Neural Supersampling for Real-time Rendering

LEI XIAO, SALAH NOURI, MATT CHAPMAN, ALEXANDER FIX, DOUGLAS LANMAN, and ANTON

KAPLANYAN, Facebook Reality Labs

Ours Input

Reference

Fig. 1. Results of our real-time, learned 4 X 4 supersampling are shown for four sample scenes. From top to bottom: the rendered low-resolution color input,

our reconstruction, and the rendered reference images. Our supersampling method takes the color, depth, and motion vectors of multiple low-resolution
frames, and produces high-fidelity reconstructions by reducing aliasing and recovering scene details.

Due to higher resolutions and refresh rates, as well as more photorealistic
effects, real-time rendering has become increasingly challenging for video
games and emerging virtual reality headsets. To meet this demand, mod-
ern graphics hardware and game engines often reduce the computational
cost by rendering at a lower resolution and then upsampling to the native
resolution. Following the recent advances in image and video superreso-
lution in computer vision, we propose a machine learning approach that
is specifically tailored for high-quality upsampling of rendered content in
real-time applications. The main insight of our work is that in rendered
content, the image pixels are point-sampled, but precise temporal dynamics
are available. Our method combines this specific information that is typically
available in modern renderers (i.e., depth and dense motion vectors) with a
novel temporal network design that takes into account such specifics and is
aimed at maximizing video quality while delivering real-time performance.
By training on a large synthetic dataset rendered from multiple 3D scenes
with recorded camera motion, we demonstrate high fidelity and temporally
stable results in real-time, even in the highly challenging 4 X 4 upsampling

Authors’ address: Lei Xiao, lei.xiao@fb.com; Salah Nouri, snouri@fb.com; Matt Chap-
man, mchapman@fb.com; Alexander Fix, alexander.fix@fb.com; Douglas Lanman,
douglas.lanman@fb.com; Anton Kaplanyan, kaplanyan@fb.com, Facebook Reality
Labs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

0730-0301/2020/7-ART142

https://doi.org/10.1145/3386569.3392376

scenario, significantly outperforming existing superresolution and temporal
antialiasing work.

CCS Concepts: » Computing methodologies — Machine learning; Ren-
dering.

Additional Key Words and Phrases: deep learning, rendering, upsampling,
superresolution, virtual reality

ACM Reference Format:

Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman,
and Anton Kaplanyan. 2020. Neural Supersampling for Real-time Rendering.
ACM Trans. Graph. 39, 4, Article 142 (July 2020), 12 pages. https://doi.org/10.
1145/3386569.3392376

1 INTRODUCTION

Real-time rendering for modern desktop, mobile, and virtual reality
applications is challenging due to increasing display resolutions
and demands for photorealistic visual quality. For example, virtual
reality (VR) headsets such as the Valve Index require rendering
2880 x 1600 pixels at 90-144Hz and recent gaming monitors support
3840 X 2160 resolution at 144Hz, which, together with the recent
advances in physically based shading and real-time ray tracing, sets
a high demand on computational power for high-quality rendering.

A multitude of techniques have been introduced to address this
problem in recent years. Oculus Quest applies fixed foveated ren-
dering, for which peripheral regions are rendered at low resolution.
Kaplanyan et al. [2019] employ gaze-contingent foveated reconstruc-
tion by rendering non-uniform sparse pixel samples followed by

ACM Trans. Graph., Vol. 39, No. 4, Article 142. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392376
https://doi.org/10.1145/3386569.3392376
https://doi.org/10.1145/3386569.3392376

142:2 .« Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, and Anton Kaplanyan

neural reconstruction. Unreal Engine [2020] introduces the tempo-
ral antialiasing upscaling (TAAU) method which utilizes pixel color
statistics and temporal accumulation for supersampling. Variable
rate shading [Microsoft 2019] has been introduced recently to accel-
erate rendering by reducing the shading complexity for foveated and
high-resolution displays. Closest to our work, Nvidia has recently
released deep-learned supersampling (DLSS) [Edelsten et al. 2019]
that upsamples low-resolution rendered content with a neural net-
work in real-time. However, these methods either introduce obvious
visual artifacts into the upsampled images, especially at upsampling
ratios higher than 2 X 2, or rely on proprietary technologies and/or
hardware that may be unavailable on all platforms.

In this paper, we introduce a method that is easy to integrate
with modern game engines, requires no special hardware (e.g., eye
tracking) or software (e.g., proprietary drivers for DLSS), making it
applicable to a wider variety of existing software platforms, accel-
eration hardware and displays. The method takes common inputs
from modern game engines, i.e., color, depth and motion vectors at
a lower resolution, and significantly upsamples the input imagery
to the target high resolution using a temporal convolutional neu-
ral network. Different than most existing real-time supersampling
methods, which typically aim for no more than 2 X 2 upsampling
in practice, our method allows for compelling 4 X 4 upsampling
from highly aliased input and produces high fidelity and temporally
stable results in real-time.

While prominent advances have been demonstrated for photo-
graphic image and video upsampling with deep learning techniques,
these methods typically do not apply to rendered content. The
fundamental difference in image formation between rendered and
photographic images is that each sample in the rendering is a point
sample in both space and time, in contrast to a pixel area integral in
photographic images. Therefore, the rendered content is typically
highly aliased, especially at a low resolution. This makes upsam-
pling for rendered content both an antialiasing and interpolation
problem, rather than the deblurring problem as studied in exist-
ing superresolution work in computer vision community. On the
other hand, pixel samples in real-time rendering are accurate, and,
more importantly, motion vectors (i.e. geometric correspondences
between pixels in sequential frames) are available nearly for free
at subpixel precision. These inputs bring both new benefits and
challenges into the superresolution problem for rendering, which
motivates us to revisit the deep learning techniques for rendering.

Large datasets are necessary for training robust networks. To
train for temporal stability, the datasets should also represent realis-
tic camera motions (e.g., with large rotation and translation). We
found that no existing datasets satisfy our requirements. Therefore,
we build a large-scale dataset generation pipeline in Unity [2020],
replay head motion captured from VR user studies, and render color,
depth and motion vectors for thousands of frames for each of our
representative dynamic scenes. This new dataset enables us to train
and test neural networks on realistic use cases, including our pro-
posed architecture and existing learned superresolution methods.
With such comparisons, we demonstrate that our network signifi-
cantly outperforms prior state-of-the-art learned superresolution
and temporal antialiasing upscaling work.

We summarize our technical contributions as follows.

ACM Trans. Graph., Vol. 39, No. 4, Article 142. Publication date: July 2020.

e We introduce a temporal neural network tailored for image
supersampling of rendered content that employs rich render-
ing attributes (i.e., color, depth, and motion vectors) and that
is optimized for real-time applications.

e We demonstrate the first learned supersampling method that
achieves significant 4 X 4 supersampling with high spatial
and temporal fidelity.

e Our method significantly outperforms prior work, including
real-time temporal antialiasing upscaling and state-of-the-art
image and video superresolution methods, both in terms of
visual fidelity and quantitative metrics of image quality.

2 RELATED WORK
2.1 Real-time Rendering

A particularly important problem in real-time rendering is under-
sampling. Each sample in rendering is a point sample, while an
antialiased image requires computing all samples within sensor’s
pixel area. For a highly detailed surface, undersampling can lead to
jarring visual shimmering and flickering appearance when surface
features become subpixel. Multiple methods exist to mitigate vari-
ous sources of aliasing in the undersampled image. We classify these
methods in two groups: spatial-only antialiasing methods use the
information from a single rendered image, and temporal antialiasing
methods use temporal history from multiple rendered frames.

2.1.1 Spatial Antialiasing. One classical method in real-time graph-
ics is multisampling antialiasing (MSAA) [Akeley 1993], a form of
supersampling, where the color of a polygon covered by a pixel is
only calculated once, avoiding computing multiple subpixel samples
for the same polygon. Another classical method is texture filter-
ing [Williams 1983], where high-frequency details coming from
surface textures are prefiltered using image pyramids. A proper
prefiltered region is then selected in runtime based on the pixel’s
footprint projected to the textured surface. Similarly, aliasing from
other shading components, such as specular highlights [Kaplanyan
et al. 2016] or shadows [Reeves et al. 1987] can be addressed using
specialized methods.

Most spatial antialiasing methods are based on image enhance-
ment methods from image processing. The basic idea is to find dis-
continuities on the image and to blur them in clever ways, in order
to smooth the jagged edges. Morphological antialiasing [Reshetov
2009] (MLAA) try to estimate the pixel coverage of the original
geometry based on the color discontinuities found in the proxim-
ity of the pixels in the final image. Fast approximate antialiasing
(FXAA) [Lottes 2009] approaches the undersampling problem by
attenuating subpixel features, which enhances the perceived tempo-
ral stability. Subpixel morphological antialiasing (SMAA) [Jimenez
et al. 2012] combines MLAA with MSAA. While these methods can
provide a good quality for single still images, the temporal variation
between frames antialiased with these methods still contains visible
flicker and other types of false pixel motion.

2.1.2 Temporal Antialiasing and Reconstruction. These methods use
temporal history, usually in a form of a temporally accumulated
buffer, with some form of temporal rejection filtering. The key differ-
ence is that the high-quality temporal methods, such as amortized

supersampling [Yang et al. 2009], reproject the history from one
frame to another in order to compensate for motion, similar to mo-
tion compensation used in video compression. Temporal antialiasing
(TAA) [Karis 2014] uses an edge detection filter as a proxy to sup-
press flicker by heavier temporal accumulation. Recently, TAA has
been also employed to perform temporal upsampling (TAAU) [Epic
Games 2020] and we provide comparisons with our method.

Deep-learned supersampling (DLSS) [Edelsten et al. 2019] is the
closest to our method, and uses temporal history and neural net-
works to enhance edges and perform upscaling. While being used
for games, no reliable public information is available on the details,
quality or performance of the method. In contrast, our work pro-
vides full details and evaluation of the method and can be employed
without a need for proprietary hardware or software.

Another recent trend in reducing the rendering cost is to apply
reconstruction methods to sparsely ray-traced [Schied et al. 2017]
and foveated images [Patney et al. 2016]. There is a recent body
of work on applying machine learning methods to real-time low-
sample-count reconstruction [Chaitanya et al. 2017] and foveated
reconstruction [Kaplanyan et al. 2019]. These methods train tem-
porally stable U-Net architectures to achieve a stable reconstructed
video out of very noisy and/or sparse input frames, which is related
to our task of interpolation for upsampling.

2.2 Image and Video Superresolution

2.2.1 Single Image Superresolution. Single image superresolution
(SISR) is an ill-posed problem that aims to recover a high-resolution
image from its low-resolution, typically degraded version. Since the
pioneering work SRCNN [Dong et al. 2015] which uses a 3-layer
convolutional neural network (CNN) for SISR, numerous deep neural
network approaches have been proposed and achieved the state-of-
the-art quality. We review the most relevant and advanced methods
here and refer to [Yang et al. 2019] for more detailed discussions.

Instead of learning the direct mapping between the high-resolution
target image and the low-resolution input image, VDSR [Kim et al.
2016] learns the residual between the two. SRResNet [Ledig et al.
2017] applies residual network architecture [He et al. 2016] to the
superresolution problem, and EDSR [Lim et al. 2017] further im-
proves the performance by utilizing more, modified residual blocks.
ESPCN [Shi et al. 2016] introduces a subpixel CNN that operates at
low resolution and achieves real-time performance. LapSRN [Lai
et al. 2017] proposes a Laplacian pyramid network for progressively
reconstructing the sub-band residuals of high-resolution images.
RDN [Zhang et al. 2018b] incorporates residual and dense con-
nections [Huang et al. 2017] for hierarchical feature extraction.
RCAN [Zhang et al. 2018a] introduces a residual-in-residual struc-
ture to form a very deep network, i.e., over 400 convolutional layers,
and a channel attention mechanism to adaptively rescale channel-
wise features, achieving the state-of-the-art results in quality. Other
work [Ge et al. 2018; Ledig et al. 2017] build on generative adversar-
ial networks for optimizing perceptual quality, typically leading to
limited reconstruction fidelity and temporal consistency.

2.2.2 Video Superresolution. Video superresolution methods typ-
ically exploit temporal coherence in adjacent frames to improve

Neural Supersampling for Real-time Rendering « 142:3

Depth map

Framei-1 Framei

Fig. 3. lllustration of the subpixel backward motion vector rendered by
game engines. The rendered point samples are represented by the black
circle points at the center of each pixel. An example of the subpixel backward
motion vector between frame i and i — 1 is illustrated by the red dashed line.
The motion vector defines where an infinitesimal 3D point that is visible
at frame i would appear at its previous frame i — 1, without its visibility or
color information.

reconstruction upon SISR methods. A key component of most meth-
ods is motion estimation between frames. VESPCN [Caballero et al.
2017] introduces a multi-resolution spatial transformer module
for joint motion compensation and video superresolution. SPMC-
VSR [Tao et al. 2017] introduces a subpixel motion compensation
layer to fuse multiple frames for revealing image details. EDVR [Wang
et al. 2019] applies a pyramid, cascading and deformable alignment
module and a temporal and spatial attention module. Differently,
DUF [Jo et al. 2018] introduces a deep neural network that generates
dynamic upsampling filters computed from the local spatio-temporal
neighborhood of each pixel to avoid explicit motion compensation.

Another group of methods use recurrent neural networks (RNN)
that naturally encourages temporally consistent results. FRVSR [Saj-
jadi et al. 2018] proposes a RNN that warps the previously estimated
frame to facilitate the subsequent one. RBPN [Haris et al. 2019]
develops a recurrent encoder-decoder architecture for incorporat-
ing features extracted from single-image and multi-frame modules.
While RNN methods encourages temporally coherent results, their
results may lack spatial details due to the averaging nature of sim-
ple norm loss functions at training. TecoGAN [Chu et al. 2018]
attempts to address this problem by improving the training loss
and introducing a temporally self-supervised adversarial learning
algorithm.

3 METHOD

In this section, we describe our learned supersampling algorithm
that is tailored for real-time rendering. We start with discussions on
the challenges of rendered content upsampling and briefly overview
a few key techniques of our method in Section 3.1, and then de-
scribe our network architecture in Section 3.2, training loss function
in Section 3.3 and dataset collection in Section 3.4.

ACM Trans. Graph., Vol. 39, No. 4, Article 142. Publication date: July 2020.

142:4 .« Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, and Anton Kaplanyan

Frame i
(Current)
RGB to l*‘ Feature \ Zero]—’ﬁ
u YCbCr Extraction Upsampling |
_Upsampiing =
Frame i-1 §
Feature { Zero \)» { Backward =
i | i . > @
E { Exiraction ‘ +\ Upsampling +\ Warping > §
<
Frome i-2 D — £ e
Feature 7 Accumulative o
~7|_Exfraction ‘ U erol Backward | —> ¢
I psamping Warping)
o
Frame i-3 P— ° —>
Feature 7 Accumulative 2 -
E’{ Extraction ‘ U erol Backward |~ §
. psomeing Warping L
Frame i-4 P —
Feature z Accumulative
i *[E vaurr] { U erol ’—' Backward
xtraction | Upsampling Werping
(N

Reconstructed Frame i
(Current)

Skip connection Features of each previous frame

=
o
(9]
=

multiply

Concat
RGB-D of all frames

32 32 8 32 32 4

Color-D of each frame

Feature extraction network Feature reweighting network

Skip connection (concat)

Skip connection (concat)

64 32 64 64 128 128 64 64 32 3

Reconstruction network

Fig. 4. Network architecture of our method. Left shows an outline of the method and right shows the architecture of each sub-network, including the feature
extraction, feature reweighting, and reconstruction networks. The numbers under each network layer represent the output channels at corresponding layers.
The filter size is 3 X 3 at all layers. The tanh layer in the feature reweighting network is followed by a scaling operation to map the values from (-1,1) to (0,10).

3.1 Problem Setting

In real-time rendering, each pixel is a point sample of the underlying
high-resolution image when multi-sample antialiasing is disabled,
as illustrated in Figure 3, where the dot at the center of each pixel
represents the sample to render. Post-upsampling from such input is
an antialiasing and interpolation problem, in contrast to a deblurring
problem as in the camera image superresolution applications.

The challenge of high-fidelity upsampling for rendered content
is that the input images with point-sampled pixels are extremely
aliased at shading and geometry edges, and the information at the
target to-be-interpolated pixels is completely missing. To address
this problem, we are motivated by the fact that in rendering, we
know a more detailed information about the current and past frames
and the way they are sampled. To effectively leverage this infor-
mation across multiple frames, we utilize the inputs commonly
available in today’s games engines, such as pixel color, depth map,
and motion vectors, as visualized in Figure 2.

In rendering, a motion vector points at an analytically computed
screen-space location where a 3D point that is visible at the current
frame would appear in the previous frame, with a subpixel precision,
as shown in Figure 3. While the rendered motion vector provides
candidate matching between pixels for low cost, it presents a few
limitations that prevent its direct use in multi-frame upsampling.
First, because it maps pixels backwards as illustrated in Figure 3,
pixels at a previous frame cannot be directly projected to the current
frame. Second, it does not consider dynamic disocclusion between
the current and previous frame, i.e., 3D points visible at current
frame might be occluded in the previous frames due to viewpoint
change or object movement. An example case is illustrated in Fig-
ure 3. Third, it provides only a partial optical flow, i.e., only the
motion of surface points and camera, and does not consider the
change in lighting, shadows, view-dependent reflectance, etc. Con-
sequently, the reconstruction method needs to robustly handle these
limitations while taking advantage of the rendered motion vectors.

While the method details are given in Section 3.2, we briefly
overview a few key insights of our method here. Similar to several
existing video superresolution work (Section 2.2.2), our method
first warps previous frames to align with the current frame, in

ACM Trans. Graph., Vol. 39, No. 4, Article 142. Publication date: July 2020.

order to reduce the required receptive field and complexity of the
reconstruction network. In contrast to existing work, however, to
better exploit the specifics of rendered data, i.e., point-sampled
colors and subpixel-precise motion vectors, our method applies the
frame warping at the target (high) resolution space rather than
at the input (low) resolution. Specifically, the method projects the
input pixels to the high resolution space, prior to the warping, by
zero-upsampling. The details of the zero-upsampling and warping
are given in Section 3.2.2.

As the rendered motion vectors do not reflect disocclusion or
shading changes between frames, the warped previous frames would
contain invalid pixels mismatching with the current frame, which
would mislead the post-reconstruction. To address this problem, we
include a reweighting mechanism before the reconstruction network
to de-select those invalid pixels. The reweighting mechanism is
related to the confidence map approaches used for multi-frame
blending in various applications [Hasinoff et al. 2016; Karis 2014;
Mildenhall et al. 2019; Wronski et al. 2019]. In contrast to these
approaches, however, our method utilizes a neural network to learn
the reweighting weights. The details of our reweighting module are
given in Section 3.2.3.

Lastly, the preprocessed previous frames (after zero-upsampling,
warping and reweighting) are stacked together with the current
frame (after zero-upsampling), and fed into a reconstruction network
for generating the desired high-resolution image, as details given
in Section 3.2.4.

3.2 Network Architecture

In this section, we describe our method in details with Figure 4.

3.2.1 Feature Extraction. The feature extraction module contains a
3-layer convolutional neural network. This subnetwork processes
each input frame individually, and shares weights across all frames
except for the current frame. For each frame, the subnetwork takes
color and depth as input, and generates 8-channel learned features,
which are then concatenated with the input color and depth, result-
ing in 12-channel features in total. The network details are given
in Figure 4 in green.

3.2.2 Temporal Reprojection. To reduce the required receptive field
and thus complexity of the reconstruction network, we apply tempo-
ral reprojection to project pixel samples and learned features of each
previous frame to the current, by using the rendered motion vectors.
In order to fully exploit the subpixel backward motion vectors, we
conduct the temporal reprojection at the target (high) resolution
space. First, we project the pixel samples from input (low) resolution
space to the high resolution space, by zero upsampling, i.e. assigning
each input pixel to its corresponding pixel at high resolution and
leaving all the missing pixels around it as zeros. The location of
each input pixel falls equally in between s pixels in the high resolu-
tion, where s is the upsampling ratio. Zero upsampling is chosen
for its efficiency and because it provides the network information
on which samples are valid or invalid.

Then, we resize the rendered low resolution map of motion vec-
tors to high resolution simply by bilinear upsampling, taking ad-
vantage of the fact that the motion vectors are piece-wise smooth.
While such simple upsampling introduces errors to the upsampled
map at discontinuous regions, it well recovers the majority of re-
gions compared to ground truth. Next, we apply backward warping
of the zero-upsampled previous frames using the upsampled motion
vectors, while bilinear interpolation is adopted during warping.

In Figure 5, we show an example of the zero-upsampled and
warped frames. Note that the motion vectors are only defined for an
adjacent pair of frames. To warp across multiple previous frames, we
apply the described warping process iteratively until each previous
frame is warped to the current one. We use up to 4 previous frames
in our experiments.

Performing warping at the zero-upsampled target resolution
space reduces the effect of low-pass interpolation during warp-
ing and thus protects the high-frequency information contained in
the rendered point samples. This makes our network distinct from
existing superresolution work that typically warps frames at the
input low resolution space.

3.2.3 Feature Reweighting. As discussed in Section 3.1, the rendered
motion vectors do not reflect dynamic disocclusions or shading
changes between frames. Thus the warped frames would contain
artifacts such as ghosting at disocclusion regions and mismatched
pixels at inconsistent shading regions.

To address this problem, we introduce a feature reweighting
module to be able to mask out these mismatched samples. The fea-
ture reweighting module is a 3-layer convolutional neural network,
which takes the RGB-D of the zero-upsampled current frame as
well as the zero-upsampled, warped previous frames as input, and
generates a pixel-wise weighting map for each previous frame, with
values between 0 and 10, where 10 is a hyperparameter. The hyper-
parameter is set to allow the learned map to not just attenuate, but
also amplify the features per pixel, and empirically we found the
dynamic range of 10 was enough.

Then each weighting map is multiplied to all features of the corre-
sponding previous frame. The reason we feed only RGB-D, instead
of the whole 12-channel features, into the reweighting network is
to further reduce the network complexity. The network details are
given in Figure 4 in orange, and an example of a learned reweighting
mabp is given in Figure 5.

Neural Supersampling for Real-time Rendering « 142:5

(a) Previous frame i-4 (e) Reweighting map

(b) Current frame i (d) Warped (f) Reweighted
Fig. 5. Example intermediate outputs of our method. In subfigures (c)-(f)
we visualize a single channel of the feature map in greyscale. The features
of previous frame i — 4 are zero-upsampled (fig. ¢) and warped to align with
the current frame i, using the subpixel backward motion vectors (fig. d).
The warped features go through the feature reweighting subnetwork (fig.
e), and the re-weighted features (fig. f) are then fed into the reconstruction

subnetwork for final results. Best viewed zoomed on a monitor.

3.24 Reconstruction. Finally, the features of the current frame and
the reweighted features of previous frames are concatenated and fed
into a reconstruction network, which outputs the recovered high
resolution image of the current frame. We adopt a 3-scale, 10-layer
U-Net with skip connections for the reconstruction subnetwork.
The network details are given in Figure 4 in blue.

3.25 Color Space. The method optionally converts the input RGB
image of current frame to YCbCr color space, before feeding it to the
neural network. The direct output of the network and the training
loss stay in YCbCr space, before the result is converted back to
RGB space for viewing. While optional, we experimentally find the
colorspace conversion slightly improves reconstruction quality, i.e.
0.1dB improvement in peak signal-to-noise ratio (PSNR).

3.3 Losses

The training loss of our method, as given in (1), is a weighted com-
bination of the perceptual loss computed from a pretrained VGG-16
network as introduced in Johnson et al. [2016], and the structural
similarity index (SSIM) [Wang et al. 2004].

5
loss(x, %) =1 — SSIM(x,X) +w - Z ||conv;(x) — conv,—()‘()||§ (1)
i=1
where x and X are the network output and reference high-resolution
image respectively, and the relative weight is w = 0.1. We refer to
Johnson et al. [2016] for the full details of selected VGG-16 layers.

3.4 Datasets and Implementation

We train a separate network for each 3D scene unless specified in
the experiments. Large datasets are necessary for training robust
networks. We collected several representative, dynamic scenes in
Unity [2020] and built a large-scale dataset generation program to

ACM Trans. Graph., Vol. 39, No. 4, Article 142. Publication date: July 2020.

142:6 .« Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, and Anton Kaplanyan

render the training and test data. The program replays head motions
that were captured from user studies in a VR headset, and renders
color, depth and motion vectors of every frame.

Specifically, we render 100 videos from each scene, and each
video contains 60 frames. Each video’s camera starts from a random
position in the scene and moves as defined in a pre-captured head
motion path that is randomly selected for each video from a large
candidate pool. For reference images, we first render the images
at 4800 X 2700 with 8x MSAA and then downscale the images to
1600 X 900 with 3 X 3 box filters to further reduce aliasing. For low-
resolution input images, we turn off MSAA and adjust mip level
bias for texture sampling to match the selected mip level with the
full resolution images. The mip level bias approach is applied to
reduce prefiltering in the rendered low-resolution images and is
similarly done in existing supersampling algorithms such as TAAU
in Unreal [2020].

During training, 80 videos are used to generate training batches,
10 for validation batches, and the remaining 10 are for testing.
For training and validation, we divide the images into overlapped
patches with resolution 256 X 256 pixels, while for testing we run
the network on the full frames with 1600 X 900 pixels. Our network
is fully convolutional so it is able to take any resolution as input.

We train our networks with TensorFlow [Abadi et al. 2015]. The
network weights are initialized following Glorot et al. [2010]. The
ADAM method [Kingma and Ba 2014] with default hyperparameters
is used for training optimization, with learning rate 1le-4, batch size
8, and 100 epochs of the data. Each network takes around 1.5 days
to train on a Titan V GPU.

4 RESULTS

In this section, we evaluate the performance of our method. We
report its runtime in Section 4.1, compare its quality in Section 4.2,
analyze the algorithm with various ablation experiments in Sec-
tion 4.3, and describe its limitations and future work in Section 4.4.

4.1 Runtime Performance

After training, the network models are optimized with Nvidia Ten-
sorRT [2018] at 16-bit precision and tested on a Titan V GPU. In
Table 1, we report the total runtime of our method for 4 X 4 super-
sampling at varying target resolutions, including 720p (1280 X 720),
Oculus Rift (1080 x 1200) and 1080p (1920 X 1080). In Table 2, we re-
port the runtime breakdown of our method with 4 x4 supersampling
at 1080p. The runtime is reported in unit of milliseconds (ms).

To study the trade-off between network complexity and recon-
struction quality, in Table 1, 2 and 3, we report two flavors of our
method, i.e., the primary network, namely “Ours”, and a lighter
version, namely “Ours-Fast”. The hyperparameters of the primary
network are given in Figure 4, and the only difference in the lighter
network is that the output channels of each layer except for the last
one in the reconstruction U-Net are reduced by 50%. In Table 3, we
compare the reconstruction quality of the two networks. The lighter
network has minor decreased quality compared to the primary, how-
ever, both networks outperform existing methods by a large margin
as compared in the following Section 4.2. In the remainder of the
section, we report the results using the primary network.

ACM Trans. Graph., Vol. 39, No. 4, Article 142. Publication date: July 2020.

Table 1. Runtime (ms) of our 4X 4 upsampling for varying target resolutions,
including 720p (1280 % 720), Oculus Rift (1080x1200) and 1080p (1920 1080).

1280 X 720 1080 x 1200 1920 x 1080
Ours 11.96 15.99 24.42
Ours-Fast 8.84 11.87 18.25

Table 2. Runtime breakdown for 4 X 4 upsampling for 1080p resolution.
Corresponding time cost of the lighter network “Ours-Fast” is included in
parentheses (the two networks are identical through Feature Reweighting).

Module Time (ms)

Feature extraction 0.97

Motion vector upsampling 0.25

Feature zero-upsampling 0.28

Warping 0.90

Feature reweighting 4.73

Reconstruction Ours 17.2 (Ours-Fast 11.1)
Total Ours 24.4 (Ours-Fast 18.3)

Table 3. Quality comparisons of variants for our network. “Ours” and
“Ours-Fast” represent the primary and lighter networks respectively,
trained on each scene separately (Section 4.1). “Ours-AllScenes” and
“Ours-AllIButOne” represent the primary networks trained on all scenes
together, and on all scenes but the one tested, respectively (Section 4.3.2).

Ours-Fast Ours Ours-AllScenes Ours-AllButOne

= Robots 35.68 36.08 36.01 35.39
2 Village 30.36 30.70 30.75 30.18
% DanceStudio 33.56 34.07 33.68 33.21
& Spaceship 36.09 36.69 36.64 35.60

Robots 0.9657 0.9696 0.9692 0.9626
= Village 0.8892 0.9019 0.9002 0.8753
& DanceStudio 0.9176 0.9224 0.9201 0.9104

Spaceship ~ 0.9674 0.9712 0.9696 0.9647

Table 4. Quality comparisons with existing methods on all scenes. Results
for each method averaged across 10 test videos in each scene. Our method
outperforms all others by a large margin on every quality metric. Note
that different than PSNR and SSIM, lower values in STRRED mean higher
quality results.

ESPCN VESPCN DUF EDSR RCAN Ours

2 Robots 31.62 31.72 3230 3372 3340 36.08
Z Village 27.26 27.39 27.62 2774 2777 30.70
Q;é DanceStudio 30.24 30.41 30.96 31.64 31.62 34.07
& Spaceship 32.73 32.80 33.65 3429 3439 36.69
Robots 0.9134 0.9142 0.9335 0.9476 0.9440 0.9696
= Village 0.7908 0.7950 0.8270 0.8296 0.8294 0.9019
% DanceStudio 0.8375 0.8418 0.8640 0.8794 0.8777 0.9224
Spaceship 0.9119 0.9123 0.9286 0.9427 0.9418 0.9712
~ Robots 109.7 103.5 73.2 56.5 63.6 19.3
2 Village 192.4 186.6 131.8 169.8 1686 425
& DanceStudio 213.0 194.8 118.8 1178 121.6 40.6
% Spaceship 98.8 96.6 66.6 58.1 58.4 22.1

4.2 Quality Evaluation

We compare our method to several state-of-the-art superresolution
work, including single image superresolution methods ESPCN [Shi
et al. 2016], EDSR [Lim et al. 2017] and RCAN [Zhang et al. 2018a],
and video superresolution methods VESPCN [Caballero et al. 2017]

and DUF [Jo et al. 2018]. We re-implemented and trained all the
methods on the same datasets as in our method with the same train-
ing procedure. For the video superresolution methods, we adjusted
their networks to take only current and previous frames as input,
avoiding any future frames. The number of input previous frames
used in video superresolution methods is also increased to 4 to
match our method.

We evaluate the results with three quality metrics: peak signal-
to-noise ratio (PSNR), structural similarity index (SSIM) [Wang et al.
2004], and spatio-temporal entropic difference (STRRED) [Soundarara-
jan and Bovik 2012]. PSNR and SSIM are well-known for single
image assessment, the higher the better. STRRED is widely used for
video quality assessment that includes temporal stability, the lower
the better. We evaluate the results on four representative scenes,
namely Robots, Village, DanceStudio and Spaceship.

In Table 4, we compare the above quality metrics, averaged over
10 test videos from our dataset described in Section 3.4. In Figure 7
and 8, we compare result images both visually and quantitatively.
Our method outperforms all other methods on all scenes by a large
margin.

In addition, we compare to the temporal antialiasing upscaling
(TAAU) method from Unreal Engine [2020]. We take the Robots
scene as an example, and convert it to Unreal to collect the TAAU
results. As the scene in Unity and Unreal cannot be matched exactly,
we first provide visual comparisons in Figure 6, showing that our
method produces significantly better visual quality. Furthermore,
we evaluate the PSNR and SSIM of ours and TAAU with respect
to each own’s reference image rendered at Unity and Unreal re-
spectively. Our result (PSNR = 31.74dB, SSIM = 0.9430) significantly
outperforms TAAU (PSNR = 30.06dB, SSIM = 0.9070).

For all results in this section, we have included the full-frame
result images in the supplementary material, and the results on
video sequences in the supplemental videos. Our method produces
significantly more temporally stable video results than existing
approaches, both visually, and quantitatively according to the video
quality metric STRRED.

4.3 Analysis

4.3.1 Rendering Efficiency. We take the Spaceship scene as a rep-
resentative scenario to demonstrate how the end-to-end rendering
efficiency can be improved by applying our method. We render on
an Nvidia Titan RTX GPU using the expensive and high-quality
ray-traced global illumination effect available in Unity. The render
pass for a full resolution image takes 140.6ms at 1600 X 900. On
the other hand, rendering the image at 400 X 225 takes 26.40ms,
followed by our method, which takes 17.68ms (the primary net-
work) to upsample the image to the target 1600 X 900 resolution,
totaling to 44.08ms. This leads to an over 3X rendering performance
improvement, while providing high-fidelity results.

4.3.2 Generalization. While we choose to train a network for each
scene to maximize its quality, an open question we would like
to answer is how it generalizes across scenes. In Table 3, we re-
port the quality of our primary network trained jointly on all four
scenes (“Ours-AllScenes”) and trained on all scenes but the one
tested (“Ours-AllButOne”), respectively, and compare them to the

Neural Supersampling for Real-time Rendering « 142:7

Input I Unreal TAAU Ours
Fig. 6. Comparison with Unreal TAAU with 4 X 4 supersampling. The PSNR
and SSIM of our and TAAU results are computed with respect to each’s own
reference image rendered at Unity and Unreal respectively. Our resulting
PSNR is 31.74dB, SSIM is 0.9430, outperforming TAAU whose resulting
PSNR is 30.06dB, SSIM is 0.9070.

Reference

primary network trained on each scene separately (“Ours”). The
test quality reduces slightly with Ours-AllScenes (0.05 — 0.4dB in
PSNR) and more with Ours-AllButOne (0.5—1dB in PSNR). However
both networks still noticeably outperform all comparison methods
that are trained on each scene separately. This indicates that the
network can generalize across scenes with different appearance
although including the test scenes into training datasets seems to
always improve the quality. However a full evaluation of network
generalization will require collecting more scenes.

4.3.3 Previous Frames. In Table 5, we report the reconstruction
quality by using a varying number of previous frames. The quality
increases as more previous frames are used, however, the network
runtime likewise increases. Of note is that runtime is dominated
by the reconstruction sub-network (Table 2). Only the first layer
of this part is affected by the number of frames, so adding more
previous frames only slightly increases runtime. Thus, applications
can vary this parameter to get to a sweet spot in quality/runtime
trade-off. In Figure 9 we show a visual comparison to the network
variant using a single (current) frame as input. The experiment
demonstrates the quality gained from the use of previous frames.

4.3.4 Supersampling Ratios. In Table 6, we report the reconstruc-
tion quality of our method with varying supersampling ratios from
2 X 2 to 6 X 6. In this experiment, we keep the target resolution the

ACM Trans. Graph., Vol. 39, No. 4, Article 142. Publication date: July 2020.

142:8 .« Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, and Anton Kaplanyan

Input ESPCN VESPCN DUF EDSR RCAN Ours Reference
29.81dB, 0.8944 29.96 dB, 0.8963 31.13dB, 0.9259 31.22dB, 0.9261 31.10dB, 0.9255 34.64 dB, 0.9685

Input ESPCN VESPCN DUF EDSR RCAN Ours Reference
26.15dB, 0.7750 26.22 dB, 0.7790 27.02dB, 0.8226 26.86 dB, 0.8199 26.79.dB, 0.8162 30.13dB, 0.9073

Fig. 7. Visual results on the Robots (top) and Village (bottom) scene.
ACM Trans. Graph., Vol. 39, No. 4, Article 142. Publication date: July 2020.

Neural Supersampling for Real-time Rendering « 142:9

ESPCN VESPCN DUF EDSR RCAN Ours Reference
31.54dB, 0.8681 32.18dB, 0.8890 32.77 dB, 0.8956 33.25dB, 0.9055 33.04 dB, 0.9022 35.49dB, 0.9371

Input ESPCN VESPCN DUF EDSR RCAN Ours Reference
32.09 dB, 0.8892 32.18dB, 0.8890 32.89dB,0.9106 33.68dB, 0.9227 33.31dB,0.9191 36.36 dB, 0.9708

Fig. 8. Visual results on the DanceStudio (top) and Spaceship (bottom) scene. Asset credits to Ruggero Corridori and Unity Technologies respectively.
ACM Trans. Graph., Vol. 39, No. 4, Article 142. Publication date: July 2020.

142:10 + Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, and Anton Kaplanyan

Reference

Input Ours - SingleFrame Ours

Fig. 9. Ablation experiment for performance gain from using previous
frames. “Ours-SingleFrame” represents the trained network that takes only
a single frame as input.

Table 5. Quality and runtime (for 1080p target resolution) versus number
of previous frames used as inputs on the Robots scene.

Previous frames 0 1 2 3 4
PSNR (dB) 32.66 34.00 34.92 35.61 36.08
SSIM 0.9340 0.9505 0.9596 0.9653 0.9696
Runtime (ms) 16.46 21.36 23.19 23.71 24.42

Table 6. Reconstruction quality versus supersampling ratio on Robots scene.

Supersampling ratio 6X6 5X5 4X4 3x3 2%x2
PSNR (dB) 32.97 34.36 36.08 38.17 41.19
SSIM 0.9392 0.9538 0.9696 0.9820 0.9928

Table 7. Quantitative comparisons for 2 X 2 upsampling on Robots scene.
ESPCN VESPCN DUF EDSR RCAN Ours

PSNR (dB) 36.21 36.39 37.12 38.10 37.99 41.19
SSIM 0.9692 0.9694 0.9772 0.9881 0.9807 0.9928

same and vary the input image resolution according to the super-
sampling ratio. As expected, the reconstruction quality gracefully
improves as the supersampling ratio reduces.

Additionally, to verify the performance advantage of our method
at varying supersampling ratios, we train all existing methods with
2 X 2 upsampling and report the results in Table 7. Our method
significantly outperforms the existing work.

4.3.5 Quality Gain from Additional Inputs. While our method out-
performs all compared methods by a large margin, we would like
to understand the quality gain from its additional depth and mo-
tion vector inputs. We revise the VESPCN method to take the same
depth and motion vector input as ours, namely “VESPCN+”, where
the motion vectors replace the optical flow estimation module in
the original VESPCN and the depth is fed as an additional channel
together with the RGB color input. As reported in Table 8, with
the additional inputs, VESPCN+ improves moderately (1.1-1.3dB in
PSNR) upon VESPCN, however it is still noticeably worse (2.2-3.1dB

ACM Trans. Graph., Vol. 39, No. 4, Article 142. Publication date: July 2020.

Table 8. Ablation experiment for quality gain from the additional depth and
motion vector inputs. VESPCN+, which is modified from VESPCN, takes the
same depth and motion vector inputs as ours. PSNR and SSIM are reported.

VESPCN VESPCN+ Ours
Robots 31.72dB / 0.9142 33.03dB/0.9250 36.08dB / 0.9696
Village 27.39dB / 0.7950 28.55dB/0.8222 30.70dB / 0.9019
DanceStudio 30.41dB /0.8418 31.48dB/0.8584 34.07dB/0.9224
Spaceship 32.80dB /0.9123 33.91dB/0.9251 36.69dB/0.9712

Table 9. Ablation experiment for temporal reprojection (Section 3.2.2). The
network is trained with each of the following upsampling and warping
settings, and results on the Robots scene are reported.

PSNR (dB) SSIM

Warp at low-res, then bilinear upsampling 34.97 0.9570
Warp at low-res, then zero-upsampling 35.08 0.9570
Bilinear upsampling, then warp at high-res 35.82 0.9658
Zero-upsampling, then warp at high-res (Ours) 36.08 0.9696

Table 10. Ablation experiment for the feature extraction and feature
reweighting modules. The network is trained with each (and both) of these
submodules removed, and results on the Robots scene are reported.

PSNR (dB) SSIM

Feature Extraction Feature Reweighting

X X 35.63 0.9652
X v 35.76 0.9670
v X 35.90 0.9678
v v 36.08 0.9696

in PSNR) than our method. This indicates that both the additional
inputs and the specifically tailored network design of our method
play important roles in our performance achievement.

4.3.6 Zero-Upsampling and Warping. As described in Section 3.2.2
(temporal reprojection), our method projects input pixels to the tar-
get (high) resolution space by zero-upsampling, and then warps the
upsampled previous frames to the current frame for post-processing.
To understand its impact on the reconstruction quality, we experi-
ment with alternative ways for temporal reprojection, i.e., replacing
zero-upsampling with bilinear upsampling and/or warping at the
input (low) resolution space instead, and the results are reported in
Table 9. We observe about 1dB improvement in PSNR by warping at
the target resolution compared to at the input resolution, and about
0.3dB additional improvement by using zero-upsampling compared
to bilinear upsampling. This indicates the benefit of our approach
tailored for effectively leveraging the rendering-specific inputs, i.e.,
point-sampled color and subpixel-precise motion vectors.

4.3.7 Network Modules. In Table 10, we report the ablation exper-
iments for analyzing the quality improvements from the feature
extraction (Section 3.2.1) and feature reweighting (Section 3.2.3)
modules. Average results are reported on the 10 test videos of the
Robots scene. While the numeric results show only minor improve-
ments from the reweighting module, the results are averaged over
large amounts of data, and the regions affected by disocclusion and
mismatched pixels (the parts of images most impacted by this mod-
ule) only make up a relatively small part of the images. In Figure 10
we provide a visual comparison to demonstrate the contribution
of the feature reweighting module. When the network is trained

Prev. frame i-4 Prev frame i-3 Prev frame i-2 Prev frame i-1

Reference

Currentframei Ours - No Reweight Ours
Fig. 10. Ablation experiment for the feature reweighting module. When the
network is trained without the reweighting module (“Ours-NoReweight”),
ghosting artifacts appear at the disoccluded regions as pointed by the orange
arrow.

without the reweighting module, ghosting artifacts appear at the
disocclusion regions around the robot’s fingers.

4.3.8 Discussion with DLSS. While Nvidia’s DLSS [Edelsten et al.
2019] also aims for learned supersampling of rendered content,
no public information is available on the details of its algorithm,
performance or training datasets, which makes direct comparisons
impossible. Instead, we provide a preliminary ballpark analysis
of its quality performance with respect to our method, however,
on different types of scenes. Specifically, we took the AAA game
“Islands of Nyne” supporting DLSS as an example, and captured two
pairs of representative screenshots, where each pair of screenshots
include the DLSS-upsampled image and the full-resolution image
with no upsampling, both at 4K resolution. The content is chosen to
be similar to our Spaceship and Robots scene in terms of geometric
and materials complexity, with metallic (glossy) boxes and walls and
some thin structures (railings, geometric floor tiles). For copyright
reasons, we cannot include the exact images in the paper. Instead,
we computed the PSNR and SSIM of the upsampled images after
masking out mismatched pixels between the upsampled and the
full-resolution images due to dynamic objects, plot the numerical
quality as a distribution, and add our results quality to the same
chart. Our results were computed on the test dataset from our Unity
scenes (600 test frames per scene), reported as a box and whisker
chart in Figure 11. While it is not a direct comparison (and generally
it is impossible to compare the methods on the same scene), we
believe this experiment can suggest that the quality ballparks of our
method and DLSS are comparable.

4.4 Limitations and Future Work

Our method learns a mapping between the low-resolution multi-
frame inputs and the high-resolution output image. As a regression
system, the method tends to gracefully degrade in quality outside of
the trained domain, similarly to existing neural network approaches.
If the multi-frame inputs contain too little information of a scene

Neural Supersampling for Real-time Rendering « 142:11

M Robots (Ours) [Village (Ours) [Dancestudio (Ours) [Spaceship (Ours) [Islands of Nyne (DLSS)
50 1.00
+ B
45 0.95

: . -
o

PSNR (dB)
ssImM

080 l

25 = 075

20 0.70
(a) Results with 4 x 4 upsampling

50 1.00 . —

45 095 *EF
40 + %@ 090 .

35 + 085
30 == 0.80

25 0.75

PSNR (dB)
SssiM

20 0.70
(b) Results with 2 x 2 upsampling

Fig. 11. Discussion figure for DLSS quality. The content for DLSS and for our
method is different, and we were able to capture only a few pixel accurate
image pairs, so a direct comparison is not possible. This plot is meant to
illustrate that the quality ballparks for both methods are comparable. Box
and whisker chart of the quality for (a) 4 X 4 upsampling and (b) 2 x 2
upsampling, by our method and DLSS on different scenes.

Prev.framei-2 Prev.framei-1 Current framei Ours Reference
Fig. 12. Failure case. When the multi-frame inputs do not contain enough
information of the underlying scene, i.e., the text on the sticky note, the
method fails to recover the full details of the text.

region, e.g., due to extreme aliasing, the method would fail to recover
the missing scene details, as the example shown in Figure 12.
While our method provides a significant improvement for neu-
ral supersampling, the current implementation is still expensive
for high-resolution display applications. However, we believe the
method can be significantly faster with further network optimiza-
tion, hardware acceleration and professional grade engineering.
As a future research direction, we believe it would be interesting
to investigate a more powerful spatio-temporal loss function. Our
method, while providing a significant improvement in temporal
stability compared to previous work, uses an image-to-image loss
trying to match each frame as closely as possible. However, there
might be a better trade-off in spatio-temporal reconstruction quality
when considering temporal consistency. While promising, this is an
active area of research and the best perceptual trade-off between
spatial and temporal artifacts still remains an open question.

5 CONCLUSION

We have presented a new method for neural upsampling of ren-
dered video content. Our method achieves a new state of the art in
super-resolving undersampled videos with extreme aliasing by us-
ing a new temporal upsampling design. Our method also compares

ACM Trans. Graph., Vol. 39, No. 4, Article 142. Publication date: July 2020.

142:12 + Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, and Anton Kaplanyan

numerically favorably to the existing state-of-the-art methods in
superresolution, as well as in temporal supersampling used in game
engines. We have also demonstrated the real-time performance of
our method, which enables it to be used in real-time rendering ap-
plications in the future. We believe that the open design and the
high-quality results reported in our method will also pave the road
to a new body of work for neural supersampling in graphics.

REFERENCES

Martin Abadi et al. 2015. TensorFlow: Large-scale machine learning on heterogeneous
systems. https://www.tensorflow.org/

Kurt Akeley. 1993. Reality engine graphics. In Proceeding of Computer Graphics and
Interactive Techniques (SIGGRAPH). 109—-116.

Jose Caballero, Christian Ledig, Andrew Aitken, Alejandro Acosta, Johannes Totz,
Zehan Wang, and Wenzhe Shi. 2017. Real-time video super-resolution with spatio-
temporal networks and motion compensation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 4778-4787.

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive reconstruc-
tion of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM
Transactions on Graphics (Proceedings of SGGRAPH) 36, 4 (2017), 98:1-98:12.

Mengyu Chu, You Xie, Laura Leal-Taixé, and Nils Thuerey. 2018. Temporally coherent
gans for video super-resolution (tecogan). arXiv preprint arXiv:1811.09393 (2018).

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2015. Image super-
resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence 38, 2 (2015), 295-307.

Andrew Edelsten, Paula Jukarainen, and Anjul Patney. 2019. Truly next-gen: Adding
deep learning to games and graphics. In NVIDIA Sponsored Sessions (Game Developers
Conference).

Epic Games. 2020. Unreal engine. https://www.unrealengine.com

Weifeng Ge, Bingchen Gong, and Yizhou Yu. 2018. Image super-resolution via
deterministic-stochastic synthesis and local statistical rectification. In SSGGRAPH
Asia 2018 Technical Papers. ACM, 260.

Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of Artificial Intelligence and Statistics.
249-256.

Muhammad Haris, Gregory Shakhnarovich, and Norimichi Ukita. 2019. Recurrent back-
projection network for video super-resolution. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 3897-3906.

Samuel W Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew Adams, Jonathan T Barron,
Florian Kainz, Jiawen Chen, and Marc Levoy. 2016. Burst photography for high
dynamic range and low-light imaging on mobile cameras. ACM Transactions on
Graphics (TOG) 35, 6 (2016), 1-12.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 770-778.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. 2017.
Densely connected convolutional networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 4700-4708.

Jorge Jimenez, Jose L. Echevarria, Tiago Sousa, and Diego Gutierrez. 2012. SMAA:
Enhanced subpixel morphological antialiasing. Comput. Graph. Forum 31, 2pt1
(2012), 355—-364.

Younghyun Jo, Seoung Wug Oh, Jaeyeon Kang, and Seon Joo Kim. 2018. Deep video
super-resolution network using dynamic upsampling filters without explicit motion
compensation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 3224-3232.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual losses for real-time
style transfer and super-resolution. In European Conference on Computer Vision.
694-711.

A. S. Kaplanyan, S. Hill, A. Patney, and A. Lefohn. 2016. Filtering distributions of
normals for shading antialiasing. In Proceedings of High Performance Graphics (HPG).
151-162.

Anton S. Kaplanyan, Anton Sochenov, Thomas Leimkuehler, Mikhail Okunev, Todd
Goodall, and Rufo Gizem. 2019. DeepFovea: Neural reconstruction for foveated
rendering and video compression using learned statistics of natural videos. ACM
Trans. Graph. (Proceedings of SSIGGRAPH Asia) 38, 4 (2019), 212:1-212:13.

Brian Karis. 2014. High quality temporal anti-aliasing. In ACM Trans. Graph. (Advances
in Real-Time Rendering). Article 4.

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. 2016. Accurate image super-resolution
using very deep convolutional networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 1646-1654.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

ACM Trans. Graph., Vol. 39, No. 4, Article 142. Publication date: July 2020.

Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. 2017. Deep
Laplacian pyramid networks for fast and accurate super-resolution. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 624-632.

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang,
et al. 2017. Photo-realistic single image super-resolution using a generative adver-
sarial network. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 4681-4690.

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. 2017.
Enhanced deep residual networks for single image super-resolution. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 136—
144.

T. Lottes. 2009. FXAA. Technical Report. NVIDIA Corp. 3 pages.

Microsoft. 2019. Directx variable rate shading. https://microsoft.github.io/DirectX-
Specs/d3d/VariableRateShading.html.

Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari,
Ravi Ramamoorthi, Ren Ng, and Abhishek Kar. 2019. Local light field fusion: Practical
view synthesis with prescriptive sampling guidelines. ACM Transactions on Graphics
(TOG) 38, 4 (2019), 1-14.

Nvidia Corporation. 2017-2018. TensorRT. https://developer.nvidia.com/tensorrt.

Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris Wyman, Nir Benty,
David Luebke, and Aaron Lefohn. 2016. Towards foveated rendering for gaze-tracked
virtual reality. ACM Trans. Graph. 35, 6 (2016), 179:1-179:12.

William T. Reeves, David Salesin, and Robert L. Cook. 1987. Rendering antialiased shad-
ows with depth maps. In ACM Transactions on Graphics (Proceedings of SSGGRAPH).

Alexander Reshetov. 2009. Morphological antialiasing. In Proceedings of High Perfor-
mance Graphics (HPG). 109--116.

Mehdi SM Sajjadi, Raviteja Vemulapalli, and Matthew Brown. 2018. Frame-recurrent
video super-resolution. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 6626-6634.

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R. Alla
Chaitanya, John Burgess, Shigiu Liu, Carsten Dachsbacher, Aaron Lefohn, and Marco
Salvi. 2017. Spatiotemporal variance-guided filtering: Real-time reconstruction for
path-traced global illumination. In Proc. High Performance Graphics (HPG). Article 2,
2:1-2:12 pages.

Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz, Andrew P Aitken, Rob
Bishop, Daniel Rueckert, and Zehan Wang. 2016. Real-time single image and
video super-resolution using an efficient sub-pixel convolutional neural network.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
1874-1883.

Rajiv Soundararajan and Alan C Bovik. 2012. Video quality assessment by reduced
reference spatio-temporal entropic differencing. IEEE Transactions on Circuits and
Systems for Video Technology 23, 4 (2012), 684-694.

Xin Tao, Hongyun Gao, Renjie Liao, Jue Wang, and Jiaya Jia. 2017. Detail-revealing
deep video super-resolution. In Proceedings of the IEEE International Conference on
Computer Vision. 4472-4480.

Unity Technologies. 2005-2020. Unity engine. http://unity3d.com.

Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and Chen Change Loy. 2019. EDVR:
Video restoration with enhanced deformable convolutional networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simoncelli, et al. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE Transactions
on Image Processing 13, 4 (2004), 600-612.

Lance Williams. 1983. Pyramidal parametrics. In Proceedings of the 10th Annual Confer-
ence on Computer Graphics and Interactive Techniques (SSIGGRAPH). 1—11.

Bartlomiej Wronski, Ignacio Garcia-Dorado, Manfred Ernst, Damien Kelly, Michael
Krainin, Chia-Kai Liang, Marc Levoy, and Peyman Milanfar. 2019. Handheld multi-
frame super-resolution. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1-18.

Lei Yang, Diego Nehab, Pedro V. Sander, Pitchaya Sitthi-amorn, Jason Lawrence, and
Hugues Hoppe. 2009. Amortized supersampling. ACM Trans. Graph. 28, 5 (2009),
1--12.

Wenming Yang, Xuechen Zhang, Yapeng Tian, Wei Wang, Jing-Hao Xue, and Qingmin
Liao. 2019. Deep learning for single image super-resolution: A brief review. IEEE
Transactions on Multimedia 21, 12 (2019), 3106-3121.

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. 2018a.
Image super-resolution using very deep residual channel attention networks. In
Proceedings of the European Conference on Computer Vision. 286-301.

Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. 2018b. Residual
dense network for image super-resolution. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2472-2481.

https://www.tensorflow.org/
https://www.unrealengine.com
https://microsoft.github.io/DirectX-Specs/d3d/VariableRateShading.html
https://microsoft.github.io/DirectX-Specs/d3d/VariableRateShading.html
https://developer.nvidia.com/tensorrt
http://unity3d.com

	Abstract
	1 Introduction
	2 Related Work
	2.1 Real-time Rendering
	2.2 Image and Video Superresolution

	3 Method
	3.1 Problem Setting
	3.2 Network Architecture
	3.3 Losses
	3.4 Datasets and Implementation

	4 Results
	4.1 Runtime Performance
	4.2 Quality Evaluation
	4.3 Analysis
	4.4 Limitations and Future Work

	5 Conclusion
	References

