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Abstract

Recent methods for neural surface representation and
rendering, for example NeuS [59], have demonstrated the
remarkably high-quality reconstruction of static scenes.
However, the training of NeuS takes an extremely long time
(8 hours), which makes it almost impossible to apply them
to dynamic scenes with thousands of frames. We propose a
fast neural surface reconstruction approach, called NeuS2,
which achieves two orders of magnitude improvement in
terms of acceleration without compromising reconstruction
quality. To accelerate the training process, we parameter-
ize a neural surface representation by multi-resolution hash
encodings and present a novel lightweight calculation of
second-order derivatives tailored to our networks to lever-
age CUDA parallelism, achieving a factor two speed up. To
further stabilize and expedite training, a progressive learn-
ing strategy is proposed to optimize multi-resolution hash
encodings from coarse to fine. We extend our method for
fast training of dynamic scenes, with a proposed incremen-
tal training strategy and a novel global transformation pre-
diction component, which allow our method to handle chal-
lenging long sequences with large movements and defor-
mations. Our experiments on various datasets demonstrate
that NeuS2 significantly outperforms the state-of-the-arts
in both surface reconstruction accuracy and training speed
for both static and dynamic scenes. The code is available
at our website: https://vcai.mpi-inf.mpg.de/
projects/NeuS2/.
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Figure 1. We present NeuS2, a fast neural scene reconstruction
method. Given a set of multi-view images, NeuS2 can accurately
reconstruct the scene geometry and appearance in the order of
minutes. This is in stark contrast to previous work [59], which
only recovers medium-scale details at significantly increased time
(about 8 hours). Moreover, we demonstrate that NeuS2 can also be
applied to dynamic scene reconstruction from multi-view videos,
where we recover per-frame reconstruction in about 20 seconds.

1. Introduction

Reconstructing the dynamic 3D world from 2D images
is crucial for many Computer Vision and Graphics appli-
cations, such as AR/VR, 3D movies, games, telepresence,
and 3D printing. Classical stereo algorithms employ com-
puter vision methods, e.g. feature matching, to capture the
geometry and appearance of 3D contents from multi-view
2D images. Despite great progress, these methods are still
comparably slow and struggle to reconstruct high-quality
results.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Recently, 3D reconstruction with neural implicit repre-
sentations has become a promising alternative to traditional
methods, because of its high spatial resolution and highly
detailed reconstructions outperforming classical stereo al-
gorithms [4, 12, 13, 50, 10, 5, 51]. NeuS [59], as a rep-
resentative work, models geometry surfaces as a neural
network encoded Signed Distance Field (SDF), and ren-
ders an image via differentiable volume rendering. While
NeuS [59] produces high-quality reconstruction results, its
training process is extremely slow, i.e. about 8 hours for
a static object. This makes it nearly impossible to recon-
struct dynamic scenes. Instant-NGP [36] has explored the
training acceleration of neural radiance fields (NeRF) [35]
by utilizing multi-resolution hash tables to augment neural
network-encoded radiance fields. Though Instant-NGP [36]
synthesizes impressive novel view synthesis results, the ex-
tracted geometry from the learned density fields contains
discernible noise since the 3D representation lacks surface
constraints.

To overcome these drawbacks, we propose NeuS2, a new
method for fast training of highly-detailed neural implicit
surfaces (see Fig. 1). NeuS2 reconstructs a static object
in minutes, and a moving object sequence in up to 20 sec-
onds per frame. To achieve this, we parameterize the neural
network-encoded SDF using multi-resolution hash tables of
learnable feature vectors [36]. Notably, in this design, a sur-
face constraint and the rendering formulation require cal-
culating the second-order derivatives. The main challenge
is to have a simple and memory-efficient calculation to
achieve the highest possible GPU computing performance.
Therefore, we derive a simple formula of the second-order
derivatives tailored to ReLU-based MLPs, which enables
an efficient CUDA implementation with a small memory
footprint at a significantly reduced computational cost. To
further enforce and accelerate the training convergence, we
introduce an efficient progressive training strategy, which
updates the hash table features in a coarse-to-fine manner.

We further extend our method to multi-view dynamic
scene reconstruction. Instead of training each frame in the
sequence separately, we propose a new incremental learning
strategy to efficiently learn a neural dynamic representation
of objects with large movements and deformations. Specif-
ically, we exploit the similarity of the shape and appearance
information shared in two consecutive frames by first train-
ing the first frame and sequentially fine-tuning the subse-
quent frames. While generally, this strategy works well, we
observe that when the movement between two consecutive
frames is relatively large, the predicted SDF of the occluded
regions that are not observed in most images may get stuck
in the learned SDF of the previous frame. To address this,
we predict a global transformation to roughly align these
two frames before learning the representation of the new
frame. In summary, our technical contributions are:

• We propose a new method, NeuS2, for fast learn-
ing of neural surface representations from multi-view
RGB input for both static and dynamic scenes, which
achieves a significant speed up over the state-of-the-art
while achieving an unprecedented reconstruction qual-
ity.

• A simple formulation of the second-order derivatives
tailored to ReLU-based MLPs is presented to enable
efficient parallelization of GPU computation.

• A progressive training strategy for learning multi-
resolution hash encodings from coarse to fine is pro-
posed to enforce better and faster training convergence.

• We design an incremental learning method with a
novel global transformation prediction component for
reconstructing long sequences (e.g., 2000 frames) with
large movements in an efficient and stable manner.

2. Related Work

Multi-view Stereo. Traditional multi-view 3D recon-
struction methods can be categorized into depth-based and
voxel-based methods. Depth-based methods [4, 12, 13, 50]
reconstruct a point cloud by identifying point correspon-
dences across images. However, the reconstruction qual-
ity is heavily affected by the accuracy of correspondence
matching. Voxel-based methods [10, 5, 51] side-step the
difficulties in explicit correspondence matching by recov-
ering occupancy and color in a voxel grid from multi-view
images with a photometric consistency criterion. However,
the reconstruction of these methods is limited to low reso-
lution due to the high memory consumption of voxel grids.

Classical Multi-view 4D Reconstruction. A large body
of work [6, 57, 2, 9, 64, 16] in multi-view 4D reconstruction
utilizes a precomputed deformable model, which is then fit
to the multi-view images. In contrast, our method does not
rely on a precomputed model, can reconstruct detailed re-
sults, and handles topology changes. The most relevant to
our work is [8], which is also a model-free method. They
leverage RGB and depth inputs to reconstruct high-quality
point clouds for each frame, and then produce temporally
coherent geometry. Instead, we only require RGB as in-
put and can learn the high-quality geometry and appearance
for each frame in an end-to-end manner in 20 seconds per
frame.

Neural Implicit Representations. Neural implicit rep-
resentations have made remarkable achievements in novel
view synthesis [53, 33, 22, 35, 30, 52] and 3D/4D recon-
struction [47, 48, 66, 37, 23, 20, 32, 39, 59, 65]. NeRF [35]
has shown high-quality results in the novel view synthesis
task, but it cannot extract high-quality surfaces since the ge-
ometry representation lacks surface constraints. NeuS [59]
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represents the 3D surface as an SDF for high-quality ge-
ometry reconstruction. However, the training of NeuS is
very slow, and it only works for static scenes. Instead, our
method is 100 times faster and can be further accelerated
to 20 seconds per frame when applied to dynamic scene re-
construction.

Some NeRF-based works [49, 55, 36] introduce voxel-
grid features to represent 3D properties for fast training.
However, these methods cannot extract high-quality sur-
faces as they inherit the volume density field as the ge-
ometry representation from NeRF [35]. In contrast, our
method can achieve high-quality surface reconstruction as
well as fast training. For dynamic scene modeling, many
works [56, 40, 45, 41, 28, 62, 26] propose to disentangle a
4D scene into a shared canonical space and a deformable
field per frame.

[11] represents a 4D scene with a time-aware voxel fea-
ture. [29] proposes a static-to-dynamic learning paradigm
for fast dynamic scene learning. [25] presents a grid based
method for efficiently reconstructing radiance fields frame
by frame. [58] presents a novel Fourier PlenOctree method
to compress a dynamic scene into one model. These four
methods focus on the novel view synthesis and, thus, are
not designed to reconstruct high-quality surfaces, which is
different from our goal of achieving high-quality surface ge-
ometry and appearance models. While these works make
the training for dynamic scenes more efficient, the training
is still time-consuming. Furthermore, these methods are
not able to handle large movements and only reconstruct
medium-quality surfaces. Some works in human perfor-
mance modeling [54, 31, 43, 7, 63, 38, 19, 44, 24, 60] can
model large movements by introducing a deformable tem-
plate as a prior. In contrast, our method can handle large
movements, does not require a deformable template and,
thus, is not restricted to a specific dynamic object. More-
over, we can learn high-quality surfaces of dynamic scenes
for 20 seconds per frame. [68] proposes a method for hu-
man modeling and rendering. It first reconstructs a neural
surface representation for each frame; then it applies non-
rigid deformation to obtain a temporally coherent mesh se-
quence. Our work focuses on the first part, that is, fast re-
construction of dynamic scenes, where we exploit the tem-
poral consistency between two consecutive frames to accel-
erate the learning of dynamic representation. Therefore, our
work is orthogonal to [68], and can be integrated into [68]
as the first step.

Concurrent Work. Voxurf [61] proposes a voxel-based
surface representation for fast multi-view 3D reconstruc-
tion. While it enables 20x speedup over the baseline (i.e.,
NeuS [59]), our proposed method is over 3x faster than Vox-
urf and achieves better geometry quality when compared
with Voxurf’s results reported in their paper, as shown in
the Suppl. document. Neuralangelo [27] presents a novel

Instant-NGP Instant-NGP: post-process OursOurs: w/o Eikonal

Figure 2. Qualitative comparison on DTU Scan 110, concerning
the quality impact of smoothing post-process on Instant-NGP and
the Eikonal Penalty on NeuS2.

method that leverages multi-resolution hash grids with nu-
merical gradient computation for neural surface reconstruc-
tion. It can achieve dense and high-fidelity geometry re-
construction results for large-scale scenes from multi-view
images with multiple delicate designs while sacrificing its
training cost, 100x slower when compared to ours. Also,
Voxurf and Neuralangelo are not designed for dynamic
scene reconstruction. Last, Unbiased4d [21] proposes a
monocular dynamic surface reconstruction approach by ex-
tending the NeuS formulation for bending rays. In stark
contrast to our approach, their focus lies on proving that
unbiasedness also holds in the case of ray bending and the
challenging monocular setting, and less on the highest pos-
sible quality at the fastest speeds.

3. Background

NeuS. Given calibrated multi-view images of a static
scene, NeuS [59] implicitly represents the surface and ap-
pearance of a scene as a signed distance field f(x) : R3 →
R and a radiance field c(x,v) : R3 × S2 → R3, where x
denotes a 3D position and v ∈ S2 is a viewing direction.
The surface S of the object can be obtained by extracting
the zero-level set of the SDF S = {x ∈ R3|f(x) = 0}. To
render an object into an image, NeuS leverages volume ren-
dering. Specifically, for each pixel of an image, we sample
n points {p(ti) = o + tiv|i = 0, 1, . . . , n − 1} along its
camera ray, where o is the center of the camera and v is the
view direction. By accumulating the SDF-based densities
and colors of the sample points, we can compute the color Ĉ
of the ray. As the rendering process is differentiable, NeuS
can learn the signed distance field f and the radiance field c
from the multi-view images. However, the training process
is very slow, taking about 8 hours on a single GPU.

InstantNGP. To overcome the slow training time of deep
coordinate-based MLPs, which is also a main reason for the
slow performance of NeuS, recently, Instant-NGP [36] pro-
posed a multi-resolution hash encoding and has proven its
effectiveness. Specifically, Instant-NGP assumes that the
object to be reconstructed is bounded in multi-resolution
voxel grids. The voxel grids at each resolution are mapped
to a hash table with a fixed-size array of learnable feature
vectors. For a 3D position x ∈ R3, it obtains a hash encod-
ing at each level hi(x) ∈ Rd (d is the dimension of a fea-
ture vector, i = 1, ..., L) by interpolating the feature vectors
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Figure 3. Method overview. (a) Static Scene Reconstruction: Given a 3D point x, we concatenate its queried feature from the multi-
resolution hash grid and its 3D position as the input to the SDF network. The SDF network outputs the SDF value and geometry features,
which are combined with the viewing direction and further fed into our RGB network to generate the RGB value. Notably, during backward
propagation the second-order derivates are efficiently computed using our CUDA implementation. (b) Dynamic Scene Reconstruction:
Given a sequence of multi-view images, we first construct the first frame following our static reconstruction method. For every subsequent
frame, we predict its global transformation with respect to the previous frame and accumulate the transformation to convert it into the
canonical space (i.e. the first frame). Then, we fine-tune the parameters of NeuS2 for incremental training to generate the rendered results.

assigned at the surrounding voxel grids at this level. The
hash encodings at all L levels are then concatenated to be
the multi-resolution hash encoding h(x) = {hi(x)}Li=1 ∈
RL×d. Besides the hash encoding, another key factor to
the training acceleration is the CUDA implementation of
the whole system, which makes use of GPU parallelism.
While the runtime is significantly improved, Instant-NGP
still does not reach the quality of NeuS in terms of geome-
try reconstruction accuracy.

Challenges. Given the above discussion, one can ask
whether a naive combination of NeuS [59] and Instant-
NGP [36] can unite the best of the two worlds, i.e. high
3D surface reconstruction quality and efficient computa-
tion. We highlight that it is far from being trivial to achieve
training as fast as Instant-NGP [36] and, meanwhile, a re-
construction as high-quality as NeuS [59]. Specifically, to
ensure high-quality surface learning, the Eikonal constraint
used in NeuS [59] is indispensable, as shown in Fig. 2
and Suppl. materials; and the key challenge of adding the
Eikonal loss to CUDA-based MLPs (a key factor to fast
training in Instant-NGP [36]) is how to calculate the second-
order derivatives efficiently for backpropagation. Instant-
NSR [68] addresses this by approximating the second-order
derivatives using finite differences, which suffer from pre-
cision problems and it can cause unstable training. Instead,
we propose a simple, precise, and efficient formulation of
second-order derivatives tailored to MLPs (Sec. 4.2), which
leads to fast and high-quality reconstruction. The superior-
ity of our approach over Instant-NSR is shown in Tab. 1 and

Fig. 4.
For dynamic scene reconstruction, there are two key

challenges: how to exploit the temporal information for ac-
celeration, and how to handle long sequences with large
movements and deformations. To address them, we first
propose an incremental training strategy to exploit the
similarity in geometry and appearance information shared
across two consecutive frames, which enabling faster con-
vergence (Sec. 5.1). To handle large movements and de-
formations, we propose a novel Global Transformation Pre-
diction component, which prevents the predicted SDF train-
ing from getting stuck in a local minimum. Further, it can
bound a dynamic sequence in a small volume to save mem-
ory and to improve reconstruction accuracy (Sec. 5.2).

4. Static Neural Surface Reconstruction

We first present how our formulation can effectively
learn the signed distance field of a static scene from cali-
brated multi-view images (see Fig. 3 a)). To accelerate the
training process, we first demonstrate how to incorporate
multi-resolution hash encodings [36] for representing the
SDF of the scene, and how volume rendering can be applied
to render the scene into an image (Sec. 4.1). Next, we derive
a simplified expression of second-order derivatives tailored
to ReLU-based MLPs, which can be efficiently parallelized
in custom CUDA kernels (Sec. 4.2). Finally, we adopt a
progressive training strategy for learning multi-resolution
hash encodings, which leads to faster training convergence
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and better reconstruction quality (Sec. 4.3).

4.1. Volume Rendering of a Hash-encoded SDF

For each 3D position x, we map it to its multi-resolution
hash encodings hΩ(x) with learnable hash table entries Ω.
As hΩ(x) is an informative encoding of spatial position,
the MLPs for mapping x to its SDF d and color c can be
very shallow, which results in more efficient rendering and
training without compromising quality.

SDF Network. In more detail, our SDF network

(d,g) = fΘ(e), e = (x, hΩ(x)). (1)

is a shallow MLP with weights Θ, which takes the 3D po-
sition x along with its hash encoding hΩ(x) as input and
outputs the SDF value d and a geometry feature vector
g ∈ R15. Concatenating the position serves as a geome-
try initialization [3] leading to a more stable learning of the
geometry.

Color Network. The normal of x can be computed as

n = ∇xd. (2)

where ∇xd denotes the gradient of the SDF with respect to
x. We then combine the normal with the geometry feature
g, the SDF d, the point x, and the ray direction v serving as
the input to our color network

c = cΥ(x,n, v, d,g), (3)

which predicts the color c of x.
Volume Rendering. To render an image, we apply the

unbiased volume rendering of NeuS [59]. Additionally, we
adopt a ray marching acceleration strategy used in Instant-
NGP[36]. More details are provided in the supp. document.

Supervision. To train NeuS2, we minimize the color dif-
ference between the rendered pixels Ĉi with i ∈ {1, ...,m}
and the corresponding ground truth pixels Ci without any
3D supervision. Here, m denotes the batch size during
training. We also employ an Eikonal term [14] to regularize
the learned signed distance field leading to our final loss

L = Lcolor + βLeikonal, (4)

where Lcolor = 1
m

∑
i R(Ĉi, Ci), and R is the Huber

loss [17]. Leikonal = 1
mn

∑
k,i(||nk,i|| − 1)2, and k in-

dexes the kth sample along the ray with k ∈ {1, ..., n}, and
n is the number of sampled points. nk,i is the normal of a
sampled point (see Eq. 2).

4.2. Efficient Handling of Second-order Derivatives

To avoid the computational overhead that learning
frameworks introduce, we implement our whole system in
CUDA. In contrast to Instant-NGP [36], which only re-
quires the first-order derivatives during the optimization, we

must calculate the second-order derivatives for the param-
eters associated with the normal term n = ∇xd (Eq. 2),
which is input to the color network cΥ (Eq. 3) and the
Eikonal loss term Leikonal.

Second-order Derivatives. To accelerate this computa-
tion, we directly calculate them using simplified formulas
instead of applying the computation graph of PyTorch [42].
Specifically, we calculate the second-order derivatives of
the hash table parameters Ω and the SDF network param-
eters Θ using the chain rule as

∂L
∂Ω

=
∂L
∂n

(
∂e

∂x

∂ ∂d
∂e

∂e

∂e

∂Ω
+

∂d

∂e

∂ ∂e
∂x

∂Ω
) (5)

∂L
∂Θ

=
∂L
∂n

(
∂e

∂x

∂ ∂d
∂e

∂Θ
+

∂d

∂e

∂ ∂e
∂x

∂Θ
) (6)

Note that the color network cΥ only takes n as input, so
we do not need to calculate its second-order gradients of the
color network parameters Υ. The derivation of Eq. 5 and 6
is included in the supplementary document.

To speed up the computation of Eqs. 5 and 6, we found
that ReLU-based MLPs can greatly simplify the above
terms leading to less computation overhead. In the follow-
ing, we discuss this in more detail and provide the proof of
this proposition in the supplementary document. We first
introduce some useful definitions as follows.

Definition 1 Given a ReLU based MLP f with L hidden
layers taking x ∈ Rd as input, it computes the output y =
HLg(HL−1 . . . g(H1x)), where Hl ∈ Rnl × Rnl−1 , l ∈
{1, . . . , L} is the layer index, and g is the ReLU function.
We define P j

l ∈ Rnl−1 × R1 and Si
l ∈ R1 × Rnl as

P j
l = GlHl−1 . . . G2H

( ,j)
1

Si
l = H

(i, )
L GL . . . Hl+1Gl+1

(7)

where H
( ,j)
1 is the jth column of H1, H(i, )

L is the ith row

of HL, and Gl =

{
1, Hl−1 . . . g(H1x) > 0

0, otherwise
.

Now the second order derivates of a ReLU-based MLP with
respect to its input and intermediate layers can be defined.

Theorem 1 (Second-order derivative of ReLU-based MLP)
Given a ReLU based MLP f with L hidden layers with
the same definition in Definition 1. The second-order
derivative of the MLP f is:

∂ ∂y
∂x (i,j)

∂Hl
= (P j

l S
i
l )

T ,
∂2y

∂x2
= 0 (8)

where ∂y
∂x (i,j)

is the matrix element (i,j) of ∂y
∂x , and Si

l and

P j
l are defined in Definition 1.
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Coming back to our original second-order derivatives
(Eqs. 5 and 6), by Theorem 1, we obtain ∂ ∂d

∂e

∂e = 0. Since
∂e
∂x is irrelevant to Θ, we have ∂ ∂e

∂x

∂Θ = 0. This results in the
following simplified form

∂L
∂Ω

=
∂L
∂n

∂d

∂e

∂ ∂e
∂x

∂Ω
(9)

∂L
∂Θ

=
∂L
∂n

∂e

∂x

∂ ∂d
∂e

∂Θ
(10)

for the second-order derivatives, which result in improved
efficiency and less computational overhead. The simplest
form of ∂L

∂Ω and ∂L
∂Θ can be obtained by substituting the

terms of ∂ ∂e
∂x

∂Ω and ∂ ∂d
∂e

∂Θ using Eq. 8. We show in Fig. 9 that
our computation using Eq. 8 is more efficient than PyTorch.

4.3. Progressive Training

Although our highly-optimized gradient calculation al-
ready improved training time, we found there is still room
for improvement in terms of training convergence and
speed. Additionally, we empirically observed that using
grids at low resolutions results in underfitting of the data, in
which the geometry reconstruction is smooth and lacks de-
tails, whereas using grids at high resolutions induces over-
fitting, leading to increased noise and artifacts of the results.
Therefore, we introduce a progressive training method by
gradually increasing the bandwidth of our spatial grid en-
coding denoted as:

hΩ(x, λ) =
(
w1(λ)h

1
Ω(x), . . . , wL(λ)h

L
Ω(x)

)
, (11)

where hi
Ω is the hash encoding at level i and the weight wi

for each grid encoding level is defined by wi(λ) = I[i ≤ λ],
and the parameter λ modulates the bandwidth of the low-
pass filter applied to the multi-resolution hash encodings.
Smaller parameter λ leads to faster training speed, but limits
the model’s capacity to model high-frequency details. Thus,
we initialize λ as 2, and then gradually increase by 1 for
every 2.5% of the total training steps in all experiments.

5. Dynamic Neural Surface Reconstruction
We have explained how NeuS2 can produce highly accu-

rate and fast reconstructions of static scenes. Next, we ex-
tend NeuS2 to dynamic scene reconstruction. That is, given
multi-view videos of a moving object and camera param-
eters of each view, our goal is to learn the neural implicit
surfaces of the object in each video frame (see Fig. 3 b)).

5.1. Incremental Training

Even though our reconstruction method of static objects
can achieve promising efficiency and quality, constructing
dynamic scenes by training every single frame indepen-
dently is still time-consuming. However, scene changes

from one frame to the other are typically small. Thus, we
propose an incremental training strategy to exploit the sim-
ilarity in geometry and appearance information shared be-
tween two consecutive frames, which enables faster con-
vergence of our model. In detail, we train the first frame
from scratch as presented in our static scene reconstruction,
and then fine-tune the model parameters for the subsequent
frames from the learned hash grid representation of the pre-
ceding frame. Using this strategy, the model is able to pro-
duce a good initialization of the neural representation of the
target frame and, thus, significantly accelerates its conver-
gence speed.

5.2. Global Transformation Prediction

As we observed during the incremental training process,
the predicted SDF easily get stuck in the local minima of the
learned SDF of the previous frame, especially when the ob-
ject’s movement between adjacent frames is relatively large.
For instance, when our model reconstructs a walking se-
quence from muli-view images, the reconstructed surface
appears to have many holes, as shown in Fig. 10. To address
this issue, we propose a global transformation prediction to
roughly transform the target SDF into a canonical space be-
fore the incremental training. Specifically, we predict the
rotation R and transition T of the object between two adja-
cent frames. For any given 3D position xi in the coordinate
space of the frame i, it is transformed back to the coordinate
space of the previous frame i− 1, denoted as xi−1

xi−1 = Ri(xi + Ti). (12)

The transformations can then be accumulated to transform
the point xi back to xc in the first frame’s coordinate space

xc = Rc
i−1(xi−1 + T c

i−1) = Rc
i (xi + T c

i ), (13)

where Rc
i = Rc

i−1Ri and T c
i = Ti +R−1

i T c
i−1.

The global transformation prediction also allows us to
model dynamic sequences with large movement in a small
region, rather than covering the entire scene with a large
hash grid. Since the hash grid only needs to model a small
portion of the entire scene, we can obtain more accurate
reconstructions and reduce memory cost.

Notably, our method can handle large movements and
deformations which are challenging for existing dynamic
scene reconstruction approaches[56], [45], thanks to the fol-
lowing designs of our approach: (1) Global transforma-
tion prediction that accounts for large global movements
in the sequence; (2) Incremental training that learns rela-
tively small deformable movements between two adjacent
frames rather than learns relatively large movements from
each frame to a common canonical space.

We realize incremental training combined with global
transformation prediction as an end-to-end learning
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COLMAP NeuS InstantNGP InstantNSR Ours

CD ↓ 1.36 0.77 1.84 1.68 0.70
PSNR ↑ - 28.00 28.86 25.81 28.82

Runtime 1 h 8 h 5 min 8.5 min 5 min

Table 1. The quantitative comparison on DTU dataset. We color
code the best and second best results. Our method outper-
forms other baselines for geometry reconstruction regarding to the
Chamfer Distance (CD) and is on par with Instant-NGP of novel
view synthesis in terms of PSNR.

D-NeRF TiNeuVox Ours

Dataset PSNR↑ CD↓ PSNR↑ CD↓ PSNR↑ CD↓

Lego 24.25 59.0 28.06 19.90 29.5 17.1
Lion 31.45 - 31.86 - 33.60 -
Human 29.33 5.73 29.00 9.21 33.20 1.86

Runtime 20h 1h 1h

Table 2. Quantitative comparisons on synthetic scenes. The Cham-
fer Distance of Lion sequence is omitted since the ground truth
geometry is not provided. Compared to D-NeRF and TiNeuVox,
our method achieves much better appearance and geometry recon-
struction results.

D-NeRF TiNeuVox Ours

Dataset PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓

D1 21.48 0.122 18.17 0.159 26.41 0.036
D2 17.47 0.154 14.95 0.198 27.76 0.037
D3 20.80 0.155 14.16 0.222 27.25 0.042

Runtime 50h 3h 3h

Table 3. Quantitative comparisons on real scenes. We found that
our method outperforms D-NeRF and TiNeuVox in all metrics.

scheme, as illustrated in Fig. 3(b). When processing a new
frame, we first predict the global transformation indepen-
dently, and then fine-tune the model’s parameters and global
transformation together to efficiently learn the neural repre-
sentation.

6. Experiments
All experiments are conducted on a single GeForce

RTX3090 GPU. Implementation details, additional results,
and video results are provided in the supplementary mate-
rial.

6.1. Static Scene Reconstruction

For the static scene reconstruction, we use 15 scenes of
DTU dataset [18] for evaluation. There are 49 or 64 images
with a resolution of 1600 × 1200, and we test each scene
with foreground masks provided by IDR [67]. To demon-
strate the performance of NeuS2 on the static scene recon-
struction task, we compare our approach with the-state-
of-art methods NeuS [59], Instant-NGP [36], and Instant-

NSR [68]. We also provide a comparison with a concurrent
work, Voxurf [61], in the supplemental material.

For quantitative measurement, we use the Chamfer Dis-
tance [18] to evaluate the geometry reconstruction quality,
in the same way as NeuS [59] did. We also measure the
novel view synthesis quality by the peak signal-to-noise ra-
tio (PSNR) between the reference images and the synthe-
sized images. The quantitative comparison results are re-
ported in Tab. 1, and for per-scene breakdown results please
refer to the Suppl. materials. The results show that our
method outperforms the baseline methods on the geome-
try reconstruction task with significantly less training time
compared to NeuS [59]. Meanwhile, our method achieves
comparable performance in the novel view synthesis task to
Instant-NGP [36] requiring the same training time (5 min-
utes).

A qualitative comparison of geometry reconstruction and
novel view synthesis results for all methods is presented in
Fig. 4. As shown in Fig. 4 for the 3D geometry recon-
struction results, NeuS [59] exhibits limited performance
in terms of reconstructed details with excessively smooth
surfaces. The extracted meshes of Instant-NGP [36]’s re-
sults are noisy since it lacks surface constraints in the ge-
ometry representation – volume density field. The re-
sults obtained from Instant-NSR [68] exhibit many artifacts,
which can be attributed to the use of a finite difference
method to approximate the second derivative. This method
is prone to precision problems and may cause unstable train-
ing. Furthermore, since Instant-NSR requires multiple for-
ward calculations using the finite difference method, their
approach is slower than ours. Regarding the novel view
synthesis results, our method outperforms NeuS [59] and
Instant-NSR [68], presenting detailed rendering results on
par with Instant-NGP. To conclude, our method achieves
high-quality geometry and appearance reconstruction, with
additional details demonstrated in, both, the surface and
rendered images without inducing noise, e.g. it can recover
the complex structures of the windows and render detailed
textures in scan 24.

6.2. Dynamic Scene Reconstruction

We conduct experiments on both synthetic and real dy-
namic scenes for the tasks of novel view synthesis and ge-
ometry reconstruction. We compare our method with the
state-of-the-art neural-based method for dynamic scenes,
D-NeRF [46] and TiNeuVox [11] quantitatively and qual-
itatively. D-NeRF [46] and TiNeuVox [11] models gen-
eral scenes for dynamic novel view synthesis by combining
NeRF [35] with deformation fields, which is learned from
all the frames simultaneously. Compared with D-NeRF
which purely uses MLPs, TiNeuVox further accelerates the
training by utilizing explicit voxel grids. We also provide
the results of Instant-NGP [36] in the Suppl. materials.
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Figure 4. Qualitative comparisons on DTU dataset for static scene geometry reconstruction and novel view synthesis. Our method
demonstrates high-quality rendering quality, superior to NeuS and comparable to Instant-NGP in terms of complex texture reconstruction.
In addition, it outperforms all baselines regarding to 3D geometry reconstruction, with fine details without inducing noise.
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Figure 5. Qualitative comparisons of synthetic scene for geom-
etry reconstruction and novel view synthesis. Our method pro-
duces photo-realistic rendering results and accurate geometry re-
constructions with only 20 seconds of training time per frame.

D2
D3

D1

Reference image Ours (20s per frame; ~3h in total) D-NeRF (50h) TiNeuVox (3h)

Figure 6. Qualitative comparisons of real scenes for geometry
reconstruction and novel view synthesis. Our method outperforms
D-NeRF and TiNeuVox for both tasks, demonstrating sharp and
accurate reconstruction quality, while they fail to handle complex
transformations in real scenes.

Synthetic Scenes. We choose three different types
of datasets for synthetic scene reconstruction, including a
Lego scene shared by NeRF [35] (150 frames), a Lion se-
quence provided by Artemis [34] (177 frames), and a hu-
man character in the RenderPeople [1] dataset (100 frames).
For the quantitative evaluation, the Chamfer Distances and
PSNR scores are calculated and averaged over all frames
and all testing views of all frames, respectively. As shown in
Tab. 2, our method shows significantly improved novel view
synthesis and geometry reconstruction results compared to
D-NeRF and TiNeuVox. Notably, our method takes less

00000 06685 13370 20055 26740frame

Figure 7. Long sequence reconstruction results. Our method exhibits
robustness even for extremely long sequences, without any performance
degradation, e.g., over 20K frames. Video results are provided in the sup-
plementary material.

0 15 30 45 60frame

Figure 8. Free view-point reconstruction results. Video results are pro-
vided in the supplementary material.

than 1 hour to complete the learning of a sequence, with
40 seconds (80 seconds for the Lego sequence) of training
time for the first frame and 20 seconds for each subsequent
frame; while the training time for each scene of D-NeRF
is about 20 hours. The qualitative results are provided in
Fig. 5, showing that our method outperforms D-NeRF and
TiNeuVox in terms of dynamic novel view synthesis and
geometry reconstruction.

Real Scenes. To further evaluate the effectiveness of our
method on real scenes with large and non-rigid movement,
we select three sequences from the Dynacap [15] dataset.
Each sequence contains 500 frames with about 50 to 100
camera views for training and about 5 to 10 camera views
for testing. More details are provided in the supp. doc-
ument. Tab. 3 summarizes the quantitative comparisons
of our method, D-NeRF [45] and TiNeuVox [11]. Since
the real scene datasets do not have ground truth geometry,
we can only calculate the PSNR and LPIPS score of novel
view synthesis results to evaluate the rendering quality. For
long sequences with 500 frames consisting of challenging
movements, D-NeRF and TiNeuVox struggle to reconstruct
the dynamic real scenes. Even when training D-NeRF for
50 hours, our method achieves significantly better scores,
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Figure 9. Ablation study for second-order derivative backward
computation. We compare the speedup of our 2nd-order derivative
with PyTorch across various MLP layer numbers and batchsizes.

taking only 20 seconds per frame. Also, according to the
qualitative evaluation results shown in Fig. 6, D-NeRF and
TiNeuVox show blurred rendering results and inaccurate ge-
ometry reconstruction. In contrast, our approach produces
photo-realistic renderings and detailed geometry. We also
conducted experiments on long sequences of 2k and even
20k frames. Here, we present an example with 20K frames
in Fig. 7. More results can be found in the Suppl. materials.
We provide free view-point results in Fig. 8, showcasing the
sequence in suppl. video at 2:55.

6.3. Ablation

We first compare our efficient second-order deriva-
tive backward computation (Theorem 1) implemented in
CUDA with a baseline where we automatically compute the
second-order derivative in PyTorch [42] using their compu-
tational graph. As shown in Fig. 9, our method achieves
a faster speed for second-order derivative backpropagation
than the PyTorch implementation in all settings. Moreover,
we evaluated our method for calculating MLP’s second-
order derivatives by eliminating the influence of other fac-
tors. The ablation study in Tab. 6 further showcases the ver-
satility of NeuS2, demonstrating that it can be easily inte-
grated into other methods for second-order derivatives cal-
culation to greatly bolster training speed and performance.

Second, we evaluate the performance of the individual
components of NeuS2: Global Transformation Prediction
(GTP) and Progressive Training strategy (PT) on dynamic
scenes, as shown in Fig. 10 and Tab. 4. The geometry and
appearance reconstruction quality of the full model are bet-
ter than other ablated models, both, quantitatively and qual-
itatively. The ablated model shows noisy holes on the sur-
face and blurred renderings since it gets stuck in local min-
ima during the incremental training, which can be alleviated
by the Global Transformation Prediction and Progressive
Training. We also ablated the effectiveness of the Progres-
sive Training Strategy and Eikonal Loss, applied to static
scenes within the DTU dataset, as shown in Tab. 5. We
evaluate the impact of predicted transformation accuracy on
reconstruction quality, as shown in Suppl. materials.

7. Conclusion
Limitations. While our method reconstructs each frame

of a dynamic scene in high quality, there is no dense surface
correspondences across the frames. A possible way could
be to deform a mesh template to fit our learned neural sur-
faces for each frame, like the mesh tracking used in [8, 68].

(a) Reference image (b) w/o global movement
w/o progressive training

(c) w/o global movement (d) Full model

Figure 10. Ablation study for Global Transformation Predic-
tion (GTP) and progressive training (PT). Ablated models perform
poorly on both novel view synthesis and geometry reconstruction.

Methods w/o GTP + w/o PT w/o PT Full model

PSNR ↑ 27.78 27.72 28.18
LPIPS↓ 0.0595 0.0559 0.0474

Table 4. Ablation study of our design choices. Note that, both, the
Global Transformation Prediction (GTP) as well as the Progressive
Training (PT) improve the overall results.

W/O Progressive W/O Eikonal Full Model

CD ↓ 0.75 1.48 0.70
PSNR ↑ 28.75 28.73 28.82
Runtime 5min 40s 5min 10s 5min

Table 5. Ablation study of Progressive Training and Eikonal loss on
DTU.

PyTorch’s Autograd NSR’s Finite difference Ours (in PyTorch)

Runtime ↓ 10 min 11.5 min 7 min
PSNR ↑ 35.3 33.4 35.5

Table 6. Comparison of Pytorch Autograd, Instant-NSR finite differ-
ences, and our second-order derivatives. We tested all of them in PyTorch
and on the same codebase, eliminating other influences, and found that our
formulation is superior in terms of speed and accuracy.

Currently, we also need to save the network parameters of
each frame (25M). As future work, a compression of such
parameters encoding the dynamic scene could be explored.

We proposed a learning-based method for accurate
multi-view reconstruction of both static and dynamic scenes
at an unprecedented runtime performance. To achieve this,
we integrated multi-resolution hash encodings into neural
SDF and introduced a simple calculation of the second-
order derivatives tailored to our dedicated network architec-
ture. To enhance the training convergence, we presented a
progressive training strategy to learn multi-resolution hash
encodings. For dynamic scene reconstruction, we proposed
an incremental training strategy with a global transfor-
mation prediction component, which leverages the shared
geometry and appearance information in two consecutive
frames.
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