundary integral on ∂Mu is 0 as
α0=0 there, and the leftover integral on ∂Mt vanishes due to the
boundary condition on⋆h1n . The exact same argument holds for the
δβ2 term, while the orthogonality between δβ2 andh1n is established
through similar arguments. Note that when ∂Mu is replaced by ∂Mn ,
the case ∂M = ∂Mt ∪ ∂Mn is recovered.

5.4 Friedrichs decompositions
Finally, we note that η in the four-component decomposition can
be merged with ht to form a subspace that is both harmonic and a
curl field, or with hn to form a subspace that is both harmonic and a
gradient field. Both four-component decompositions are sometimes
called the Friedrichs decomposition.

5.5 Non-diagonal Hodge star
While the low-order “diagonal Hodge star” is often preferred in
graphics due to its optimal sparsity [Desbrun et al. 2008], a variety
of other discrete Hodge stars have been proposed [Mohamed et al.
2016]. Of particular interest are the Galerkin Hodge stars [de Goes
et al. 2016b; Arnold 2018] which offer higher-order accuracy of ap-
proximation, at the price of requiring still sparse, but non-diagonal
matrix representations. As they are symmetric positive definite, our
decompositions apply without modification. However, S−1k can be-
come a dense matrix, making the evaluation of the Laplace matrices
much less efficient. We outline a procedure that only uses sparse
matrices for the decomposition to be still strictly L2-orthogonal
according to a non-diagonal Hodge star matrix Sk .

We first note that among the necessary discrete Laplacians for the
decomposition of V k (k = 1, 2), only Lk+1,t involves S−1k . In other
words, we can compute Dk−1α

k−1, hkt , h
k
n , and η=Dk−1ϕ

k−1 with
the non-diagonal Sk . While it may be necessary to replace S−1k−1
and S−1k−2 by sparse substitute matrices S̃k−1 and S̃k−2 (e.g., identity
matrices) to keep those systems sparse, it does not influence the
actual accuracy of the decomposition: first, the L2-orthogonality in
Ωk for the components depends on Sk , which is not altered; second,
the harmonic spaces remain the same since the kernels remain in
kerd ∩ kerδ under normal/tangential boundary conditions; third,
the potential α may deviate from satisfying δα =0 exactly, but the
error lies within the gauge field, so Dk−1α

k−1 is still accurate.
For the final component, note that γ ≡ω−dα −ht −hn −η is in

im Lk+1,t , so Sk+1β =γ has a solution in Ωk+1,t . This means that〈
DT
k Sk+1β − Skγ ,D

T
k Sk+1β − Skγ

〉
S̃k

can be minimized to exactly 0 in any weighted L2-inner product
⟨·⟩S̃ , where S̃k is an arbitrary sparse SPD matrix. We can thus solve
for the exact β without the inverse matrix S−1k through

(DT
k+1Sk+2Dk+1 + Sk+1Dk S̃kD

T
k Sk+1)β = Sk+1Dk S̃kSkγ .

If we take S̃k =S−1k , the matrix is the same tangential Laplacian used
for solving for β in our DEC decomposition; but we can now accom-
modate non-diagonal Hodge matrices as S̃ can be chosen arbitrarily:

ACM Trans. Graph., Vol. 38, No. 6, Article 181. Publication date: November 2019.



181:12 • Zhao, R. et al.

we will still find the exact potential satisfying S−1k DT
k Sk+1β = γ .

This construction extends to arbitrary Hodge stars the approach de-
scribed in [Bossavit and Kettunen 1999], where the authors realized
that when the Galerkin Hodge star Sk (computed using Whitney
forms, and thus non-diagonal) is multiplied by Dk−1 on the right
and DT

k−1 on the left, the result is no different than if the Galerkin
Hodge star was replaced by a diagonal “lumped” matrix.

6 EXPERIMENTS
Decomposition zoo. In Fig. 1, we perform the full five-component

vector field decomposition using a discrete 1-form representation.
The connected domain contains one outside and one inside bound-
ary components, with genus 1 and 0 respectively, thus β0=1, β1=
1, β2 = 1, β3 = 0. We further evaluate the vector potential of the
tangential harmonic component, the scalar potential of the normal
harmonic component, and both potentials of the fifth (exact, coex-
act) component. We also numerically verified the L2-orthogonality
of the five terms. In Fig. 8, we provide a depiction of all the harmonic
field basis vectors for a model with a more complex topology (two
spherical and one toroidal cavities).

To demonstrate the non-orthogonality when no boundary condi-
tion is imposed, we show in Fig. 2 a decomposition into the sum of
a gradient field and a curl field, resulting from the five-component
decomposition and after merging dα+hn+ 1

2η and δβ+ht +
1
2η (or

just summing up the potentials). Note that the L2-inner product
between the two is then 1

4 ⟨η,η⟩.

When the input is a tangential field as in Fig. 4, its Helmholtz-
Hodge decomposition contains three tangential fields, the gradient
field dα+hn+η, the curl field δβ , and the tangential harmonic field
(non-integrable in the sense that it cannot be seen as the curl of a
normal vector potential). It is also possible to obtain either one of the
two four-component Hodge-Morrey-Friedrichs decompositions; e.g.,
in Fig. 5, we decompose the input into dα , δβ , ht , and a harmonic
gradient field hn+η, which is harmonic with a scalar potential.

In Fig. 12 for mixed boundary conditions, we create a case mimick-
ing fluids passing through a domainwith two openings. As described
in Sec. 5.3, the normal harmonic space (vector field normal to the
unrestricted boundary and tangential to the tangential boundary
condition region) is two dimensional, which can also be constructed
through eigensolvers or through the corresponding relative ho-
mology. The gradient component can be constructed by solving a
Poisson equation with the divergence of the input on the right hand
side, and the same tangential boundary conditions. The rest can be
expressed as the curl of a vector potential that is orthogonal to the
boundary outside the openings.

Using the Galerkin Hodge star associated with Whitney basis
functions [Bossavit 2000], the potential β for the δβ term in Fig. 13
is accurate with our approach. If the diagonal Hodge star SD is
used instead in the Laplacian to compute a different potential β̃ ,
then S−11 DT

1 β̃ has a deviation from the γ term defined in Sec. 5.5 of
around 48% (Fig. 13(top right)), but it still is orthogonal to the other
components; if one tries S−1D DT

1 β̃ for consistency, then there is still
a 1.5% deviation from γ (Fig. 13(bottom right)) and a 1.5% error in
L2-inner product with the other components is now present.

Fig. 13. Non-diagonal Hodge star. Even for higher-order accurate Hodge
stars, our decomposition still only requires sparse linear systems. Using a
diagonal S1 in the Laplacian produces inaccurate potentials (right), whether
we use a curl operator with a diagonal (top) or non-diagonal (bottom) S1.

Our decomposition is also demonstrated on a simulated channel
flow. The velocity field was generated with the OpenFOAM soft-
ware, with a forced velocity on the round inlet and outlet, with
free-slip and no-transfer boundary conditions on the interior walls.
Our decomposition thus sets all regions away from the inlet and
outlet with tangential conditions.

Performance and accuracy. For completeness, we also tested the
assembly of the matrices on a laptop. For models with around 25K
tets, we can perform the necessary solves using Conjugate Gradient
in 2s even on a regular laptop with our unoptimized code. Note
that if we prefactorize (through Cholesky decomposition) the Lapla-
cians, we can much more efficiently perform the decomposition of
arbitrary fields on the same domain through forward and backward
substitutions, in less than a second. As shown in Fig. 9, our condition
number based strategy to choose rows and columns to eliminate the
null space of the Laplacian matrices is very effective in maintaining
the accuracy of the linear system. Note that when working with
non-diagonal Hodge stars, we can also either use Conjugate Gradi-
ent or precompute a Cholesky decomposition for the evaluation of
the curl in (Fig. 13): for a 10K tet mesh, the iterative CG solve takes
less than 1s, whereas the Cholesky factorization of the non-diagonal
Hodge star takes 5s—but allows fast repeated evaluations.

Comparison to [Poelke 2017]. The only other existing 5-component
3D decomposition and our approach are based on very different
discretization methods: Poelke represents a discrete vector field as
piecewise constant per tetrahedron, while we use discrete 1- or
2-forms. In this sense, our work is complementary. Yet, and while
cohomologies are preserved in both approaches, our representa-
tion also requires fewer DoFs as input, as the number of edges or
faces is always smaller than three times the number of tets. Our
approach also tackles the full 5-component decomposition using
only symmetric semi-positive definite matrices with smaller sizes, re-
sulting in higher computational efficiency: numerical experiments
confirm that differential form based discretization leads to better
accuracy, partially due to their exact line integral and flux sampling
(i.e., linear precision vs piecewise-constant precision of the repre-
sentation). Moreover, it is straightforward for us to formulate the
relation of mixed boundary conditions to relative cohomologies, or
to extend our construction using a higher-order L2-inner product.
Finally, our eigensolver also produces L2-orthonormal basis for the
cohomology more efficiently than the non-L2-orthonormal basis
obtained in [Poelke 2017] through singular value decomposition of
rectangular matrices.
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7 CONCLUSION
We have detailed the construction of a five-component decomposi-
tion of vector fields on triangulated 3D domains for a large variety
of typical boundary conditions. Our approach was shown to be
consistent with the continuous theory on vector field analysis, and
to capture the proper kernel spaces due to nontrivial homology and
cohomologies, either from the topology or from the boundary of
3D domains. We showed that the numerical procedure based on
discrete exterior calculus leads to straightforward constructions of
the desired boundary conditions. We discussed how to assemble
all the matrices involved, as well as how to handle their known
rank deficiency (based on the topology of the domain) to ensure
fast computations. We expect this straightforward numerical tool
to benefit computational applications involving volumes in 3D Eu-
clidean space, such as in geometric modeling, electromagnetism,
fluid dynamics, elasticity and biomolecular science.

Fig. 14. Decomposition of a channel flow simulation. For a simulated
channel flow (inlet and outlet in blue), the resulting vector field is decom-
posed into a curl field and a harmonic field, with the blue regions are set as
unconstrained and all other boundary regions as tangential.

Limitations and future work. Our decomposition is restricted to
domains in R3 with Euclidean metric. It can however be extended
to any 3-manifold that can be embedded in R3: the orthogonality
between Ht and Hn only depends on the topology. Moreover, it
is possible to extend it to k-forms on any simplicial tessellation of
compact n-manifolds with boundaries if we lift the restriction on
the orthogonality between those two components, and compute
the harmonic vector fields also through eigensolvers instead of our
efficient alternatives through potentials designed for 3D domains.
As a special case, 0-forms and n-forms on n-manifolds can always
be orthogonally decomposed into the divergence of a tangential
gradient field plus β0 constant fields. Exploring spectral analysis of
our tangential and normal Laplacian operators is also an interesting
direction of research.
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