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Abstract

Recent advances in implicit neural representations and
differentiable rendering make it possible to simultaneously
recover the geometry and materials of an object from multi-
view RGB images captured under unknown static illumina-
tion. Despite the promising results achieved, indirect illu-
mination is rarely modeled in previous methods, as it re-
quires expensive recursive path tracing which makes the
inverse rendering computationally intractable. In this pa-
per, we propose a novel approach to efficiently recovering
spatially-varying indirect illumination. The key insight is
that indirect illumination can be conveniently derived from
the neural radiance field learned from input images instead
of being estimated jointly with direct illumination and ma-
terials. By properly modeling the indirect illumination and
visibility of direct illumination, interreflection- and shadow-
free albedo can be recovered. The experiments on both syn-
thetic and real data demonstrate the superior performance
of our approach compared to previous work and its capa-
bility to synthesize realistic renderings under novel view-
points and illumination. Our code and data are available
at https://zju3dv.github.io/invrender/.

1. Introduction

Recovering the geometry, materials, and lighting of a
3D scene from images, also known as inverse rendering,
has been a long-standing problem in the fields of computer
vision and graphics. It is gaining traction in this era of
blowout VR and AR applications, where there is a high de-
mand for easily acquired 3D contents from the real world.
Previous capture systems, such as light-stages with con-
trolled light directions and cameras [8, 11, 31], using a co-
located flashlight and camera in a dark room [2, 3], and ro-
tating objects with a turntable [7, 26], show limitations in
user-friendliness.

More recent works [5,29,32] explore flexible capture set-
tings under natural illumination. These methods typically
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Figure 1. To precisely recover SVBRDF (parameterized as albedo
and roughness) from multi-view RGB images, we propose an ef-
ficient approach to reconstruct spatially varying indirect illumina-
tion and combine it with environmental light evaluated by visibil-
ity as the full light model (a). The example in (b) demonstrates that
without modeling indirect illumination, its rendering effects are
baked into the estimated albedo to compensate for the incomplete
light model and also result in artifacts in the estimated roughness.

represent geometry and spatially varying BRDF (SVBRDF)
as coordinate-based neural networks and recover them by
optimizing a re-rendering loss that compares rendered im-
ages with input images. However, capturing under natural
illumination often shows complex effects such as soft shad-
ows and interreflections. It is intractable to simulate these
effects when optimizing SVBRDF and light parameters as
it necessitates expensive recursive path tracing in physically
based rendering. Prior methods usually ignore both self-
occlusion and interreflection [29] in order to reduce com-
putation, or only model visibility [32] or limit the indirect
lighting to a single bounce with known light sources [22].
Without properly modeling the indirect illumination, there
exists a gap between the captured image and the rendered
image. As a result, the effect of indirect illumination in the
captured images is prone to being baked into the estimated
diffuse albedo to compensate for this gap, as illustrated in
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Figure 1. It also results in artifacts in the recovered spec-
ular reflectance and environmental light as they explain the
observed images together with albedo.

In this paper, we aim to estimate the SVBRDF of ob-
jects from multi-view RGB images captured under un-
known static illumination. Our main technical innovation
is an efficient approach to modeling indirect illumination in
this inverse rendering process. We model the indirect illu-
mination by a multilayer perceptron (MLP) that maps a 3D
surface point to its indirect incoming illumination. The core
idea to efficiently learning this indirect illumination MLP
is that the indirect illumination doesn’t need to be jointly
learned with the SVBRDF and environmental light, but can
be directly derived from the outgoing radiance field of the
scene, which can be constructed from multi-view images
with the off-the-shelf neural scene representation methods
(e.g., [15, 27]).

Specifically, we first learn the geometry and outgoing ra-
diance field of the object, both represented as MLPs, from
the input images using the existing method [27]. Then, the
learned radiance field serves as the ground-truth incoming
illumination of its reachable surface points to train the indi-
rect illumination MLP. Finally, the learned indirect illumi-
nation is plugged into the rendering equation and fixed dur-
ing the optimization of SVBRDF and environmental light.
In this way, the indirect illumination can be directly queried
when optimizing the other unknowns without the need of
recursive path tracing, making the inverse rendering prob-
lem better constrained and more efficient to solve. Further-
more, to reduce the ambiguity of disentangling BRDF and
incident light, we introduce a prior that a real-world object
should consist of limited types of materials. This prior is
imposed by representing SVBRDF as an encoder-decoder
with a sparse latent space.

We evaluate the proposed method on both synthetic and
real datasets. The experimental results show that our ap-
proach outperforms baseline methods and is able to recover
shadow- and interreflection-free albedo and high-quality
roughness, as well as supporting realistic free-viewpoint re-
lighting.

2. Background
Inverse rendering. Inverse rendering, the task of decom-
posing the image appearance into the underlying intrinsic
properties such as geometry, material, and lighting condi-
tions, has been a longstanding problem in computer vision
and graphics. The full inverse rendering problem in its most
general form is well-known to be severely ill-posed. The
key problem in inverse rendering is to properly add priors
and regularizations to the optimization process to mitigate
the ill-posed condition.

Single-image inverse rendering methods [1, 12–14, 18,
21, 25, 28] rely heavily on the strong prior of the planar ge-

ometry. Since the planar input and output maps are natu-
rally easier to be processed by CNNs, these methods can
learn priors for normal, reflectance, and illumination from
large-scale datasets. They can effectively infer plausible
materials and normal maps from a single image but usu-
ally cannot recover spatially-varying 3D representations of
these factors.

Most methods that recover fully factorized 3D geome-
try, materials and lighting require scenes to be captured un-
der more constrained settings. They either capture images
while rotating the object with the camera fixed [7, 26], or
shoot a video using a handheld cellphone with a flash in a
dark environment so that the point light is associated with
the camera and its location is known [2–4, 16, 19]. The var-
ied or known illumination provide rich information for in-
ferring geometry and material properties.

Implicit neural representation. Recent advances in im-
plicit neural representation enable new possibilities for in-
verse rendering. NeRF [15] achieves photo-realistic novel
view synthesis by representing radiance fields with multi-
layer perceptrons. Supervised with differentiable volumet-
ric rendering, NeRF is able to reconstruct the radiance field
of a scene with only a collection of images. While NeRF
represents geometry as volumetric density fields, some
surface-based methods like IDR [27] and NeuS [24] rep-
resent geometry with Signed Distance Functions (SDFs).
These methods work well for novel view synthesis, but they
only model the outgoing radiance of a surface and are not
capable of disentangling it into the incoming radiance and
the underlying material property. As a result, they don’t en-
able free-viewpoint relighting.

Inverse rendering with implicit neural representation.
Enabled by the fully differentiable pipelines in implicit neu-
ral representation, recent methods in inverse rendering aim
at more “casual” capture conditions. Notably, PhySG [29]
and NeRFactor [32] decompose the scene under complex
and unknown illumination. NeRD [5] extends NeRF to deal
with captures under fixed or varying illumination. How-
ever, all these methods only consider direct illumination
from the light source and ignore indirect illumination, so
they are unable to simulate interreflection effects to resem-
ble the observed images. As a result, they can only model
simple and convex surfaces that have neglectable indirect
light. NeRV [22] does consider one indirect bounce, but
with known environment light and is rendered with Monte-
Carlo ray tracing. Our method is able to reconstruct high
quality indirect light with unconstrained bounces and does
not require known lighting conditions.

The rendering equation. For non-emitted object, the
rendering equation computes the outgoing radiance Lo at



Figure 2. Forward rendering. For a specific surface point x̂ , the full incoming light is modeled as the sum of direct illumination
direction-wise multiplied by visibility and indirect illumination derived from the reconstructed outgoing radiance field. The spatially
varying BRDF parameters are output from an encoder-decoder network with a sparsity constraint on the latent code, and each specular
BRDF is further transformed to a single spherical Gaussian (SG). During forward rendering, only the BRDF and the direct illumination
need to be optimized, while the others are all pre-acquired and fixed. In the bottom row, the visualized visibility is the mean value over all
directions and the indirect illumination is the irradiance at each point.

surface point x̂ along direction ωo by integrating the re-
flected light over hemisphere [9]:

Lo(x̂,ωo) =

∫
Ω

Lin(x̂,ωi)fr(x̂,ωi,ωo)(ωi ·n)dωi (1)

The Lin(x̂,ωi) is the incoming radiance at surface point x̂
along direction ωi and the BRDF function fr describes how
much light arriving from direction ωi is reflected towards
direction ωo at x̂.

3. Method

3.1. Overview

Given a set of posed images of an object captured under
static illumination, we learn to decompose the shape and
SVBRDF to enable applications such as free-view relight-
ing. We solve the inverse rendering problem in an analysis-
by-synthesis manner, where we optimize the parameters
of the forward rendering model until the rendered images
closely resemble the observed images. Figure 2 depicts the
forward rendering process of our proposed method.

In the paper, we represent the geometry as a zero level set
as IDR [27] by learning a Signal Distance Function (SDF),
parameterized by a multilayer perceptron S(x), that maps
from a 3D location x to the SDF value at this location. It
gives smooth and realistic surfaces of objects. We decom-
pose the spatially varying incoming light Lin(x̂,ωi) at a
surface point x̂ along the direction ωi into two components:
direct illumination E evaluated by visibility (Sec. 3.2) and
indirect illumination Li efficiently derived from the outgo-
ing radiance field (Sec. 3.3). In contrast to previous works,
the SVBRDF parameters in our formulation are parame-

terized as an encoder-decoder network with a sparse latent
space (Sec. 3.4).

To render a camera ray, the intersection x̂ of the ray and
SDF surface can be observed via the sphere tracing tech-
nique, and its corresponding surface normal is the gradient
of the SDF: n = ∇x̂S. Then we query visibility, indirect
illumination, diffuse albedo and roughness from networks,
and perform rendering together with environment lighting
(Sec. 3.5). The parameters of SVBRDF and direct illumi-
nation are optimized by minimizing the reconstruction error
between the renderings and the observed images.

3.2. Visibility for Direct Illumination

For direct illumination, we assume that all lights come
from an infinitely faraway environment and parameterize
them as M=128 spherical Gaussians (SGs) [23]:

E(ωi) =
M∑
k=1

G(ωi; ξk, λk,µk) (2)

where ξ ∈ S2 is the lobe axis, λ ∈ R+ is the lobe sharpness,
and µ ∈ R3 is the lobe amplitude.

The environment lighting is evaluated by the visibility
indicating whether the direction ωi at surface point x is oc-
cluded or not. The visibility can be obtained by performing
sphere tracing from surface points to light sources. How-
ever, the tracing step is repeatedly executed during forward
rendering and is time-consuming. So we re-parameterize it
as an MLP that maps the surface point location x and direc-
tion ωi to visibility: V (x,ωi) 7→ v. The network provides
a compact and continuous representation and requires only
a small number of sampled rays above surface points for
training. The direction-wise multiplication of the visibility



Figure 3. Instead of computing incoming radiance by performing
costly recursive path tracing (a), we consider the pre-trained out-
going radiance field as indirect illumination and train a network
that maps a 3D location to its indirect incoming illumination rep-
resented as a mixture of SGs (b).

function and the environment lighting SG is desired to yield
another SG to support the integral of the spherical functions
during rendering. We achieve this by having the amplitude
of the output SG produce the same integrated value as the
original lobe and preserving its center:

V (x,ωi)⊗G(ωi; ξ,λ,µ) ≈ G(ωi; ξ,λ, γµ) (3)

γ =

∑S
k=1 G(ωk)V (x,ωk)∑S

k=1 G(ωk)
(4)

The visibility ratio γ is obtained by randomly sampling the
S = 32 directions in the SG lobe and taken a weighted
average of queried visibility.

3.3. Indirect Illumination

According to the rendering equation, the indirect incom-
ing radiance Li(x̂,ωi) at the intersection x̂ of the camera
ray and surface toward direction ωi is obtained by first per-
forming ray tracing, and then assigned by the outgoing ra-
diance Lo(x̂

′,−ωi) of the second intersection x̂′ toward di-
rection −ωi:

Li(x̂,ωi) = Lo(x̂
′,−ωi) (5)

Lo(x̂
′,−ωi) is rendered by continuing sampling and inte-

grating rays over the hemisphere, as illustrated in Figure 3.
As the number of considered bounces increases, the tracing
and rendering computation grows with the exponential or-
der of the sample amount. It is typically intractable in real-
ity and increases the complexity of decomposing unknowns
from rendering.

We tackle this problem by reconstructing the outgoing
radiance field and deriving indirect illumination from it,
rather than performing exhaustive ray tracing for the indi-
rect illumination. The outgoing radiance field, which can
be viewed as a neural renderer, is a continuous function of

the surface point location x̂, normal n̂ and viewing direction
ωo: R(x̂, n̂,ωo) 7→ Lo. We learn this field parameterized
as an MLP from observed images together with geometry
using view synthesis method [27]. Therefore, the outgoing
radiance of the second intersection, which is the cumula-
tive results of multiple bounces, is obtained by querying the
MLP:

Lo(x̂
′,−ωi) = R(x̂′, n̂′,−ωi) (6)

where n̂′ is the normal of the second intersection.
We further transfer it into indirect illumination repre-

sented as a mixture of SGs and cache it in an MLP to
avoid duplicate computation of tracing from x̂ to x̂′. The
representation facilitates the hemispherical integration with
other SG lobes, thus avoiding the use of the Monte-Carlo
method, which requires a trade-off between low-cost sam-
pling and high-quality rendering. Here, we introduce the
indirect illumination MLP I(x) that outputs the SG param-
eters Γ ∈ R24×7 at any input 3D location x. The incoming
radiance is determined by querying the SG function at the
desired surface point and direction:

Li(x̂,ωi) = G(ωi; I(x̂)) (7)

The indirect illumination MLP is supervised by first draw-
ing samples from outgoing radiance field R, and then forc-
ing the incoming radiance to reproduce the corresponding
outgoing radiance. We visualize this process in Figure 3.

3.4. BRDF

We use the simplified Disney BRDF model [6] with dif-
fuse albedo a and roughness r as parameters and assume di-
electric materials with fixed F0 = 0.02 in the Fresnel term.

Parameterizing SVBRDF by directly mapping surface
points to its parameters is straightforward. However, it of-
ten leads to noisy roughness since a few surface points lack
supervision due to the distribution of the training views or
self-occlusion. We alleviate this problem by introducing a
prior that an object is usually composed of a small amount
of materials.

Our solution is to represent SVBRDF as an encoder-
decoder network with a sparse latent space. The network
transforms the input surface point x to its corresponding
latent code z and decodes it to its diffuse albedo and rough-
ness. We impose a sparsity constraint [17] on the latent code
so that most of the channels in z are close to zero:

ℓKL =

n∑
j=1

KL(ρ ∥ ρ̂j) (8)

where KL(ρ ∥ ρ̂j) = ρlog ρ
ρ̂j

+ (1 − ρ)log 1−ρ
1−ρ̂j

is a
Kullback-Leibler divergence loss and ρ̂j is the average of
jth channel of z over batch input. ρ is set to 0.05. n is the
length of latent code. We further apply a smooth loss on the



decoder D such that close latent codes are clustered to yield
same SVBRDF:

ℓs = ||D(z)−D(z+ ξ)||1 (9)

where ξ is a small random variable drawn from a normal
distribution with zero mean and 0.01 variance.

3.5. Rendering

The BRDF function fr in Equation 1 contains a diffuse
component a

π and a specular component fs(x̂,ωi,ωo). We
convert both the specular BRDF fs and the clamped cosine
factor C = ωi · n to a single SG as in prior work [29]. So
Equation 1 can be approximated as the fast inner product of
SGs. Specifically, we separate the rendering of direct illu-
mination into diffuse component Ld and specular compo-
nent Ls. The diffuse component is calculated as the sum of
the integrals of each masked environment lighting SG and
the clamped cosine factor:

Ld(x̂) =
a

π

M∑
k=1

(V (x̂,ωi)⊗ Ek(ωi)) · C (10)

Note that in the specular component, in order to accurately
approximate the final integral in the presence of a narrow
specular lobe, the visibility ratio γ is determined by sam-
pling the specular SG:

Ls(x̂,ωo) =

M∑
k=1

(fs ⊗ V (x̂,ωi))⊗ Ek(ωi) · C (11)

As for the rendering of indirect illumination, the spatially
varying indirect illumination is first queried from the indi-
rect illumination MLP I , and the rendering is similar to the
above process, except that the visibility is not required.

3.6. Training

We optimize the geometry, SVBRDF and environment
lighting from a set of posed images through three-stage
training. First, the SDF MLP S(x) and outgoing radiance
MLP R are optimized using [29]. Second, we sample 256
surface points and draw 16 sampled rays for each, then per-
form sphere tracing to obtain visibility and incoming radi-
ance simultaneously, which serve as the ground truth for
supervising the visibility MLP V and indirect illumination
MLP I via cross-entropy loss and ℓ1 loss. Last, the diffuse
albedo, roughness and direct illumination are jointly opti-
mized by minimizing the reconstruction loss ℓrecon between
the renderings and the observed images. The full loss in the
final stage is:

ℓ = λreconℓrecon + λKLℓKL + λsℓs (12)

We set weights λrecon = 1.0, λKL = 0.01, λs = 0.1 in our
experiments.

The architecture of visibility MLP, indirect illumination
MLP and encoder of BRDF contains 4 layers with 512 hid-
den units. Positional encoding [2] is applied to the input
3D locations and directions with 10 and 4 frequency com-
ponents, respectively. The decoder of BRDF is a 2-layer
network with a 32-dimensional input latent code and 128
hidden units. We implement our model in PyTorch and op-
timize using Adam [10] with learning rate 5e−4. Both of
the latter two stages run 200 epochs on a single RTX 3090
GPU, which takes about 1 and 2 hours, respectively.

4. Experiments

In this section, we conduct experiments to investigate the
performance of our inverse rendering approach. First, we
briefly present how we build a synthetic dataset to examine
our setting in Sec. 4.1. Then, we make quantitative compar-
isons with two baselines on the synthetic data in Sec. 4.2.
Third, we perform several ablations to discuss our key com-
ponents in Sec. 4.3. Finally, we qualitatively study the in-
verse rendering and relighting abilities of our method on the
real dataset in Sec. 4.4. We refer to the supplemental mate-
rials for more results.

4.1. Synthetic Data

We collect 4 CAD models, each with obvious self-
occlusions and multiple materials. For a specific object,
we assign it with a natural environment map, and render
100 training images as well as their masks via Blender Cy-
cles. Masks are required by the SDF learning process [27].
We render other 200 test images as well as their albedo and
roughness maps to evaluate the novel view synthesis per-
formance and the inverse rendering ability. To measure the
relighting performance, we utilize other two environment
maps and render 200 images for each case. The image res-
olution is 800× 800.

4.2. Baseline Comparisons

To our best knowledge, there are only a few works that
study the exactly same inverse rendering setting as this pa-
per, i.e, training with fixed unknown illumination while
supporting free-view relighting. We take NeRFactor [32]
and PhySG [29] as baselines and make quantitative com-
parisons on the synthetic datasets. The image quality met-
rics include Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index Measure (SSIM), and Learned Perceptual
Image Patch Similarity (LPIPS) [30]. Since there is an in-
evitable scale ambiguity in estimating the albedo and envi-
ronment lighting, we additionally evaluate the albedo after
aligning with the ground truth, as done in [29, 32].

NeRFactor distills the volumetric geometry of NeRF
[15] into a surface representation. It relies on a data-driven
BRDF prior learned from real-world BRDF measurements



Figure 4. Comparisons with previous work. We visualize the estimated normal, diffuse albedo, roughness and environment map of
NeRFactor [32] and our method on three scenes. Note that the roughness of NeRFactor is visualized with the latent code, which represents
a BRDF identity, since it is parameterized by a learned model. We also compare the re-renderings under a novel view and original light
(the fourth row) as well as novel views and novel light (the last two rows).

to recover 3D neural fields of SVBRDF. Table 1 and Fig-
ure 4 demonstrate that our method is superior to NeRFactor
both quantitatively and qualitatively. NeRFactor parameter-
izes illumination as a 16×32 resolution environment map so
that each pixel/parameter can vary independently. The es-
timated results show that the albedo would easily be baked
into the environment map during its optimization process,
thus resulting in poor relighting performance. In contrast,
our predicted environment lighting and SVBRDF contain
fine details and are visually close to the ground truth maps,
as shown in Figure 4.

PhySG is able to jointly recover environmental lighting,
BRDFs and geometry from multi-view inputs captured un-
der static illumination. However, it presumes that the recov-
ered object is homogeneous. We adapt its pipeline by re-

placing its global roughness with a spatially varying rough-
ness parameterized as an MLP. The experimental results in
Table 1 show that it performs badly. The main reason is
that, without modeling visibility and indirect illumination,
geometry optimization is highly ill-posed, especially in ar-
eas with obvious shadow and interreflection.

4.3. Ablation Studies

We ablate combinations of three components of our
methods that primarily affect the inverse rendering quality.
We argue that a slight improvement over the studied met-
rics may bring an upgraded visual experience as rendering
is a detailed effect. The results are reported in Table 1 and
Figure 5.

In “w/o vis. & ind. illum.”, we train a model under the



Roughness Albedo Aligned Albedo View Synthsis Relighting

Method MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRFactor [32] - 19.4858 0.8641 0.2060 22.9647 0.9064 0.1617 22.7953 0.9168 0.1512 21.5373 0.8749 0.1708
PhySG* [29] 0.2682 21.2690 0.9722 0.0962 21.7968 0.9733 0.1845 23.4154 0.9871 0.0684 22.6288 0.9734 0.0726

Ours 0.0723 24.1608 0.9782 0.0566 25.2511 0.9825 0.0581 26.1918 0.9905 0.0438 25.5934 0.9840 0.0410
w/o vis. & ind. illum. 0.1575 23.3332 0.9758 0.0674 24.0401 0.9720 0.0679 26.4971 0.9923 0.0437 25.3919 0.9804 0.0451

w/o ind. illum. 0.0845 23.7422 0.9731 0.0677 24.6547 0.9819 0.0651 26.3454 0.9927 0.0435 25.4957 0.9836 0.0444
w/o latent space 0.0783 24.0930 0.9775 0.0593 25.2283 0.9824 0.0598 26.1846 0.9902 0.0449 25.5101 0.9837 0.0422

Table 1. Quantitative evaluations. We present the average results on the test images of all four synthetic scenes. “Aligned Albedo”
refers to scaling the albedo prediction for each RGB channel to match the ground truth before computing the errors. We slightly modify
PhySG [29] to adapt it to our data by outputting spatially varying roughness from an MLP instead of treating it as a global variable.
Compared with previous methods and baseline models, our full model achieves the best performance in SVBRDF recovery and relighting.
The view synthesis quality of the full model is slightly worse than the baselines, likely due to the rendering noise introduced by the visibility
sampling.

Figure 5. Ablation study on a synthetic scene (hotdog). Please refer to Section 4.3 for detailed descriptions.

assumption that all the surface points share the same envi-
ronment lighting. It does not involve indirect illumination
and visibility factors. It’s not surprising that this variant
performs worst for inverse rendering and relighting tasks.
However, it yields a slight improvement in novel view syn-
thesis. A possible reason is that visibility sampling intro-
duces some rendering noise. “w/o ind. illum.” produces
unexpected brighter environment lighting and albedo com-
pared to ground truth. That means, without modeling the
indirect illumination, these indirect lighting effects would
be baked into the estimated albedo by mistake. The “w/o
latent space” variant trains an MLP that directly maps a 3D
location to its diffuse and roughness using a re-rendering
loss only, without latent space assumption (See Sec 3.4).
The visualization shows that optimizing each surface point
independently yields noise roughness.

4.4. Results on Real Captures.

We select 4 real objects made of various materials, such
as plastic and leather, and capture them with a mobile phone

moving around the upper hemisphere. The camera poses are
estimated by COLMAP [20]. For each object, we uniformly
sample 100 frames from the video and apply inverse gamma
correction (γ = 2.2) to the images for training. Note that
the environment may not be exactly ideal, as not all light is
infinite distance, especially when capturing object-centric
video indoors, and moving people will cast shadows on ob-
jects. Figure 6 shows the inverse rendering and relighting
results. Our approach is able to infer plausible SVBRDF
and support realistic relighting. See supplementary video
for more results.

5. Conclusion

In this paper, we present a novel approach to efficiently
modeling the indirect illumination in the inverse rendering
task. Most of the previous methods have not considered in-
direct illumination since simulating it is intractable within a
physically-based rendering framework. Instead, we utilize
the neural outgoing radiance field and derive indirect illu-



Figure 6. Results on real captures. Our method is capable of dealing with real-world objects composed of multiple materials. For
each captured object, we show an image in the test set, our rendering, rendering under indirect illumination with our estimated shape and
SVBRDF, decomposed normal, albedo and roughness. With decomposed factors, we can relight the object under arbitrary lighting. Here
we show the results under four novel real-world illuminations.

mination from it. We demonstrate that, together with our
proposed BRDF prior and SG-based visibility estimation,
the full pipeline is able to estimate high-quality albedo and
roughness from multi-view images captured under natural
illumination and support realistic relighting.

Limitations. Our approach has the following limitations.
First, our pipeline strongly relies on fine geometry as an
input. We cannot deal with the case where the geometry
fails to be reconstructed using [27]. Fortunately, our ren-
dering model can be easily migrated to other surface-based

geometric representations. Second, we parameterize BRDF
with fixed F0 = 0.02 in the Fresnel term [6]. In other
words, we assume that the recovered materials are dielec-
tric. Making F0 learnable would exacerbate the ambiguity
of the inverse problem. Learning-based prior or extra ob-
servations can help alleviate this ambiguity. We leave this
as future work.
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