1809.07917v1 [cs.CV] 21 Sep 2018

arxXiv

Adaptive O-CNN: A Patch-based Deep Representation of 3D Shapes

PENG-SHUAI WANG and CHUN-YU SUN, Tsinghua University and Microsoft Research Asia

YANG LIU and XIN TONG, Microsoft Research Asia

Fig. 1. Our Adaptive O-CNN is capable of generating high-quality planar-patch-based shapes from a single image as shown above (odd columns: input images;
even columns: generated shapes). The size of the generated planar patches is also adaptively changed according to the underlying predicted geometry.

We present an Adaptive Octree-based Convolutional Neural Network (Adap-
tive O-CNN) for efficient 3D shape encoding and decoding. Different from
volumetric-based or octree-based CNN methods that represent a 3D shape
with voxels in the same resolution, our method represents a 3D shape adap-
tively with octants at different levels and models the 3D shape within each
octant with a planar patch. Based on this adaptive patch-based representa-
tion, we propose an Adaptive O-CNN encoder and decoder for encoding and
decoding 3D shapes. The Adaptive O-CNN encoder takes the planar patch
normal and displacement as input and performs 3D convolutions only at the
octants at each level, while the Adaptive O-CNN decoder infers the shape
occupancy and subdivision status of octants at each level and estimates the
best plane normal and displacement for each leaf octant. As a general frame-
work for 3D shape analysis and generation, the Adaptive O-CNN not only
reduces the memory and computational cost, but also offers better shape
generation capability than the existing 3D-CNN approaches. We validate
Adaptive O-CNN in terms of efficiency and effectiveness on different shape
analysis and generation tasks, including shape classification, 3D autoencod-
ing, shape prediction from a single image, and shape completion for noisy
and incomplete point clouds.

CCS Concepts: « Computing methodologies — Mesh models; Neural
networks;

Additional Key Words and Phrases: Patch-guided adaptive octree, Adaptive
O-CNN, shape reconstruction, 3D encoder and decoder

1 INTRODUCTION

3D shape analysis and generation are two key tasks in computer
graphics. Traditional approaches generally have limited ability to
handle complex shapes, or require significant time and effort from

users to achieve acceptable results. With the rapid growth of created
and captured 3D data, it has become possible to learn the shape
space from a large 3D dataset with the aid of machine learning
techniques and guide the shape analysis and generation with the
learned features. Recently, deep learning with convolution neural
networks has been applied to 3D shape analysis and synthesis.
Different from images whose grid-based representation is simple
and regular, 3D shapes have a variety of representations because
of different demands from real applications. For the learning-based
shape generation task, the representation of 3D shapes plays a vi-
tal role which affects the design of learning architectures and the
quality of generated shapes. The commonly used (dense)-voxel rep-
resentation is most popular in existing 3D learning and generation
frameworks [Wu et al. 2015] [Wu et al. 2016] since it is a natu-
ral extension to 2D images and is well-suited to existing learning
frameworks, like convolutional neural networks. However, its high
memory storage and costly computation are a major drawback, and
high-resolution outputs are hard to produce in practice. Multi-view
images [Su et al. 2015] have been widely used in shape generation.
The generated multi-view images can be fused to reconstruct the
complete shape. Proper view selection, enforcing consistency of
different views, and shape occlusion are the main challenges for
this representation. Recently, points, as another common 3D repre-
sentation, has become a suitable representation for shape analysis
and generation with the development of PointNet [Qi et al. 2017a]
and its variants. However, its output quality is limited by the num-
ber of points, and extracting high-quality surfaces from the point
cloud requires additional processing. As the favorite 3D format in
computer graphics, the polygonal mesh has recently been used in

2« Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong

learning-based shape generation. Surface patches or meshes can
be predicted directly by a neural network that deforms a template
mesh or finds a 2D-to-3D mapping [Groueix et al. [n. d.]; Kato et al.
2018; Wang et al. 2018]. However, the predefined mesh topology and
the regular tessellation of the template mesh prevent generating
high-quality results, especially for irregular and complex shapes.

The octree, which is the most representative sparse-voxel repre-
sentation, has been integrated with convolution neural networks
recently for shape analysis [Riegler et al. 2017a; Wang et al. 2017]
and its memory and computational efficiency property is suitable for
generating high-resolution shapes [Hane et al. 2017; Tatarchenko
et al. 2017]. The octree-based generation network usually predicts
the occupancy probability of an octant: occupied, free and boundary,
and splits the octant with label boundary. The prediction and split-
ting procedures are recursively performed until the predefined max
depth of the octree is reached. At the finest level the non-empty
leaf octants represent the predicted surface. In existing work, the
non-empty leaf octants at the finest level can be regarded as uni-
form samples of the shape in the x, y, and z directions. We observe
that it is actually not necessary to store the shape information in
this uniform way since the local shape inside some octants can be
represented by simple patches, like planar patches. Therefore, by
storing the patch information and terminating the octant split early
if the patch associated with the octant well approximates the local
shape, the generated octree can have a more compact and adaptive
representation. Furthermore, the stored patch has a higher order
approximation accuracy than using the center or one of the corners
of the octant as the sample of the surface.

Based on the above observations, we propose a novel 3D convo-
lutional neural network for 3D shape called Adaptive Octree-based
CNN, or Adaptive O-CNN for short. Adaptive O-CNN is based on
a novel patch-guided adaptive octree shape representation which
adaptively splits the octant according to the approximation error
of the estimated simple patch to the local shape contained by the
octant. The decoder of Adaptive O-CNN predicts the occupancy
probability of octants: empty, surface-well-approximated, and surface-
poorly-approximated; infers the local patch at each non-empty oc-
tant at each level, and split octants whose label is surface-poorly-
approximated. It results in an adaptive octree whose estimated local
patches at non-empty leaf octants are a multi-scale and adaptive
representation of the predicted shape. Besides the decoder, we also
develop an efficient 3D encoder for adaptive octrees and use it for
shape classification and as a 3D autoencoder.

Our Adaptive O-CNN inherits the advantages of octree-based
CNNs and gains substantial efficiency in memory and computation
cost compared with the existing octree-based CNNs due to the use
of the adaptive octree data structure. The local patch estimation at
each level also enhances the generated shape quality significantly.
With all of these features, Adaptive O-CNN is capable of generating
high-resolution and high-quality shapes efficiently. We evaluate
Adaptive O-CNN on different tasks, including shape classification,
3D autoencoding, shape prediction from a single image, and shape
completion for incomplete data. We demonstrate the superiority
of Adaptive O-CNN over the state-of-the-art learning-based shape
generation techniques in terms of shape quality.

2 RELATED WORK

Shape representations for 3D CNNs. Due to the variety of 3D shape
representations, there is not a universal representation for 3D learn-
ing. (dense)-voxel representation equipped with binary occupancy
signals or signed distance values is popular in existing 3D CNN
frameworks [Maturana and Scherer 2015; Wu et al. 2015] due to
its simplicity and similarity to its 2D counterpart — images. Voxel-
based 3D CNNs often suffer from the high-memory issue, thus they
have difficulty in supporting high-resolution input. Since the 3D
shape only occupies a small region in its bounding volume, there is
a trend toward building a sparse-voxel representation for 3D CNNs. A
series of works including [Graham 2015; Riegler et al. 2017a; Uhrig
etal. 2017; Wang et al. 2017] explore the sparsity of voxels and define
proper convolution and pooling operations on sparse voxels with
the aid of the octree structure and its variants. Our patch-guided
adaptive octree also belongs to this type of representation, but with
greater sparsity and better accuracy because of its adaptiveness and
patch fitting. The multi-view representation regards the shape as a
collection of images rendered from different views [Su et al. 2015].
The images can contain RGB color information or view-dependent
depth values, and it is easy to feed them to 2D CNNs and utilize
networks pretrained on ImageNet [Deng et al. 2009]. However, the
multi-view representation may miss partial information of the shape
due to occlusion and insufficient views. Recently, the point-based
representation has become popular due to its simplicity and flexi-
bility. PointNet [Qi et al. 2017a] and its successor PointNet++ [Qi
et al. 2017b] regard a shape as an unorganized point cloud and
use symmetric functions to achieve the permutation invariance of
points. These point-based CNNs are suited to applications whose
input can be well approximated by a set of points or naturally has a
point representation, like LiIDAR scans. For mesh inputs where the
neighbor region is well-defined, graph-based CNNs [Bronstein et al.
2017] and manifold-based CNNs [Boscaini et al. 2015; Masci et al.
2015] find their unique advantages for shape analysis, especially on
solving the shape corresponding problem.

3D decoders. Developing effective 3D decoders is the key to the
learning-based shape generation task. The existing work can be
categorized according to their shape representations.

— Dense voxel-based decoder. Brock et al. [2016] proposed a voxel-
based variational autoencoder [Kingma and Welling 2014] to
reconstruct 3D shapes and utilized the trained latent code for
shape classification. Choy et al. [2016] combined the power of
the 3D volumetric autoencoder and the long short-term mem-
ory (LSTM) technique to reconstruct a volumetric grid from
single-view or multi-view images. Generative adversarial net-
works (GAN) [Goodfellow et al. 2016] were introduced to voxel-
based shape generation and reconstruction [Wu et al. 2016; Yang
et al. 2018b] with different improvement strategies. However, the
low resolution of the voxel representation still exists.

— Sparse voxel-based decoder. The works of [Hane et al. 2017; Tatarchenko

et al. 2017] show that the octree-based representation offers better
efficiency and higher resolution than the (dense)-voxel representa-
tion for shape prediction. Riegler et al. [2017b] demonstrated the
usage of the octree-based decoder on depth fusion. 1283, 256 and

Adaptive O-CNN: A Patch-based Deep Representation of 3D Shapes « 3

even higher resolution outputs are made possible by octree-based
decoders. Our Adaptive O-CNN further improves the efficiency
and the prediction accuracy of the octree-based generation net-
work.

— Multi-view decoder. Soltani et al. [[n. d.]] proposed to learn a gen-
erative model over multi-view depth maps or their corresponding
silhouettes, and reconstruct 3D shapes via a deterministic render-
ing function. Lun et al. [2017] used an autoencoder structure with
a GAN to infer view-dependent depths of a category-specified
shape from a single or two sketch inputs and fused all the outputs
to reconstruct the shape. Lin et al. [2018] used the projection loss
between the point cloud assembled from different views and the
ground-truth to further refine the predicted shape.

- Point-based decoder. Su et al. [2017] designed PointSetGen to
predict point coordinates from a single image. The Chamfer dis-
tance and Earth Mover’s distance metrics are used as the loss
functions to penalize the deviation between the prediction and
the ground truth. The generated point set roughly approximates
the expected shape. Recently, Achlioptas et al. [2018] adapted the
GAN technique to improve the point-set generation.

— Mesh-based decoder. By assuming that the topology of the gen-
erated shape is genus-zero or of a disk topology, a series of
works [Kato et al. 2018; Sinha et al. 2017; Wang et al. 2018; Yang
et al. 2018a] predicts the deformation of template mesh/point
cloud vertices via CNNs. Groueix et al. [[n. d.]] relaxed the topol-
ogy constraints by introducing multiple 2D patches and predict-
ing the mappings from 2D to 3D. They achieved better quality
shapes. However, the uncontrolled distortion by the deformation
or the mapping often yields highly irregular and distorted mesh
elements that degrade the predicted shape quality.

— Primitive decoder. Many shapes like human-made objects con-
sist of simple parts. So instead of predicting low-level elements
like points and voxels, predicting middle-level or even high-level
primitives is essential to understanding the shape structure. Li
et al. [2017] proposed a recursive neural network based on an
autoencoder to generate the hierarchical structure of shapes. Tul-
siani et al. [2017] abstracted the input volume by a set of simple
primitives, like cuboids, via an unsupervised learning approach.
Zou et al. [2017] built a training dataset where the shapes are
approximated by a set of primitives as the ground-truth, and they
proposed a generative recurrent neural network to generate a
set of simple primitives from a single image to reconstruct the
shape. Sharma et al. [2018] attempted to solve a more challenging
problem: decoding a shape to a CSG tree. We regard a 3D shape as
a collection of simple surface patches and use an adaptive octree
to organize them for efficient processing. In our Adaptive O-CNN,
a simple primitive patch — planar patch — is estimated at each
octant to approximate the local shape.

Octree techniques. The octree technique [Meagher 1982] parti-
tions a three-dimensional space recursively by subdividing it into
eight octants. It serves as a central technique for many computer
graphics applications, like rendering, shape reconstruction and col-
lision detection. Due to its spatial efficiency and friendliness to
GPU implementation, the octree and its variants have been used as

the shape representation for 3D learning as described above. The
commonly-used octant partitioning depends on the existence of
the shape inside the octant and the partitioning is performed until
the max tree depth is reached, and it usually results in a uniform
sampling. Since the shape signal is actually distributed unevenly in
the space, an adaptive sampling strategy can be integrated with the
octree to further reduce the size of the octree. Frisken et al. [2000]
proposed the octree-based adaptive distance field (ADF) to maintain
high sampling rates in regions where the distance field contains
fine detail and low sampling rates where the field varies smoothly.
They subdivide a cell in which the distance field can not be well ap-
proximated by bilinear interpolation of the corner values. The ADF
greatly reduces the memory cost and accelerates many processing
operations. Our patch-guided adaptive octree follows this adaptive
principle and uses the fitting error of the local patch to guide the
partitioning. The shape is approximated by all the patches at the leaf
octants of the octree with a guaranteed approximation accuracy.

3 PATCH-GUIDED ADAPTIVE OCTREE

We introduce a patch-guided partitioning strategy to generate adap-
tive octrees. For a given surface S, we start with its bounding box
and perform 1-to-8 subdivision. For octant O, denote Sg as the local
surface of S restricted by the cubical region of O. If Sg # 0, we
approximate a simple surface patch to Sp. In this paper, we choose
the simplest surface — a planar patch — to guide the adaptive octree
construction. The best plane # with the least approximation error
to So is the minimizer of the following objective:

Minimize/ ln-p+ d||? dp. (1)
neR? deR JpeSo
[Infl=1

Here n € R? is the unit normal vector of the plane and the plane
equationis P : n - x +d = 0,x € R>. To make the normal direction
consistent to the underlying shape normal, we check whether the
angle between n and the average normals of Sg is less than 90
degrees: if not, n and d are multiplied by —1. In the rest of the paper,
we always assume that the local planes are reoriented in this way.

We denote Pg as the planar patch of P restricted by the cubical
region of O. The shape approximation quality of the local patch, o,
is defined by the Hausdorff distance between g and So:

do = disg(Po, So).

The revised partitioning rule of the octree is: For any octant O
which is not at the max depth level, subdivide it if So # 0 and ¢ is
larger than the predefined threshold 5.

By following this rule, a patch-guided adaptive octree can be
generated. The patches at all the non-empty leaf octants provide a
good approximation to the input 3D shape — the Hausdorff distance
between them and the input is bounded by 5.1In practice, we set

5= \/Tgh, where h is the edge length of the finest grid of the octree.
Figure 2 shows a planar-patch-guided adaptive octree for the 3D
Bunny model. We can see that the planar patches are of different
sizes due to the adaptiveness of the octree.
For better visualization, we also illustrate the adaptive octree
idea in 2D (see Figure 3) for a 2D curve input. It is clear that the
line-segment-guided adaptive quadtree takes much less memory

4« Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong

(a) 4th-level

(b) 5th-level

(c) 6th-level

(d) 7th-level (e) all non-empty leaf nodes

Fig. 2. An adaptive octree with planar patches built upon the Bunny model. The max depth of the octree is 7. From left to right: planar patches on the
non-empty leaf nodes at the 4th-level, 5th-level, 6th-level, 7th-level and all planar patches at all the non-empty leaf nodes. The colors on the facets encode the

depth level of the octants where planar patches lie.

EiERma e m=
L T T

T FEH B FE

H e

=N HH [T
H H \

H HH FH n " bH
i 2 T 8 5
EERRRi FFE PR A

Fig. 3. A simple 2D illustration of the quadtree (left) and the line-segment-
guided adaptive quadtree (middle) of a 2D curve. The line segments are
illustrated in the rightmost quadtree.
compared to the quadtree, and the collection of line segments is a
good approximation to the input.

Watertight mesh conversion. Due to the approximation error, the
local patches between adjacent non-empty leaf octants are not seam-
lessly connected, i.e. gaps exist on the boundary region of octants.
This artifact can be found in Figure 2(e) and Figure 3-right. To fill
these gaps, surface reconstruction [Fuhrmann and Goesele 2014;
Kazhdan and Hoppe 2013] and polygonal repairing [Attene et al.
2013; Ju 2004] techniques can be employed.

4 ADAPTIVE O-CNN

The major components of a 3D CNN include the encoder and the
decoder, which are essential to shape classification, shape generation
and other tasks. In Section 4.1 and Section 4.2, we introduce the 3D
encoder and decoder of our adaptive octree-based CNN.

4.1 3D Encoder of Adaptive O-CNN

Since the main difference between the octree and the adaptive octree
is the subdivision rule, the efficient GPU implementation of the
octree [Wang et al. 2017] can be adapted to handle the adaptive
octree easily. In the following, we first briefly review O-CNN [Wang
et al. 2017], then introduce the Adaptive O-CNN 3D encoder.

Recap of O-CNN encoder. The key idea of O-CNN is to store the
sparse surface signal, such as normals, in the finest non-empty oc-
tants and constrain the CNN computation within the octree. In
each level of the octree, each octant is identified by its shuffled
key [Wilhelms and Van Gelder 1992]. The shuffled keys are sorted
in ascending order and stored in a contiguous array. Given the shuf-
fled key of an octant, we can immediately calculate the shuffled keys

of its neighbor octants and retrieve the corresponding neighbor-
hood information, which is essential to implementing efficient CNN
operations. To obtain the parent-children correspondence between
the octants in two consecutive octree levels and mark out the empty
octants, an additional Label array is introduced to record the infor-
mation for each octant. Common CNN operations defined on the
octree, such as convolution and pooling, are similar to volumetric
CNN operations. The only difference is that the octree-based CNN
operations are constrained within the octree by following the prin-
ciple: “where there is an octant, there is CNN computation”. Initially,
the shape signal exists in the finest octree level, then at each level
of the octree, the CNN operations are applied sequentially. When
the stride of the CNN operation is 1, the signal is processed with
unchanged resolution and it remains in the current octree level.
When the stride of the CNN operation is larger than 1, the signal is
condensed and flows along the octree from the bottom to the top.
Figure 4-upper illustrates the encoder structure of O-CNN.

We reuse the O-CNN’s octree implementation for the 3D encoder
of Adaptive O-CNN. The data storage of the adaptive octree in the
GPU, the convolution, and pooling operations are as same as for
O-CNN. There are two major differences between Adaptive O-CNN
and O-CNN: (1) the input signal appears at all the octants, not only
at the finest octants; (2) the computation starts from leaf octants at
different levels simultaneously and the computed features are assem-
bled across different levels. We detail these differences as follows.

Input signal. Different from O-CNN which only stores the shape
signals at the finest octants, we utilize all the estimated local planes
as the input signal. For an octant O at the [-level whose local plane
ism-x+d = 0,x € R, we set a four-channel input signal in it:
(n, d*). Here c is the center point of O and d* = d — n - c. Note that
n-(x —c) +d* = 0 is the same plane equation. Here we use d*
instead of d because d* is bounded by the grid size of I-level and it
is a relative value while d has a large range since d measures the
distance from the origin to the plane. For an empty octant, its input
signal is set to (0,0, 0, 0).

Adaptive O-CNN 3D encoder. We design a novel network structure
to take the adaptive octree as input. On each level of the octree, we
apply a series of convolution operators and ReLUs to the features
on all the octants at this level and the convolution kernel is shared

Adaptive O-CNN: A Patch-based Deep Representation of 3D Shapes « 5

0-CNN Encoder

Conv.

Conv. + Pool.

0

@)

Element-wise Max

™ eee \‘
-ég tH J
| A
o B
P A\ O
\ y b4
/
S/

AO-CNN Encoder

Fig. 4. The encoder networks of O-CNN and Adaptive O-CNN for an octree with a max-depth 5. Here the 2D adaptive quadtrees are used for illustration
purpose only. The “Conv.” operation includes ReLU (Rectified Linear Unit) and BN (Batch Normalization).

o N\] % (NP2
b=l —— \ \/
5_'|i} - o T /I ¢ B N ﬂ T = N\
§ \ N — .) \ \
k 7 ,|4,\,|,,,, T \I %ﬂ # N/
== | | RPEE _ <f 777777 ~H- [: 8 _
| |
IR = R oo ‘
| | | !
= s e
L - — — — — Q- F—-——---

g re -)

[] Deconv.+Conv. }\ 0 J‘r ji'—ﬁ—iu . $\ 8 <
d Lstruct 7 7\ ‘1‘ \ { \\
@ Lpatch \) N — %%EH BE% ‘;} P,

[»\H#/] B e

Fig. 5. The decoder network of Adaptive O-CNN. At each level of the adaptive octree, the prediction module, i.e. the components inside the dashed boxes,
infers the status of the octant: empty, surface-well-approximated, and surface-poorly-approximated; and regresses the plane parameters. Here we still use 2D
adaptive quadtrees for illustration purpose. The three statuses are marked as white, red and gray, respectively. The adaptive planar patches predicted in the

red octants represent the generated shape.

by these octants. Then the processed features at the I-th level is
downsampled to the (I — 1)-th level via pooling and are fused with
the features at the (I — 1)-th level by the element-wise max operation.
These new features can be further processed and fused with features
at the (I — 2)-th level, (I — 3)-th level, ..., up to the coarsest level. In
our implementation, the coarsest level is set to 2, where the octants
at the 2nd-level are enforced to be full so that the features all have
the same dimension. Figure 4-lower illustrates our Adaptive O-CNN
3D encoder architecture.

4.2 3D Decoder of Adaptive O-CNN

We design a 3D decoder to generate an adaptive octree from a given
latent code. The decoder structure is shown in Figure 5. At each
octree level, we train a neural network to predict the patch approxi-
mation status for each octant — empty, surface-well-approximated,
and surface-poorly-approximated — and regress the local patch pa-
rameters. Octants with label surface-poorly-approximated will be

subdivided and their features in them are passed to their children
via a deconvolution operation (also known as “transposed convo-
lution” or “up-convolution”). The label surface-well-approximated
within an octant implies that the local patch can well approximate
the local shape where the error is bounded by 5, and the network
stops splitting at such octants and leaves them as leaf nodes at the
current octree level. An adaptive octree can be predicted in this
recursive way until the max depth is reached.

Prediction module. The neural network for prediction is simple. It
consists of “FC + BN + ReLU + FC” operations. Here BN represents
Batch Normalization and FC represents Fully Connected layer. This
module is shared across all octants at the same level of the adaptive
octree. The output of the prediction module includes the patch
approximation status and the plane patch parameters (n, d*). The
patch approximation status guides the subdivision of the octree and
is also required by the octree-based deconvolution operator.

6 « Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong

Loss function. The loss function of the Adaptive O-CNN decoder
includes the structure loss and the patch loss. The structure loss
Lstruct measures the difference between the predicted octree struc-
ture and its ground-truth. Since the determination of octant status
is a 3-class classification, we use the cross entropy loss to define
the structure loss. Denote H; as the cross entropy at I-level of the
octree, the structure loss is formed by the weighted sum of cross
entropies across all the levels:

Imax Wl
Lstryct = Z n_lHl« (2)
1=2

Here n; is the number of octants at the I-th level of the predicted
octree, lmax is the max depth, and wj is the weight defined on each
level. Similar to the encoder, the coarsest level of the octree is 2 and
is full of octants, so [starts with 2 in the above equation. In our
implementation, we set wy to 1.

The patch loss Lyatch measures the squared distance error be-
tween the plane parameters and the ground truth at all the leaf
octants in each level:

lmax n

1
Lpatch =)~ 3 Allmg =2 +|df = dF 2. (3)
1= "=

Here n; and di* are the predicted parameters, n; and J;‘ are the
corresponding ground-truth values, and n/ is the number of leaf
octants at the [-th level of the predicted octree, 1 is set to 0.2. In
our implementation we make the octree adaptive when the octree
level is over 4, so [starts with 4 in the above equation. Note that
for the wrongly generated octants that do not exist in the ground-
truth, there is no patch loss for them, and they are penalized by the
structure loss only.

We use Lstruct +Lpatch as the loss function for our decoder. Since
the predicted plane should pass through the octant (otherwise it
violates the assumption that the planar patch is inside the octant

cube), we add the constraint [d*| < \/73}11 where h; is the grid size of

I-level octants, by utilizing the tanh function on the network output.

5 EXPERIMENTS AND COMPARISONS

To evaluate Adaptive O-CNN, we conduct three experiments: 3D
shape classification, 3D autoencoding and 3D shape prediction from
a single image. All the experiments were done on a desktop computer
with an Intel Core 17-6900K CPU (3.2GHz) and a GeForce GTX Titan
X GPU (12 GB memory). Our implementation is based on the Caffe
framework [Jia et al. 2014] and the source code is available at https:
//github.com/Microsoft/O-CNN. The detailed Adaptive O-CNN net-
work configuration is provided in the supplemental material.

Dataset pre-processing. For building the training dataset for our
experiments, we first follow the approach of [Wang et al. 2017] to
obtain a dense point cloud with oriented normals by virtual 3D
scanning, then we build the planar-patch-guided adaptive octree
from it via the construction procedure introduced in Section 3.

5.1 Shape classification

We evaluate the efficiency and efficacy of our Adaptive O-CNN
encoder on the 3D shape classification task.

Method 323 643 1283 2563

Voxel | 0.71GB 3.7GB - —
O-CNN | 058GB 1.1GB 27GB 6.4GB
Adaptive O-CNN | 0.51GB 0.95GB 15GB 1.7GB

Memory

Voxel 425ms 1648 ms — -
Time O-CNN 41ms 117ms 334ms 1393 ms
Adaptive O-CNN 34ms 63ms 112ms 307 ms

O-CNN 90.4% 90.6% 90.1% 90.2%
Adaptive O-CNN 90.5% 90.4% 90.0% 90.2%

Table 1. Statistics of the performance of O-CNN and Adaptive O-CNN on
the shape classification task. GPU-memory and time consumption on batch

Accuracy

size 32, and classification accuracy of each method are reported. Here we
remeasured the running time of O-CNN on a Titan X GPU. For reference,
the time and memory cost of the voxel-based 3D CNN are also provided,
which was measured on a GeForce 1080 GPU.

Method Accuracy H Method ‘ Accuracy
PointNet [Qi et al. 2017a] 89.2% PointNet++ [Qi et al. 2017b] 91.9%
VRN Ensemble [Brock et al. 2016] 95.5% SubVolSup [Qi et al. 2016] 89.2%
OctNet [Riegler et al. 2017a] 86.5% O-CNN [Wang et al. 2017] 90.6%
Kd-Network [Klokov and Lempitsky 2017] 91.8% Adaptive O-CNN 90.5%

Table 2. ModelNet40 classification benchmark. The classification accuracy
of Adaptive O-CNN is better and comparable to existing learning-based
methods like SubVolSup, PointNet, OctNet and O-CNN, but it is worse than
PointNet++, Kd-Network and VRN Ensemble.

Dataset. We performed the shape classification task on the Model-
Net40 dataset [Wu et al. 2015], which contains 12,311 well annotated
CAD models from 40 categories. The training data is augmented by
rotating each model along its upright axis at 12 uniform intervals.
The planar-patch-guided adaptive octrees are generated with differ-
ent resolutions: 323, 643, 1283, and 2563. We conducted the shape
classification experiment on these data respectively.

Network configuration. To clearly demonstrate the advantages of
our adaptive octree-based encoder over the O-CNN [Wang et al.
2017], we use the same network parameters of O-CNN including the
parameters of CNN operations, the number of training parameters
and the dropout strategy. The only difference is the encoder network
structure as shown in Figure 4. After training, we use the orientation
pooling technique [Qi et al. 2016; Su et al. 2015] to vote for the results
from the 12 predictions of the same object under different poses.

Experimental results. We record the peak memory consumption
and the average time of one forward and backward iteration with
batch size 32, and report them with the classification accuracy on the
test dataset in Table 1. The experiments show that the classification
accuracy of Adaptive O-CNN is comparable to O-CNN under all the
resolutions, and the memory and computational cost of Adaptive O-
CNN is significantly lower, especially on the high-resolution input:
Adaptive O-CNN under 256 resolution gains about a 4-times speed-
up and reduces GPU memory consumption by 73% compared to
O-CNN. Compared with state-of-the-art learning-based methods,
the classification accuracy of Adaptive O-CNN is also comparable
(see Table 2).

https://github.com/Microsoft/O-CNN
https://github.com/Microsoft/O-CNN

Adaptive O-CNN: A Patch-based Deep Representation of 3D Shapes « 7

‘ mean ‘ pla. ben. cab. car cha. mon. lam. spe. fir. cou. tab. cel. wat.
PSG 1.91 111 146 191 159 190 220 359 307 094 183 183 171 1.69
AtlasNet(25) 1.56 087 125 178 158 156 172 230 2.61 0.68 183 152 127 133
AtlasNet(125) 1.51 086 115 176 156 155 1.69 226 255 0.59 169 147 131 123
Adaptive O-CNN | 1.44 | 1.19 127 1.01 0.96 165 141 2383 197 106 114 146 0.73 1.82
O-CNN(binary) 1.60 112 130 106 1.02 179 162 371 256 098 117 167 0.79 1.88
O-CNN(patch) 1.59 110 129 106 1.02 179 1.60 370 255 097 118 166 0.79 1387
O-CNN(patch®) 1.53 1.09 131 091 097 177 158 3.64 228 097 114 165 0.73 191

Table 3. Statistics of 3D Autoencoder experiments. Both the PSG and AtlasNet results are those provided in [Groueix et al. [n. d.]]. The number after AtlasNet
is the number of mesh patches it used. The Chamfer distance is multiplied by 10° for better display.

Discussion. As seen from Table 1, when the input resolution is
beyond 1283, the classification accuracy of Adaptive O-CNN drops
slightly. We find that when the input resolution increases from 323
to 1283, the training loss decreases from 0.168 to 0.146, whereas the
testing loss increases from 0.372 to 0.375. We conclude that Adaptive
O-CNN with a deeper octree tends to overfit the training data of
ModelNet40. The result is also consistent with the observation of
[Wang et al. 2017] on O-CNN. With more training data, for instance,
by rotating each training object 24 times around their upright axis
uniformly, the classification accuracy can increase by 0.2% under
the resolution of 1283

5.2 3D Autoencoding

The Autoencoder technique is able to learn a compact represen-
tation for the input and recovers the signal from the latent code
via a decoder. We use the Adaptive O-CNN encoder and decoder
presented in Section 4 to form a 3D autoencoder.

Dataset. We trained our 3D autoencoder on the ShapeNet Core
v2 dataset [Chang et al. 2015], which consists of 39,715 3D models
from 13 categories. The training and the test splitting rule is the
same as the ones used in AtlasNet [Groueix et al. [n. d.]] and the
point-based decoder (PSG) [Su et al. 2017]. The adaptive octree we
used is of max-depth 7, i.e., the voxel resolution is 1283,

Quality metric. We evaluate the quality of the decoded shape via
measuring the Chamfer distance between it and its ground-truth
shape. With the ground-truth point cloud denoted by S5 = {x;}I,,
and the points predicted by the neural network by § = {%;},, the
Chamfer distance between S; and S is defined as:

1 1
D(Sg,S) = — § min ||x; — %;||2 + = E min ||%; — x;||2.
9> ; i Ajllz ! LAY
nxiEngjes mfciEijesg

Because our decoder outputs a patch-guided adaptive octree, to
calculate the Chamfer distance, we sample a set of dense points
uniformly from the estimated planar patches: we first subdivide the
planar patch contained in the non-empty leaf node of the adaptive
octree towards the resolution of 1283, then randomly sample one
point on each of the subdivided planar patches to form the out-
put point cloud. For the ground-truth dense point cloud, we also
uniformly sample points from it under the resolution of 1283,

Experimental results. The quality measurement is summarized in
Table 3, and we also compare with two state-of-the-art 3D autoen-
coder methods: AtlasNet [Groueix et al. [n. d.]] that generates a set

of mesh patches as the approximation of the shape, and PointSetGen
(PSG) [Su et al. 2017] that generates a point cloud output. Compared
with two types of AtlasNets which predict 25 and 125 mesh patches,
respectively, our Adaptive O-CNN autoencoder achieves the best
quality on average. Note that the loss function of AtlasNet is the
Chamfer distance exactly, while our autoencoder has not been spec-
ified for this loss but still performs well. Compared with PSG [Su
et al. 2017], it is clear that our method and AtlasNet are much better.

Discussion. Our Adaptive O-CNN performs worse than AtlasNet
in some categories, such as plane, chair and firearm. We found on
relatively thin parts of the models in those categories, such as the
wing of the plane, arm of the chair, as well as the barrel of the gun,
our Adaptive O-CNN has a larger geometry deviation from the orig-
inal shape. However, for AtlasNet, although its deviation is smaller,
we found that it approximates the thin parts with a single patch or
messy patches (e.g. the single patch for the right arm of the chair,
the folded patches for the gun barrel and the plane wing as seen
in Figure 6), and the volume structure of the thin parts is totally
lost and it is difficult or even impossible to define the inside and
outside on those regions. We conclude that the Chamfer distance
loss function used in AtlasNet does not penalize this structure loss.
On the contrary, because our Adaptive O-CNN is trained with both
the octree-based structure loss and patch loss, it successfully approx-
imates the thin parts with better volume structures (e.g. the cylinder
like shape for the gun barrel, chair support and the two-side surfaces
for the plane wing). The zoom-in images in Figure 6 highlight these
differences.

Ablation study. We designed three baseline autoencoders based
on the standard octree structure to demonstrate the need for using
the adaptive octree:

(1) O-CNN(binary): A vanilla octree based autoencoder. The en-
coder is presented in Figure 4-upper. The decoder is similar to
the Adaptive O-CNN decoder but with two differences: (1) the
prediction module only predicts whether a given octant has an
intersection with the ground-truth surface. If intersected, the
octant will be further subdivided; (2) the loss only involves the
structure loss.

O-CNN(patch): An enhanced version of O-CNN(binary). The
prediction module also predicts the plane patch on each leaf
node at the finest level and the patch loss is added.
O-CNN(patch™): An enhanced version of O-CNN(patch). The
prediction module predicts the plane patch on each leaf node at
each level and the patch loss is added.

@

®)

8 « Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong

(a) Input shape (b) PSG

(c) AtlasNet (d) Our results

Fig. 6. Visualizations of decoded shapes by different methods. The point clouds are rendered as dots. For the results of AtlasNet and our Adaptive O-CNN,
the two sides of the mesh patches are rendered with different colors. It is clear that AtlasNet does not generate orientation-consistent patches. Compared
with AtlasNet, the results of our Adaptive O-CNN are much more regular, the normal orientation are also more consistent, and the volume structures are

reconstructed better.

(a) O-CNN(binary))

(c) O-CNN(patch*)

(d) Our result

Fig. 7. Ablation study. The shapes from O-CNN(patch) and O-CNN(patch*)
are smoother than O-CNN(binary), which shows that the regression of
plane patches enables sub-voxel precision. Compared with O-CNN(patch)
and O-CNN(patch™), there are less missing regions in the output of Adap-
tive O-CNN, which verifies the benefit of the adaptive patch based octree
representation. The ground-truth shape is shown in the middle.

These three networks are trained on the 3D autoencoding task.
The statistics of the results are also summarized in Table 3. The
Chamfer distance metric of O-CNN(patch) is slightly better than
O-CNN(binary) since the regression of plane patches at the finest
level enables sub-voxel precision. By considering the patch loss at
each depth level, O-CNN(patch*) further improves the reconstruc-
tion accuracy due to the hierarchical supervision in the training.
However, it is still worse than Adaptive O-CNN. The reason is as
follows: during the shape generation of Adaptive O-CNN, if the
plane patch generated in an octant in the coarser level can well

approximate the ground-truth shape, the Adaptive O-CNN will stop
subdividing this octant and the network layers in the finer level are
trained to focus on the region with more geometry details. As a
result, the Adaptive O-CNN not only avoids the holes in the region
that can be well approximated by a large planar patch, but also gen-
erates better results for the surface region with more shape details.
On the contrary, no matter whether a region can be modeled by
a large plane patch or not, the O-CNN based networks subdivide
all non-empty octants at each level and predict the surface at the
finest level. Therefore, the O-CNN has more chances to predict the
occupancy of the finest level voxels wrongly.

The visualization in Figure 7 also demonstrates that Adaptive
O-CNN generates more visually pleasing results and outputs large
planar patches on flat regions, while the outputs of O-CNN(binary),
O-CNN(patch) and O-CNN(patch*) contain more holes due to the
inaccurate prediction.

Application: shape completion. A 3D autoencoder can be used to
recover the missing part of a geometric shape and fair the noisy
input. We conduct a shape completion task to demonstrate the ef-
ficacy of our Adaptive O-CNN. We choose the car category from
the ShapeNet Core v2 dataset as the ground-truth data. For each
car, we choose 3 to 5 views randomly and sample dense points from
these views. On each view, we also randomly crop some regions to
mimic holes and perturb point positions slightly to model scan noise.
These views are assembled together to serve as the incomplete and
noisy data. We trained our Adaptive O-CNN based autoencoder on
this synthetic dataset with the incomplete shape as input and the

Adaptive O-CNN: A Patch-based Deep Representation of 3D Shapes « 9

(a) Incomplete shape (b) Ground-truth (c) O-CNN(patch) (d) Our results

Fig. 8. Shape completion on two incomplete cars. Our completion results
are closer to the ground-truth, whereas there are still some missing regions
with the O-CNN(patch) based decoder. The Chamfer distance metrics of
the two cars are 0.0713 and 0.0349 for O-CNN(patch), 0.0626 and 0.0306 for
Adaptive O-CNN.

corresponding complete shape as the target. For reference, we also
trained the O-CNN(patch) based autoencoder on it. The max depth
of the octree in all the networks is set to 7. Figure 8 shows two com-
pletion examples. The results from Adaptive O-CNN are closer to
the ground-truth, while the O-CNN(patch) misses filling some holes.

5.3 Shape reconstruction from a single image

Reconstructing 3D shapes from 2D images is an important topic in
computer vision and graphics. With the development of 3D deep
learning techniques, the task of inferring a 3D shape from a single
image has gained much attention in the research community. We
conduct experiments on this task for our Adaptive O-CNN and
compare it with the state-of-art methods [Groueix et al. [n. d.]; Su
et al. 2017; Tatarchenko et al. 2017].

Dataset. For the comparisons with the AtlasNet [Groueix et al.
[n. d.]] and PointSetGen (PSG) [Su et al. 2017], we use the same
dataset which is originally from [Choy et al. 2016]. The ground-
truth 3D shapes come from ShapeNet Core v2 [Chang et al. 2015],
and each object is rendered from 24 viewpoints with a transparent
background. For the comparison with OctGen [Tatarchenko et al.
2017], since OctGen was only trained on the car category with the
octree of resolution 1283, we also trained our network on the car
dataset with the same resolution.

Image encoders. For the image encoder, AtlasNet [Groueix et al.
[n. d.]] used ResNet18 [He et al. 2016] and OctGen used the classic
LeNet [Lecun et al. 1998]. We also use ResNet18 and LeNet as the
image encoders in the respective comparison for fairness.

Experimental results. We report the Chamfer distance between
the predicted points and points sampled from the original mesh for
PointSetGen, AtlasNet and our method in Table 4. As mentioned
in [Groueix et al. [n. d.]], they randomly selected 260 shapes (20 per
category) to form the testing database. To compare with PointSet-
Gen, they ran the ICP algorithm [Besl and McKay 1992] to align
the predicted points from both PointSetGen and AtlasNet with the
ground-truth point cloud. Note that after the ICP alignment, the
Chamfer distance error is slightly improved. To have a fair compar-
ison, we also ran the ICP algorithm to align our results with the
ground-truth. Our method achieves the best performance on 8 out

of 13 categories, especially for the objects with large flat regions,
such as car and cabinet. In Figure 9 & Figure 1 we illustrate some
sample outputs from these networks. It is clear that our outputs are
more visually pleasing. For the flip phone image in the last row of
Figure 9, the reconstruction quality is relatively lower than other
input images for all methods. This is because flip phones are rare in
the training dataset.

For computing the Chamfer distance for the output of OctGen,
we densely sample the points from the boundary octant boxes for
evaluation. Our Adaptive O-CNN has the lower Chamfer distance
error than OctGen: 0.274 vs. 0.294. A visual comparison is shown in
Figure 10: our results preserve more details than OctGen, and the
resulting surface patches are much more faithful to the ground-truth,
especially on the flat regions.

6 CONCLUSION

We present a novel Adaptive O-CNN for 3D encoding and decoding.
The encoder and decoder of Adaptive O-CNN utilize the nice prop-
erties of the patch-guided adaptive octree structure: compactness,
adaptiveness, and high-quality approximation of the shape. We show
the high memory and computational efficiency of Adaptive O-CNN,
and demonstrate its superiority over other state-of-the-art methods
including existing octree-based CNNs on some typical 3D learning
tasks, including 3D autoencoding, surface completion from noisy
and incomplete point clouds, and surface prediction from images.

One limitation in our implementation is that the adjacent patches
in the adaptive octree are not seamless. To obtain a well-connected
mesh output, we need to use other mesh repairing or surface recon-
struction techniques. In fact, we observe that most of the seams can
be stitched by snapping the nearby vertices of adjacent patches. We
would like to add a regularization loss function to reduce the seam,
and develop a post-processing method to stitch all the gaps.

Another limitation is that the planar patch we used in Adaptive O-
CNN does not approximate curved features very well, for instance,
see the car wheel in Figure 7. In the future, we would like to explore
the use of non-planar surface patches in Adaptive O-CNN. Quadratic
surface patches or its subclasses — parabolic surface patches and
ellipsoidal patches are promising patches because they have simple
expressions and planes are a special case of them. Another direction
is to use other fitting quality metrics to guide the subdivision of
octants, for instance, using the topological similarity between the
local fitted patch and the ground-truth surface patch as guidance to
ensure that the fitted patch approximates the local shape well both
in geometry and topology.

ACKNOWLEDGMENTS

We wish to thank the authors of ModelNet and ShapeNet for sharing
data, Stephen Lin for proofreading the paper, and the anonymous
reviewers for their valuable feedback.

REFERENCES

Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. 2018. Learn-
ing representations and generative models for 3D point clouds. In International
Conference on Learning Representations.

Marco Attene, Marcel Campen, and Leif Kobbelt. 2013. Polygon mesh repairing: An
application perspective. ACM Comput. Surv. 45, 2 (2013), 15:1-15:33.

10 « Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong

Method | mean | pla. ben. cab. car cha. mon. lam. spe. fir. cou. tab. cel. wat.
PSG 6.41 336 431 8.51 8.63 635 647 7.66 159 1.58 6.92 393 3.76 594
AtlasNet(25) 5.11 254 391 539 418 677 6.71 7.24 8.18 163 676 435 391 491

Adaptive O-CNN | 4.63 | 2.45 2.69 2.67 180 6.13 6.27 1092 943 1.68 4.42 419 251 5.04

Table 4. Experimental statistics of shape reconstruction from a single image. The Chamfer distance in this table is multiplied by 1000 for better display. The
mean is the category-wise average. Both the PSG and AtlasNet results are those provided in [Groueix et al. [n. d.]].

\

(a) Input image (b) Ground-truth (c) PSG (d) AtlasNet (e) Our results

Fig. 9. Visualizations of shape prediction from a single image. Our Adaptive O-CNN generates more detailed geometry, like the tail wing of the car and the
trigger of the rifle. The two sides of the mesh are rendered with different colors, and it is clear that AtlasNet does not generate orientation-consistent patches.

(a) Input image (b) Ground-truth (c) OctGen (d) Our results

Fig. 10. Comparison with OctGen on the shape prediction from a single image task. Note that some geometry features are missing in the results of OctGen,
like the tail wing of the car (third row).

P.J. Besl and N. D. McKay. 1992. A method for registration of 3-D shapes. IEEE Trans. spectral convolutional networks. Comput. Graph. Forum 34, 5 (2015), 13-23.
Pattern. Anal. Mach. Intell. 14, 2 (1992), 239-256. Andrew Brock, Theodore Lim, J.M. Ritchie, and Nick Weston. 2016. Generative and

D. Boscaini, J. Masci, S. Melzi, M. M. Bronstein, U. Castellani, and P. Vandergheynst. discriminative voxel modeling with convolutional neural networks. In 3D deep
2015. Learning class-specific descriptors for deformable shapes using localized learning workshop (NIPS).

Adaptive O-CNN: A Patch-based Deep Representation of 3D Shapes « 11

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. 2017. Geometric
deep learning: going beyond Euclidean data. IEEE Sig. Proc. Magazine 34 (2017), 18 -
42. Issue 4.

Angel X. Chang, Thomas Funkhouser, and etal. 2015. ShapeNet: an information-rich
3D model repository. arXiv:1512.03012 [cs.GR].

Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 2016.
3D-R2N2: A unified approach for single and multi-view 3D object reconstruction.
In European Conference on Computer Vision (ECCV). 628-644.

Jia Deng, Wei Dong, Richard Socher, Li jia Li, Kai Li, and Li Fei-fei. 2009. ImageNet: a
large-scale hierarchical image database. In Computer Vision and Pattern Recognition
(CVPR).

Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and Thouis R. Jones. 2000. Adap-
tively sampled distance fields: A general representation of shape for computer
graphics. In SIGGRAPH. 249-254.

Simon Fuhrmann and Michael Goesele. 2014. Floating scale surface reconstruction.
ACM Trans. Graph. (SSIGGRAPH) 33, 4 (2014), 46:1-46:11.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2016. Generative adversarial
networks. In Neural Information Processing Systems (NIPS).

Ben Graham. 2015. Sparse 3D convolutional neural networks. In British Machine Vision
Conference (BMVC).

Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and Mathieu
Aubry. [n. d.]. e.

Christian Hane, Shubham Tulsiani, and Jitendra Malik. 2017. Hierarchical surface
prediction for 3D object reconstruction. In Proc. Int. Conf. on 3D Vision (3DV).

K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition.
In Computer Vision and Pattern Recognition (CVPR).

Yanggqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: convolutional archi-
tecture for fast feature embedding. In ACM Multimedia (ACMMM). 675-678.

Tao Ju. 2004. Robust repair of polygonal models. ACM Trans. Graph. (SSIGGRAPH) 23, 3
(2004), 883-895.

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Neural 3D Mesh Renderer.
In Computer Vision and Pattern Recognition (CVPR).

Michael Kazhdan and Hugues Hoppe. 2013. Screened Poisson surface reconstruction.
ACM Trans. Graph. 32, 3 (2013), 29:1-29:13.

Diederik P. Kingma and Max Welling. 2014. Auto-encoding variational Bayes. In
International Conference on Learning Representations.

Roman Klokov and Victor Lempitsky. 2017. Escape from cells: Deep Kd-networks for
the recognition of 3D point cloud models. In International Conference on Computer
Vision (ICCV).

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to
document recognition. Proc. IEEE 86, 11 (1998), 2278-2324.

Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas Guibas.
2017. GRASS: Generative recursive autoencoders for shape structures. ACM Trans.
Graph. (SIGGRAPH) 36, 4 (2017), 52:1-52:14.

Chen-Hsuan Lin, Chen Kong, and Simon Lucey. 2018. Learning efficient point cloud
generation for dense 3D object reconstruction. arXiv:1706.07036 [cs.CV]. In AAAT
Conference on Artificial Intelligence.

Zhaoliang Lun, Matheus Gadelha, Evangelos Kalogerakis, Subhransu Maji, and Rui
Wang. 2017. 3D shape reconstruction from sketches via multi-view convolutional
networks. In Proc. Int. Conf. on 3D Vision (3DV).

Jonathan Masci, Davide Boscaini, Michael M. Bronstein, and Pierre Vandergheynst. 2015.
Geodesic convolutional neural networks on Riemannian manifolds. In International
Conference on Computer Vision (ICCV).

D. Maturana and S. Scherer. 2015. VoxNet: A 3D convolutional neural network for
real-time object recognition. In International Conference on Intelligent Robots and
Systems (IROS).

Donald Meagher. 1982. Geometric modeling using octree encoding. Computer Graphics
and Image Processing 19 (1982), 129-147.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2017a. PointNet: Deep
learning on point sets for 3D classification and segmentation. In Computer Vision
and Pattern Recognition (CVPR).

Charles Ruizhongtai Qi, Hao Su, Matthias Niefiner, Angela Dai, Mengyuan Yan, and
Leonidas J. Guibas. 2016. Volumetric and multi-view CNNs for object classification
on 3D data. In Computer Vision and Pattern Recognition (CVPR).

Charles R Qi, Li Yi, Hao Su, and Leonidas] Guibas. 2017b. PointNet++: Deep hierarchical
feature learning on point sets in a metric space. In Neural Information Processing
Systems (NIPS).

Gernot Riegler, Ali Osman Ulusoy, Horst Bischof, and Andreas Geiger. 2017b. OctNet-
Fusion: Learning depth fusion from data. In Proc. Int. Conf. on 3D Vision (3DV).
Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. 2017a. OctNet: Learning deep
3D representations at high resolutions. In Computer Vision and Pattern Recognition

(CVPR).

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji.

2018. CSGNet: Neural shape parser for constructive solid geometry. In Computer

Vision and Pattern Recognition (CVPR).

Ayan Sinha, Asim Unmesh, Qixing Huang, and Karthik Ramani. 2017. SurfNet: Gen-
erating 3D shape surfaces using deep residual networks. In Computer Vision and
Pattern Recognition (CVPR).

Amir Arsalan Soltani, Haibin Huang, Jiajun Wu, Tejas D. Kulkarni, and Joshua B.
Tenenbaum. [n. d.]. In Computer Vision and Pattern Recognition (CVPR).

Hao Su, Haogiang Fan, and Leonidas Guibas. 2017. A point set generation network
for 3D object reconstruction from a single image. In Computer Vision and Pattern
Recognition (CVPR).

H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. 2015. Multi-view convolutional
neural networks for 3D shape recognition. In International Conference on Computer
Vision (ICCV).

M. Tatarchenko, A. Dosovitskiy, and T. Brox. 2017. Octree generating networks: effi-
cient convolutional architectures for high-resolution 3D outputs. In International
Conference on Computer Vision (ICCV).

Shubham Tulsiani, Hao Su, Leonidas Guibas, Alexei A. Efros, and Jitendra Malik. 2017.
Learning shape abstractions by assembling volumetric primitives. In Computer
Vision and Pattern Recognition (CVPR).

Jonas Uhrig, Nick Schneider, Lukas Schneider, Thomas Brox, and Andreas Geiger. 2017.
Sparsity invariant CNNs. In Proc. Int. Conf. on 3D Vision (3DV).

Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. 2018.
Pixel2Mesh: Generating 3D mesh models from single RGB images. In Computer
Vision and Pattern Recognition (CVPR).

Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. 2017. O-CNN:
Octree-based convolutional neural networks for 3D shape analysis. ACM Trans.
Graph. (SIGGRAPH) 36, 4 (2017), 72:1-72:11.

Jane Wilhelms and Allen Van Gelder. 1992. Octrees for faster isosurface generation.
ACM Trans. Graph. 11, 3 (1992), 201-227.

Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T. Freeman, and Joshua B. Tenen-
baum. 2016. Learning a probabilistic latent space of object shapes via 3D generative-
adversarial modeling. In Neural Information Processing Systems (NIPS).

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 2015. 3D ShapeNets: A deep representation for volumetric
shape modeling. In Computer Vision and Pattern Recognition (CVPR).

Bo Yang, Stefano Rosa, Andrew Markham, Niki Trigoni, and Hongkai Wen. 2018b. 3D
object dense reconstruction from a single depth view. arXiv:1802.00411 [cs.CV].
Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. 2018a. FoldingNet: Point cloud
auto-encoder via deep grid deformation. In Computer Vision and Pattern Recognition

(CVPR).

Chuhang Zou, Ersin Yumer, Jimei Yang, Duygu Ceylan, and Derek Hoiem. 2017. 3D-
PRNN: Generating shape primitives with recurrent neural networks. In International
Conference on Computer Vision (ICCV).

12« Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong

APPENDIX: PARAMETER SETTING OF ADAPTIVE O-CNN

The detailed Adaptive O-CNN encoder and decoder networks for
an octree with max-depth 7 is shown in Figure 11. In the figure,
data[d] represents the input feature at the d* h octree level. conv(c)
represents the convolution operation with kernel size 3 and output
channel number c. deconv(c) represents the deconvolution opera-
tion with kernel size 3, stride 2 and output channel number c. The
kernel size and stride of the pooling operation are both 2. FC(c)
represents the fully connected layer with output channel number c.
prediction(cy, c2) is the prediction module introduced in Section 4.2,
which includes two FC(c) operations. Here ¢ is the number of out-
put channels of the first FC(c) operation, and is fixed to 8. And ¢ is
the number of output channels of the second FC(c) operation, with
which the plane parameters and the octant statuses are predicted.
Since we make the octree adaptive from the 4:" level, the value of
¢z at the second and the third level in Figure 11 is set to 2, predicting
whether to split an octant or not. From the 4/ octree level the value
of ¢ is set to 7: 3 channels of the output are used to predict the
octant fitting status: empty, surface-well-approximated, and surface-
poorly-approximated; the other 4 channels are used to regress the
plane parameters (n,d*). The input latent code dimension of the
decoder is set to 128.

We use the SGD solver to optimize the neural network, and the
batch size is set to 32. In the shape classification experiment, the
initial learning rate is 0.1, and it is decreased by a factor of 10 after
every 10 epochs, and stops after 40 epochs. In the 3D autoencoding
experiment, the initial learning rate is 0.1, and it is decreased by a
factor of 10 after 100k, 200k, 250k iterations respectively, and stops
after 350k iterations. In the shape prediction from a single image
task, the initial learning rate is 0.1, and it is decreased by a factor
of 10 after 150k, 300k, 350k iterations respectively, and stops after
400k iterations.

[data[7]] [input code]

] !
data[6] | conv(4) | | deconv(256) |
1 ¥]
| conv(4) | | pooling | | deconv(128) |

—4 !
data[5] [conve) | [conv(128) | prediction(s,2) |

v v '
| conv(8) | | pooling | | deconv(64) |
ﬁ& |
data[4] conv(16) | convie4) || prediction(s,2) |
])
[conv(1te) | [pooling | deconv(32)
——
| conv(32) | | conv(32) |—>| prediction(8,7) |
]
| pooling | | deconv(16) |
v '
| conv(64) | | conv(16) H prediction(8,7) |
) !
| pooling | | deconv(12) |
v
| conv(128) | | conv(12) |—>| prediction(8,7) |
v
| pooling | | deconv(8) |
v

| conv(8) |—>| prediction(8,7) |

Fig. 11. Adaptive O-CNN encoder (left) and Adaptive O-CNN decoder (right)
for an octree with a max-depth 7.

	Abstract
	1 Introduction
	2 Related Work
	3 Patch-guided Adaptive Octree
	4 Adaptive O-CNN
	4.1 3D Encoder of Adaptive O-CNN
	4.2 3D Decoder of Adaptive O-CNN

	5 Experiments and Comparisons
	5.1 Shape classification
	5.2 3D Autoencoding
	5.3 Shape reconstruction from a single image

	6 Conclusion
	Acknowledgments
	References

