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Smoke Rings from Smoke
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Abstract
We give an algorithm which extracts vortex filaments (“smoke
rings”) from a given 3D velocity field. Given a filament strength
h > 0, an optimal number of vortex filaments, together with
their extent and placement, is given by the zero set of a complex
valued function over the domain. This function is the global
minimizer of a quadratic energy based on a Schrödinger oper-
ator. Computationally this amounts to finding the eigenvector
belonging to the smallest eigenvalue of a Laplacian type sparse
matrix.

Turning traditional vector field representations of flows, for exam-
ple, on a regular grid, into a corresponding set of vortex filaments
is useful for visualization, analysis of measured flows, hybrid sim-
ulation methods, and sparse representations. To demonstrate our
method we give examples from each of these.
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1 Introduction

Water vapor risingMany velocity fields common
in nature can be encoded by
vortex filaments in an extraor-
dinarily sparse and efficient
way. Such collections of di-
rected curves (closed or be-
ginning and ending on the
boundary) arise because vorticity always originates in 2D sheets
on interfaces, e.g., on obstacles or between hot and cold fluid,
and then rapidly rolls up into 1D structures. Simulation methods
based on vortex filaments have been described in the CFD litera-
ture [Chorin 1990; Chorin 1993; Bernard 2006; Bernard 2009]
as well as in Computer Graphics [Angelidis and Neyret 2005;
Weißmann and Pinkall 2010], and offer a number of advantages
over grid-based methods:

• no gridding of the domain is required, facilitating simula-
tions in unbounded domains;

• energy and momentum conservation are achieved easily
and problems such as vorticity diffusion avoided;

• filaments gracefully handle phenomena, such as leapfrog-
ging vortex rings, which are difficult to reproduce with
grid-based methods;

Figure 1: Using a frame from a standard velocity simulation, we
convert it to vortex filaments and then evolve these. This results in
finer detail than the grid simulation alone could have resolved.

• animators appreciate the intuitive control of fluid flow
through manipulating sets of curves.

For these reasons, filaments have been used in production and are
now part of the HoudiniTM FX animation software [Side Effects
Software Inc. 2013]. What is missing so far is a method to extract
a vortex filament representation from a given velocity field. Such
a method

1. provides a tool to analyse and visualize measured and com-
puted flows;

2. enables simplification and level-of-detail for filament repre-
sentations;

3. allows for new hybrid solvers (e.g., see Fig. 1).

We provide the first such method to extract vortex filaments from
velocity fields. It is based on a novel criterion for the comparison
of singular vortex filaments and continuous vorticity. In practice,
our algorithm amounts to setting up a data dependent sparse
Laplacian matrix and using a standard linear algebra package
to find the eigenvector corresponding to its smallest eigenvalue.
The filaments are then extracted through 1D contour tracing.
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1.1 Related Work

While there is no antecedent for the ability to extract vortex
filaments from velocity fields, detection, visualization, and simu-
lation of vortex primitives has been pursued and we review work
from these areas briefly here.

Vortex detection is essential to the analysis of flow fields. Jiang
and co-workers [2005] provide a taxonomy of available methods,
in terms of which our approach finds directed structure, i.e.,
lines rather than just vortex regions; works globally rather than
locally; and is Galilei invariant. The latter is a requirement for
identifying moving vortices. Since our method is gauge invariant
(see App. A.1) it is in particular Galilei invariant.

Vortex visualization is often done through volumetric color coding
or level sets of the norm of vorticity, e.g., [Chatelain et al. 2008;
Troolin and Longmire 2010; Le et al. 2011]. Iso-surfaces in
particular can be quite misleading, as they do not necessarily
reveal the topology of the vorticity field lines. Extracting vortex
filaments, as we do, produces more reliable and geometrically
meaningful results, in particular for measured data with its high
noise (see Sec. 4.3).

Vortex simulation methods also use sheets and particles [Stock
et al. 2008; Kim et al. 2009; Brochu et al. 2012; Pfaff et al.
2012; Golas et al. 2012], often for hybrid approaches. Pfaff and
coworkers [2012], for example, use a high-detail vortex sheet
on the boundary of a buoyant region while a grid-based solver
handles bulk motion. Golas and co-workers [2012] use vortex
particles to deal with unbounded domains and grid-based solvers
for boundary handling. To match a given velocity they seed
vortex particles iteratively in a local, greedy fashion, while we
solve globally for vortex filaments without fixing the location or
number of such filaments.

To summarize, an efficient method for the extraction of vortex
filaments from velocity fields has broad applicability across a
wide spectrum of applications and is so far missing.

2 Ansatz
Problem Statement: Given a velocity field v over some domain
U ⊂ R3 and a strength parameter h > 0, find a set of oriented
curves Γ = {γ1, . . .} that, when interpreted as vortex filaments of
strength h, provide a parsimonious approximation of the vorticity
field ω= curlv.

Figure 2: Filaments (red) are given by the intersection of the zero
contours of Re(ψ) (blue) and Im(ψ) (yellow). (Compare Fig. 5.)

To formulate an optimality criterion for this task we need to
choose (i) a representation for Γ and (ii) a measure of the quality

of the approximation. To avoid a difficult combinatorial (how
many?) optimization problem we represent Γ implicitly as the
zero set of a complex function ψ: U → C. The zero set corre-
sponds to intersections of the zero contours of Re(ψ) and Im(ψ),
which are, generically, transversally intersecting smooth surfaces.
Hence their intersection generically consists of 1D curves which
are either closed or begin and end on the boundary of U (Fig. 2
& movie).

Since vortex filaments are singular we cannot compare them
directly with a continuous vector field ω. Instead we ask that
the vorticity ω of the original field, integrated over a test surface,
be close to the (signed) sum of vortex filaments crossing this
test surface (see Fig. 3). This is analogous to judging a halftoned
image by comparing the number of black and white pixels (signed
crossings) in a given region (test surface) with its gray content
(integrated vorticity).

∂Σ−→

Σ

Figure 3: Left: a test surface Σ colored by vorticity. Right: vortex
filaments crossing this test surface. The (signed) sum of filaments
“threading” through the boundary ∂Σ, multiplied by their strength
h> 0, should approximate the integral of vorticity over Σ well.

To turn this quality criterion into a computationally feasible con-
vex optimization problem we need to study the relationship be-
tween ψ and measures of vorticity. We express our derivations in
the language of exterior calculus. For readers new to the subject
we recommend the course notes [Crane et al. 2013] for a basic
introduction. Note that we use complex valued differential forms,
which are not fundamentally different from the standard case
of real valued forms. Readers whose primary interest is in the
implementation may choose to skip ahead to Sec. 3.

First note that for a general ψ = reiα its differential is dψ =
dreiα + iψdα and thus

dα= d argψ=
〈dψ, iψ〉
|ψ|2

,

using the real inner product 〈u, v〉 = Re(ūv) for u, v ∈ C. Know-
ing d argψ we can compute the winding number n ∈ Z ofψ (with
respect to the origin) around the boundary of a surface Σ as

n=
1

2π

∫

∂Σ

d argψ=
1

2π

∫

∂Σ

〈dψ, iψ〉
|ψ|2

(1)

(here we assumedψ 6= 0 on ∂Σ). This integral counts the number
of full turns the vector ψ makes along ∂Σ [Wikipedia 2014b],
which in turn reveals the (signed) sum of zeros of ψ crossing
Σ (as a consequence of Stokes’ theorem). Fig. 4 demonstrates
an example showing the complex numbers ψ(p) displayed as
vectors (left) resp. normalized vectors (right) for p ∈ Σ. One can
verify here that the number of full turns performed by ψ along
the boundary loop equals the (signed) sum of zeros of ψ (resp.
singularities of the normalized field) on the inside.

We will now compare this with the vorticity of the given velocity
field v as measured over Σ. Define the 1-form η := 〈v, .〉 and
integrate the vorticity 2-form dη over Σ

∫

Σ

dη=

∫

∂Σ

η=

∫

∂Σ

〈iηψ, iψ〉
|ψ|2

, (2)
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Figure 4: A signed (red: +1; blue: −1) count of zeros of ψ on Σ
is given by its winding number around ∂Σ. This also corresponds
to a signed count of the singularities of ψ/|ψ| within Σ.

where the first equality follows from Stokes’ theorem and the
second equality from 1= 〈iψ, iψ〉/|ψ|2.

Our approximation will be good if hn ≈
∫

∂Σ
η. Using the short-

hand ħh = h
2π

and Eqs. (1) and (2) this amounts to asking that

∫

∂Σ

ħh〈dψ− iη̂ψ, iψ〉
|ψ|2

(3)

be small in magnitude for η̂ = η

ħh
. If |ψ| is bounded away from

zero, i.e., ∂Σ maintains some minimal distance to the zero set
of ψ, the integral in Eq. (3) will certainly be small if the 1-form
dψ− iη̂ψ is small.

As a function ofψ this expression encodes a particular differential
which we will denote d∇ and henceforth write d∇ψ := (d −
iη̂)ψ= dψ− iη̂ψ.

To ensure that the 1-form d∇ψ is small in magnitude we seek ψ
which minimizes the quadratic, convex, Dirichlet like energy

E(ψ) = ħh
2

2
‖d∇ψ‖2 = ħh

2

2
〈〈d∇ψ, d∇ψ〉〉, (4)

subject to a unit L2 norm constraint, i.e., ‖ψ‖2 = 1 (note that
this is not a pointwise constraint on ψ) and suitable boundary
conditions (more on those in App. A). Here 〈〈α,β〉〉=

∫

U
ᾱ∧ ∗β

denotes the standard L2 Hermitian product on complex valued
k-forms α and β .

Summary In our derivation we used the concept of test surfaces
and measurements across these, namely that the number of fil-
aments (zeros of ψ) crossing such a test surface, multiplied by
their strength (h> 0), should be close to the vorticity of the input
vector field v over such test surfaces. We showed that this approx-
imation is indeed a good one if the L2 norm of d∇ψ is small over
all of U . In particular the energy to be minimized (Eq. (4)) no
longer depends on test surfaces. That such a minimizing solution
for ψ indeed yields small approximation error when measured
across particular test surfaces, is the subject of Sec. 4.2.

In summary then, the sought after smoke ring set Γ (of
strength h) is the zero set of the minimizer ψ of Eq. (4).

In App. A we show that Eq. (4) is the Hamiltonian of a quantum
mechanical particle with unit mass and unit charge moving in
a magnetic field B = curlv. Thus the minimizer of Eq. (4) is
the eigenfunction belonging to the smallest eigenvalue of the
magnetic Schrödinger operator. Importantly we can use numerical
methods from computational physics to find it (see Sec. 3).

3 Implementation
Numerical methods for the minimization of Eq. (4) on regular
Cartesian grids were given by [Governale and Ungarelli 1998;
Halvorsen and Kvaal 2012]. Since this is the most common case
in practice we use it as a basis of our implementation (see also
the elementary Matlab code provided as supplemental material).
A more general derivation applicable to non-uniform grids as
well as simplicial meshes can be found in App. B.

c j ck

f jk

Let the input velocity field be
given on a staggered Cartesian
grid with spacing δ (uniform
along x-, y-, and z-axes) and let
v jk denote the velocity compo-
nent stored on the facet f jk be-
tween grid cells c j and ck. Given a filament strength h> 0 define
the data dependent matrix Eδ

Eδjk =−e−iη̂ jk , Eδk j = Ēδjk, Eδj j = d, η̂ jk =
δ

ħh
v jk,

where d is the number of cell neighbors of c j . For input in
the form of 3D velocity samples on cell centers, set v jk to the
corresponding component of the three vector (v j + vk)/2.

With Eδ in hand, find the eigenvector ψ belonging to
its smallest eigenvalue. We used the iterative eigensolver
PRIMME [Stathopoulos and McCombs 2010] with ILUT precon-
ditioning [Saad 2005] (direct methods are not practical due to
the size of Eδ). If the chosen eigensolver supports only real sym-
metric matrices, convert Eδ by replacing all complex numbers
a+ i b with 2× 2 block matrices

� a −b
b a

�

.

c j ck

clcm

f jklm

Given the minimizer ψ j
we extract the filament set
Γ as the zero set of a tri-
linear interpolation of ψ j .
Here we make the gener-
icity assumption that this
tri-linear interpolation has
zeros only in the open in-
terior of any facet f jklm (formed by 4 consecutive centers
{c j , ck, cl , cm}). The associated values ψ j,k,l,m form a quadrilat-
eral in the complex plane whose edges do not pass through the
origin with winding number

n jklm =
1

2π

�

arg(ψk
ψ j
) + arg( ψl

ψk
) + arg(ψm

ψl
) + arg(

ψ j

ψm
)
�

.

Since all four summands lie in the open interval between (−π,π)
n jklm ∈ {−1,0, 1}.

The curves γ in Γ only intersect faces with n jklm = ±1. We
locate the position of these intersection points using bi-linear
interpolation

0= (1− v)((1− u)ψ j + uψk) + v((1− u)ψm + uψl). (5)

This equation implies the vanishing of

det((1− u)ψ j + uψk, (1− u)ψm + uψl),
where det(z, w) = −i Im(z̄w) is the real determinant of complex
numbers. The solutions to this quadratic equation in u give a
corresponding v via Eq. (5). Because the winding number is
±1 we know that exactly one of the resulting (u, v)-pairs lies in
(0, 1)× (0,1).

In this way we determine intersection points for any face f jklm
with a non-zero winding number. For a given cube of 6 faces we
know that the indices must sum to zero because the 24 angles
involved cancel in pairs. Hence we have one, two or three “in-
coming faces” and an equal number of “outgoing faces” for any
cube crossed by the zero curves.
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Producing Γ It remains to determine how to join entry and exit
points in the interior of a cube. In case there is more than one
entry/exit pair for a given cube, we connect them to minimize the
total length of the joining edges. This choice is consistent with
the variational principle underlying reconnection, which favors
shorter curves [Weißmann and Pinkall 2010]. The whole set Γ is
produced by tracing. Starting with boundary faces of non-zero
winding number follow the (directed) curve until it exits another
boundary face (curves that start on the boundary must end on
the boundary). Once those are exhausted we may choose any
remaining face with a non-zero winding number and trace the
corresponding closed curve until all such faces are exhausted.

In our implementation we use OpenVDB [Museth 2013] as a
sparse, infinite grid data structure, storing in it only faces with
non-zero winding number.

4 Numerical Experiments

Figure 5: For a sharp vortex ring with strength h= 1 we find a sin-
gle filament within a narrow tubular neighborhood (no smoothing
was performed on the extracted piecewise linear curve).

4.1 Influence of h

We begin our experiments with velocity fields arising from a
unit strength vortex filament. Taking a trefoil knot (studied
experimentally in [Kleckner and Irvine 2013]), we sample its
velocity via the Biot-Savart law on the facets of an 80× 60× 80
grid. For h = 1 our method recovers the input trefoil within
discretization error (Fig. 5). Increasing h above 1 results in
coarser approximations (Fig. 6 & movie).

h= 0.288

Letting h be a fraction of the
strength of the input vortex ring
produces “ropes.” Here h is
slightly less than 1/3 resulting
in three vortex rings with an ad-
ditional small ring in the cen-
ter. As h continues to decrease,
the small center ring grows and
eventually joins the “rope” and
so on (see movie). In general, small rings appear whenever nec-
essary in order to optimally approximate the velocity field with
given filament strength h. This can result in undesired effects
when visualization is the primary objective, making it necessary
to fine-tune the choice of h.

To understand the appearance of ropes consider a test surface Σ

h= 1.0 h= 1.4

h= 1.7 h= 2.0

Figure 6: As h increases ever more coarse approximations result
(filament cross sections are proportional to h).

intersecting the trefoil. For h ≈ 1/n the winding number of ψ
should be n, i.e., we expect n filament intersections with Σ. Since
filaments do not overlap and are resolved at the grid size (i.e.,
any grid facet can intersect with a single filament only), “ropes”
result. Details of their braiding have little impact on the velocity
field and the rope as a whole carries the correct vorticity. In
contrast, for smoother vorticity fields (e.g., from measurements
or grid based simulations), the occurrence of “ropes” corresponds
to aliasing effects due to undersampling of the velocity field
relative to h and indicates that h was chosen too small for the
given data (see below).

h= 1.2 h= 0.6 ωz

Σ = 13× 13 Σ = 13× 13 Σ = 13× 13

Figure 7: Slice through a volume showing filament intersections
(top left; middle) and vorticity (top right). Underneath the corre-
sponding Σ integrals. Note excellent agreement between bottom
middle and right.

4.2 Agreement on Test Surfaces

Our approach is predicated on
(h-times) the number of vortex
filament intersections in a test
surface Σ approximating vortic-
ity flux over Σ. As an example
we take a slice orthogonal to
the z-axis of a time frame of
the measurements in [Troolin
and Longmire 2010] (the inset
Fig. shows vorticity on such a
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slice with an extracted vortex filament). Fig. 7 shows the results
on this slice for differing h and the corresponding test surface
integrals. The excellent agreement between the bottom middle
and right image supports our claim: the vortex filaments exhibit
vorticity on test surfaces similar to that of the input field.

Taking the difference between filament and vorticity flux through
Σ, Fig. 8 shows the mean error as a function of h for three
different test surface sizes: 7× 7 (blue), 15× 15 (purple), and
21×21 (red). On the left synthetic data (a blurred version of the
velocity field in Sec. 4.1) and on the right measured data (see
Sec. 4.3). We observe a reduction in error as h becomes smaller
with a rate independent of the test surface size though depending
on the type of input data.

1.000.500.20 2.000.300.15 1.500.70
h

0.00020

0.00030

0.00015

mean error

1.000.50 2.000.30 1.500.70
h

0.00100

0.00050

0.00030

0.00070

mean error

Figure 8: Mean error of our method as a function of h for different
Σ plotted on a log/log scale. Left: synthetic data; right: measured
data.

Choice of h The strength parameter h controls level-of-detail
in the resulting filament representation, and its choice depends
on the application at hand. Due to discretization artifacts (see
discussion on “ropes” in Sec. 4.1) it is not possible to choose h
arbitrarily small. In fact there is a data-dependent lower bound
below which aliasing effects from undersampling occur. This
bound depends on both grid resolution and velocity data, and so
far we have no automatic method to determine it. In practice we
found that running the minimization with a couple of different h
values quickly reveals a good value of h.

Figure 9: Result (4 time frames) of applying our method to the
measured data set of Troolin and co-workers (see movie).

4.3 Extracting Features from Measured Data

We now apply our method to measured velocity data of a jet
emanating from an inclined nozzle [Troolin and Longmire 2010].
The velocity of ≈ 35,000 tracer particles was tracked and in-

terpolated onto a regular 80× 80× 60 grid. Compare also the
numerical simulation of the same setup in [Le et al. 2011].

As is evident from [Troolin and Longmire 2010], interpreting the
resulting vortex structure in terms of several interacting vortex
rings is crucial for understanding the underlying dynamics. The
original visualization was based on level sets of the vorticity norm
with superimposed velocity vectors (the movie shows such a level
set without additional velocity vectors). Our method produces
the vortex filaments directly and faithfully records the topology
changes that occur during the time evolution of the flow (Fig. 9).

The filament strength in
Fig. 9 matches the strength
of the dominant vortex
rings. With 1/2 the filament
strength more of the fine
level structure of the flow
is resolved (shown here to-
gether with a level surface
of vorticity magnitude).

4.4 Reconnection

In practice, filament-based simulations must deal with the ex-
ponential growth in filament detail, much of which contributes
almost nothing to the velocity field. This is achieved by changing
the topology through reconnection and in particular the removal
of hairpins [Chorin 1990; Chorin 1993; Weißmann and Pinkall
2010]. These approaches are local. Instead we can proceed

Figure 10: Left: A filament jet that has evolved without recon-
nection. Right: The result of decomposing the velocity field of the
filaments on the left into filaments of the same strength (see movie).

globally by converting the current set of filaments to velocities
on a grid (using, e.g., Biot-Savart or a Poisson solver) followed
immediately by extracting filaments of the same strength. Fig. 10
shows the result on the right when starting with the filaments on
the left. Here the total length of filaments was reduced by 40%.

This method can also be used to create level-of-detail approx-
imations by performing the extraction with a larger h. Such
re-quantization is shown in Fig. 11 (and the movie) and can be
useful for time constrained simulations.
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Figure 11: Re-quantization of the same jet as in Fig. 10 with
filaments whose strength equals two, three or four times the original
filament strength.

4.5 Increasing Detail in Velocity Fields

When animating fluids there often is a lack of fine level detail,
due to, e.g., insufficient grid resolution or excessive numerical
diffusion. We can improve this situation with a process we call
“velocity stippling”: given a velocity field we extract vortex fil-
aments and immediately convert them back to a velocity field.
This process tends to give regions of high average vorticity fine
level detail in the form of numerous filaments while keeping the
overall appearance of the flow. This is so because the method
interprets the vorticity seen in a certain region as an averaged
version of a vorticity that has already rolled up into filaments
and then reconstructs those filaments which in turn give rise to a
highly detailed velocity field in those regions.

To see velocity stippling at work con-
sider first a time frame of a simulation
produced with a standard grid solver.
The inset Fig. shows vortex filaments
extracted from such a frame (left). To
track different evolutions we use the
same seed particles (right) for all our
experiments. Now we consider three
different experiments starting from this
frame. In the first one we keep all the
original velocity data and simply advect
the particles seeded near the filaments
(Fig. 12, left). This is the simulation
that lacks detail which we wish to im-
prove. In the next experiment we apply
our velocity stippling algorithm. We turn the vortex filaments
back into a velocity field and use it as initial condition for the
standard grid solver (Fig. 12, middle). This single conversion to
filaments and back to velocity, while still using the standard grid
solver, already shows more detail. Finally, we can also use the
extracted filaments and evolve them with a filament solver. This
of course yields the most detail (Fig. 1 & Fig. 12, right). In the
last case the particles are still advected on a grid by advecting
them in the velocity field generated from the filament simulation
at each step (using Biot-Savart or a Poisson solver).

Performance Most of the computation time is spent on solving
for the smallest eigenvector ψ. Initializing the sparse matrix Eδ

and tracing the filaments is negligible in all experiments. The
trefoil example and the measured velocity data (grid size for both
80× 60× 80) take about 15 sec. to compute. Finding ψ for the
filament jet (grid size 80 × 160 × 80) takes less than 60 sec.,
tracing the 335 polylines (with 20,052 vertices) takes 680 ms.

Figure 12: The baseline simulation (left) shows advection of par-
ticles in a grid based solver velocity field. Evolving the stippled
velocity field with the grid based solver yields more detail (middle),
while the highest detail results from a filament solver (right). The
superimposed filaments also show the different degrees of detail
(also see movie).

All simulations were computed on a Macbook Pro with 2.7 GHz
Intel Core i7 and 16 GB RAM. A sequence of frames (coherent
either in time or in h) typically requires only 1/2 the time when
using a previous frame ψ as initial guess for the eigensolver at
the next frame.

5 Conclusion

We demonstrated that a rather simple computational procedure
(Sec. 3) can reliably extract vortex filaments from given velocity
data. While the usefulness of this algorithm is clear for flow
visualization and analysis, we see a large unexplored territory
concerning possible further applications within the work flow of
fluid modelling and simulation. Our example of velocity stippling
(Sec. 4.5) used stippling only once and already achieved a marked
increase in detail. The algorithm is fast enough that one can
imagine integrating it into a fluid solver on a per-time-frame
basis. We believe that we have only scratched the surface of the
possibilities in this area.

While we demonstrated empirically that the quality of the fila-
ment representation improves with smaller h, the relationship
between h, grid resolution and velocity input deserves a more
detailed analysis.

Our algorithm is also applicable in other physical scenarios where
filaments play a role. These include electromagnetism and the
simulation and visualization of solar flares in magnetohydrody-
namics.

Much work also remains to be done in the underlying mathemat-
ical theory. Efforts in this direction seem all the more worthwhile
since the same type of mathematical machinery (related to Lattice
Gauge Theory) also occurred in the seemingly unrelated context
of placing direction field singularities on surfaces [Knöppel et al.
2013].
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A Quantum Mechanical Analogue

The energy in Eq. (4) has a physical interpretation. It is twice
the expectation value of the energy for a quantum mechanical
particle with unit mass and unit charge moving in a magnetic
field B = curlv. According to the standard rules of quantum
mechanics [Wikipedia 2014a] this expectation value is given as

EQM(ψ) = 〈〈ψ, Hψ〉〉 (6)

with the Schrödinger operator

H =− ħh
2

2
∗ d∇ ∗ d∇ (7)

and the 1-form η̂= 〈 v
ħh
, .〉 arising from the vector potential of the

magnetic field.

More precisely, using the divergence theorem we obtain

EQM(ψ) = E(ψ)−
ħh2

2

∫

∂ U

ψ̄ ∗ d∇ψ.

Hence, if we impose either zero Dirichlet boundary conditions
ψ|∂ U = 0, or zero Neumann boundary conditions ∗d∇ψ|∂ U = 0,
we obtain equality of EQM(ψ) and E(ψ). In all our experiments
we used zero Neumann boundary conditions.

With either of these boundary conditions our optimization will
be solved by the eigenfunction ψ belonging to the smallest eigen-
value of the elliptic self-adjoint operator H

Hψ= λψ (8)

Physically, this ψ represents the ground state of the charged par-
ticle in the given magnetic field.

Smoke Rings from Smoke        •        140:7

ACM Transactions on Graphics, Vol. 33, No. 4, Article 140, Publication Date: July 2014

http://dx.doi.org/10.1145/1073368.1073380
http://dx.doi.org/10.1145/1073368.1073380
http://dx.doi.org/10.1073/pnas.0604159103
http://dx.doi.org/10.1073/pnas.0604159103
http://dx.doi.org/10.1063/1.3081559
http://dx.doi.org/10.1063/1.3081559
http://dl.acm.org/citation.cfm?id=2422371
http://dl.acm.org/citation.cfm?id=2422371
http://dx.doi.org/10.1016/j.cma.2007.11.016
http://dx.doi.org/10.1016/j.cma.2007.11.016
http://dx.doi.org/10.1016/0021-9991(90)90001-H
http://dx.doi.org/10.1006/jcph.1993.1120
http://dx.doi.org/10.1137/090757502
http://dx.doi.org/10.1137/090757502
http://dx.doi.org/10.1137/090757502
http://doi.acm.org/10.1145/2504435.2504442
http://dx.doi.org/10.1007/978-3-7643-8621-4_16
http://dx.doi.org/10.1007/978-3-7643-8621-4_16
http://dx.doi.org/10.1145/2366145.2366167
http://dx.doi.org/10.1145/2366145.2366167
http://link.aps.org/doi/10.1103/PhysRevB.58.7816
http://link.aps.org/doi/10.1103/PhysRevB.58.7816
http://dx.doi.org/10.1016/j.physleta.2012.02.028
http://dx.doi.org/10.1016/j.physleta.2012.02.028
http://dx.doi.org/10.1016/B978-012387582-2/50016-2
http://dx.doi.org/10.1016/B978-012387582-2/50016-2
http://dx.doi.org/10.1145/1618452.1618466
http://dx.doi.org/10.1145/1618452.1618466
http://dx.doi.org/10.1038/nphys2560
http://dx.doi.org/10.1038/nphys2560
http://dx.doi.org/10.1145/2461912.2462005
http://dx.doi.org/10.1017/jfm.2011.340
http://dx.doi.org/10.1017/jfm.2011.340
http://www.openvdb.org
http://www.openvdb.org
http://dx.doi.org/10.1145/2185520.2185608
http://dx.doi.org/10.1145/2185520.2185608
http://dx.doi.org/10.1002/nla.1680010405
http://dx.doi.org/10.1002/nla.1680010405
http://www.sidefx.com
http://www.cs.wm.edu/~andreas/software/
http://www.cs.wm.edu/~andreas/software/
http://www.cs.wm.edu/~andreas/software/
http://dx.doi.org/10.1016/j.jcp.2008.05.022
http://dx.doi.org/10.1016/j.jcp.2008.05.022
http://dx.doi.org/10.1016/j.jcp.2008.05.022
http://dx.doi.org/10.1007/s00348-009-0745-z
http://dx.doi.org/10.1007/s00348-009-0745-z
http://dx.doi.org/10.1145/1778765.1778852
http://dx.doi.org/10.1145/1778765.1778852
http://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics)
http://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics)
http://en.wikipedia.org/wiki/Winding_number
http://en.wikipedia.org/wiki/Winding_number
http://link.aps.org/doi/10.1103/PhysRevD.10.2445


A.1 Gauge Invariance

Our goal is to find an approximation of the vorticity ω = curlv
through vortex filaments, yet we define an energy which depends
on v not ω. Adding the gradient of a function to the velocity field
ṽ = v+ grad f , leaves the curl unchanged ω̃ =ω. What happens
to the minimizer of Eq. (4)? Let us assume that the domain U
is simply connected and incorporate grad f̂ = grad f

ħh
into the

definition of d̃∇ = d − i(η̂+ df̂ ) and apply it to ψ̃= ei f̂ψ

d̃∇ψ̃= idf̂ ψ̃+ ei f̂ dψ− iη̂ei f̂ψ− idf̂ ψ̃

= ei f̂ (d − iη̂)ψ= ei f̂ d∇ψ
(9)

Thus if ψ is a minimizer of Eq. (4) then ψ̃ is a minimizer of the
energy derived from ṽ and achieves the same minimum value. In
particular ψ̃ has the same zeros as ψ and so our vortex filaments
only depend on ω not v.

Importance of Gauge Invariance In physics the transition fromψ
to ψ̃ (accompanied by replacing v with ṽ) is called a gauge trans-
formation and our vortex filament solutions are gauge invariant.
For this reason alone it is important that our numerical solutions
are discretely gauge invariant. Lack of computational gauge in-
variance can also lead to severe numerical errors [Governale and
Ungarelli 1998]. In App. B we will see that the discretization we
use is gauge invariant.

B Discretization
In this section we give a derivation of a discrete version of Eq. (4)
and the corresponding eigenproblem Eq. (8) using the machinery
of Discrete Exterior Calculus (DEC) [Desbrun et al. 2008]. For
concreteness we assume a topologically regular Cartesian grid,
which may be geometrically non-uniform. The final expressions
are valid even for simplicial meshes.

Given the definition of our energy (4) we only need the discrete
version of d∇ acting on discrete 0-forms ψ j and the inner prod-
uct on discrete 1-forms, i.e., the (diagonal) Hodge-∗. Since the
definition of d∇ involves the input velocity field we first discuss
the setup of η̂.

c j ck

f jk

e jk

Velocity Field Input For con-
creteness we assume a staggered
grid representation as input, i.e.,
fluxes ϕ jk = v jk| f jk| on the facets
of a (topologically) regular 3D
Cartesian grid. Here f jk refers to
the facet incident on both cell c j and ck. Define the discrete
1-form

η̂ jk := 1
ħh
∗−1

1 ϕ jk =
1
ħh
|e jk |
| f jk |
ϕ jk

living on (dual) edges e jk connecting cell centers. The discrete
version of the 1-form Hodge star ∗1 is the ratio of facet area | f jk|
to edge length |e jk| (as is standard).

Discrete d∇ The discrete version of the differential d∇ acting on
a discrete 0-form (function) ψ j is given by

d∇ψ jk := r̄ jkψk − r jkψ j , (10)

for r jk = eiη̂ jk/2. In words, the values from the end points are
rotated to the midpoint of the edge before their difference is
taken. To see how this expression comes about consider a func-
tionφ = ei

∫

η̂. (Such a function can always be constructed locally.)
Clearly d∇φ = 0 and it is natural to ask that the discrete differ-
ential d∇ of the discrete version of φ vanish as well. With φk

being different from φ j by a multiplicative factor of eiη̂ jk the dis-
crete definition of Eq. (10) follows from the requirement that a
1-form change sign when the orientation of the underlying edge
is reversed, i.e., d∇ψ jk =−d∇ψk j .

The Discrete Energy Putting it all together the discrete version
of Eq. (4) is a sum over all edges

E(ψ) = ħh
2

2

∑

e jk

| f jk |
|e jk |
|r̄ jkψk − r jkψ j |2. (11)

Note that this equation is also correct for tetrahedral meshes with
dual edges e jk and primal triangles f jk. Defining the matrix

E jk =























−
ħh2

2

| f jk|
|e jk|

r̄2
jk k neighbor of j,

ħh2

2

∑

e jl3 j

| f jl |
|e jl |

for j = k,

0 otherwise,

(12)

the discrete energy is succinctly expressed as

E(ψ) = ψ̄ j E jkψk. (13)

As we saw earlier we have E(ψ) = EQM(ψ). In the discrete setting
this implies that we also have a discretization of the Schrödinger
operator

H jk := |c j |−1E jk.

Discrete Optimization The minimizer of the discrete energy (13)
under the unit norm constraint ‖ψ‖ = 1 is the eigenvector be-
longing to the smallest eigenvalue of

E jkψk = λ|c j |ψ j ,

(which is equivalent to H jkψk = λψ j , the discrete version of
Eq. (8)). Why use the former and not the latter? H jk is not
Hermitian with respect to the Euclidean inner product while E jk
is. Consequently faster eigensolvers are available for E jk. The
appearance of |c j |, i.e., the cell volumes, on the right hand side
makes this a generalized eigenproblem. To arrive at a standard
eigenproblem. Let Ẽ jk = E jk/

p

|c j ||ck| and ψ j = ψ̃ j/
p

|c j | in

Ẽ jkψ̃k = λψ̃ j .

In the case of geometrically uniform grids with |c j | a constant
independent of j one may of course omit the factor |c j | to begin

with and similarly ignore the global factor ħh
2

2

| f jk |
|e jk |

. If furthermore

the grid spacing is equal in all dimensions, the simplified matrix
Eδ (Sec. 3) results.

Convergence and Gauge Invariance In App. A.1 we showed that
the zero set of ψ is gauge invariant in the smooth setting. Our
approach is discretely gauge invariant, which follows from re-
peating the calculation of Eq. (9) using the discrete d∇ (Eq. (10))
and the fact that fk = f j + df jk.

The first gauge invariant lattice discretization goes back to Wil-
son [1974, Eq. 3.5]. For a comparison with standard finite dif-
ference methods see [Governale and Ungarelli 1998; Halvorsen
and Kvaal 2012]. Convergence to the smooth energy, using an
exterior calculus finite element framework, is examined in [Chris-
tiansen and Halvorsen 2011], who use the same discretization as
we do (Eq. (11)) albeit on a simplicial complex.
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