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Figure 1: Motion magnification of a crane imperceptibly swaying in the wind. (a) Top: a zoom-in onto a patch in the original sequence
(crane) shown on the left. Bottom: a spatiotemporal XT slice of the video along the profile marked on the zoomed-in patch. (b-c) Linear [Wu
et al. 2012] and phase-based motion magnification results, respectively, shown for the corresponding patch and spatiotemporal slice as in
(a). The previous, linear method visualizes the crane’s motion, but amplifies both signal and noise and introduces artifacts for higher spatial
frequencies and larger motions, shown by the clipped intensities (bright pixels) in (b). In comparison, our new phase-based method supports
larger magnification factors with significantly fewer artifacts and less noise (c). The full sequences are available in the supplemental video.

Abstract

We introduce a technique to manipulate small movements in videos
based on an analysis of motion in complex-valued image pyramids.
Phase variations of the coefficients of a complex-valued steerable
pyramid over time correspond to motion, and can be temporally
processed and amplified to reveal imperceptible motions, or atten-
uated to remove distracting changes. This processing does not in-
volve the computation of optical flow, and in comparison to the pre-
vious Eulerian Video Magnification method it supports larger am-
plification factors and is significantly less sensitive to noise. These
improved capabilities broaden the set of applications for motion
processing in videos. We demonstrate the advantages of this ap-
proach on synthetic and natural video sequences, and explore appli-
cations in scientific analysis, visualization and video enhancement.

CR Categories: I.4.8 [Image Processing and Computer Vision]:
Scene Analysis—Time-varying Imagery;
Keywords: video-based rendering, spatio-temporal analysis, Eu-
lerian motion, video magnification
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1 Introduction

A plethora of phenomena exhibit motions that are too small to be
well perceived by the naked eye and require computational am-
plification to be revealed [Liu et al. 2005; Wu et al. 2012]. In
Lagrangian approaches to motion magnification [Liu et al. 2005;
Wang et al. 2006], motion is computed explicitly and the frames
of the video are warped according to the magnified velocity vec-
tors. Motion estimation, however, remains a challenging and
computationally-intensive task, and errors in the estimated motions
are often visible in the results.

Recently-proposed Eulerian approaches eliminate the need for
costly flow computation, and process the video separately in space
and time. Eulerian video processing was used by [Fuchs et al. 2010]
to dampen temporal aliasing of motion in videos, while [Wu et al.
2012] use it to reveal small color changes and subtle motions. Un-
fortunately, linear Eulerian video magnification [Wu et al. 2012]
supports only small magnification factors at high spatial frequen-
cies, and can significantly amplify noise when the magnification
factor is increased (Fig. 1(b)).

To counter these issues, we propose a new Eulerian approach to mo-
tion processing, based on complex-valued steerable pyramids [Si-
moncelli et al. 1992; Portilla and Simoncelli 2000], and inspired
by phase-based optical flow [Fleet and Jepson 1990; Gautama and
Van Hulle 2002] and motion without movement [Freeman et al.
1991]. Just as the phase variations of Fourier basis functions (sine
waves) are related to translation via the the Fourier shift theorem,
the phase variations of the complex steerable pyramid correspond
to local motions in spatial subbands of an image. We compute the
local phase variations to measure motion without explicit optical
flow computation and perform temporal processing to amplify mo-
tion in selected temporal frequency bands, and then reconstruct the
modified video.

http://doi.acm.org/10.1145/2461912.2461966
http://portal.acm.org/ft_gateway.cfm?id=2461966&type=pdf
http://people.csail.mit.edu/nwadhwa/phase-video/
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Figure 2: Our phase-based approach manipulates motion in videos by analyzing the signals of local phase over time in different spatial
scales and orientations. We use complex steerable pyramids to decompose the video and separate the amplitude of the local wavelets from
their phase (a). We then temporally filter the phases independently at at each location, orientation and scale (b). Optionally, we apply
amplitude-weighted spatial smoothing (c, Sect. 3.4) to increase the phase SNR, which we empirically found to improve the results. We then
amplify or attenuate the temporally-bandpassed phases (d), and reconstruct the video (e). This example shows the processing pipeline for the
membrane sequence (Sect. 4), using a pyramid of two scales and two orientations (the relative difference in size between the pyramid levels
is smaller in this figure for clarity of the visualization).

We start from the relation between motion and phase in steerable
pyramids and show that by increasing the phase variations by a mul-
tiplicative factor we can amplify subtle motions. We then use this
relation to analyze the limits of our method, which are set by the
spatial support of the steerable basis functions. To amplify motions
further, we extend the complex steerable pyramid to sub-octave
bandwidth pyramids, comprised of filters with larger spatial sup-
port in the primal domain. While our new image representation is
over-complete by a larger factor, it supports larger amplification of
motions at all spatial frequencies, leading to fewer artifacts.

The phase-based method improves on the previous, linear Eulerian
magnification method [Wu et al. 2012] in two important aspects
(Fig. 1): the phase-based method (a) achieves larger magnifications,
and (b) has substantially better noise performance. Because Wu et
al. [2012] amplify temporal brightness changes, the amplitude of
noise is amplified linearly. In contrast, the present method modi-
fies phases, not amplitudes, which does not increase the magnitude
of spatial noise. We demonstrate that the phase-based method can
achieve larger motion magnifications with fewer artifacts, which
expands the set of small-scale physical phenomena that can be vi-
sualized with motion magnification techniques.

The main contributions of this paper are: (a) a novel approach
for Eulerian processing of motion in videos, based on the analy-
sis of phase variations over time in complex steerable pyramids;
(b) we explore the trade-off between the compactness of the trans-
form representation and amplitude of magnification in octave and
sub-octave bandwidth pyramids; and (c) we demonstrate that the
extracted low-amplitude motion signal can be refined by denoising
the phase signal spatially within each image subband, improving
the motion-processed results. Our new phase-based approach is
able to magnify small motions further, with less noise and fewer
artifacts than the previous Eulerian motion magnification method.

2 Background

Phase-based Optical Flow. Fleet and Jepson [1990] tracked
constant phase contours by computing the phase gradient of a
spatio-temporally bandpassed video, and showed that it provides
a good approximation to the motion field, and that phase is more
robust than amplitude to image changes due to contrast and scale.
Gautama and Van Hulle [2002] used a similar technique in which
they computed the temporal gradient of the phases of a spatially
bandpassed video to estimate the motion field. We build on this
link between phase and motion, but seek to avoid the explicit com-
putation of flow vectors, and instead directly manipulate the phase
variations in videos.

Complex Steerable Pyramids. The steerable pyramid [Simon-
celli et al. 1992; Simoncelli and Freeman 1995] is an overcomplete
transform that decomposes an image according to spatial scale, ori-
entation, and position. The basis functions of the transform resem-
ble Gabor wavelets, sinusoids windowed by a Gaussian envelope,
and are steerable. We don’t exploit the steerability of those basis
functions in this work, but the transform has other properties which
are important for our motion analysis: non-aliased subbands and
quadrature phase filters.

We measure phase within each subband using the pairs
of even and odd-phase oriented spatial filters whose out-
puts are the complex-valued coefficients in the steerable pyra-
mid [Simoncelli et al. 1992], The sub-sampling scheme of the
steerable pyramid avoids spatial aliasing and thus allows meaning-
ful signal phase measurements from the coefficients of the pyra-
mid. The real part of each coefficient represents the even-symmetric
filter (cosine), while its imaginary counterpart represents an odd-
symmetric filter (sine). While twice as over-complete as a real-
valued pyramid, the complex-valued pyramid allows simple mea-
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(d) Error as function of wavelength

Figure 3: Phase-based motion magnification is perfect for sinu-
soidal functions. In these plots, the initial displacement is δ(t) = 1.
While the errors for the technique of Wu et al. [2012] are depen-
dent on wavelength for sinusoids, there is no such dependence for
the present technique and the error is uniformly small. The vertical
axis in (d) is logarithmic.

surement of local amplitude and phase, which we exploit to process
motion.

The steerable pyramid has non-oriented, real-valued high and low-
pass coefficients describing residual signal components not cap-
tured by the bandpass filters [Simoncelli et al. 1992]. The fre-
quency domain transfer functions in the oriented bands of the steer-
able pyramid, Ψω,θ , are scaled and rotated copies of a basic filter,
indexed by scale ω and orientation θ.

The steerable pyramid is built by applying these transfer functions
to the discrete Fourier transform Ĩ of an image I to decompose
it into different spatial frequency bands Sω,θ which have DFT
S̃ω,θ(x, y) = ĨΨω,θ . Each filter isolates a continuous region of
the frequency domain and therefore has an impulse response that
is localized in space (Fig. 4(Impulse Response)). The resulting
spatial frequency band is localized in space, scale and orientation
(see [Portilla and Simoncelli 2000] for filter design steps). The
transfer functions of a complex steerable pyramid only contain the
positive frequencies of the corresponding real steerable pyramid’s
filter. That is, the response of 2 cos(ωx) = eiωx + e−iωx is eiωx

so that there is a notion of both amplitude and phase.

In the frequency domain, the process to build and then collapse the
pyramid is given by

ĨR =
∑

S̃ω,θΨω,θ =
∑

ĨΨ2
ω,θ (1)

where the sums are over all of the scales and orientations in the
pyramid, yielding the reconstructed image, IR. We perform filter-
ing in the frequency domain.

3 Phase-based Motion Processing

Our processing amplifies small motions by modifying local phase
variations in a complex steerable pyramid representation of the
video. In this section, we describe our approach and discuss why
the phase-based technique has better noise handling and maximum
magnification than the linear Eulerian motion magnification tech-
nique [Wu et al. 2012]. To give intuition and to demonstrate that

the phase variations correspond to motion, we show how our tech-
nique works on sinusoidal waves (Fourier basis elements). For
non-periodic image structures, phase-based motion magnification
is bounded by the spatial support of the complex steerable pyramid
filters. We overcome this bound by using sub-octave bandwidth
complex steerable pyramids that have wider spatial support.

3.1 Motion Magnification

The phase-based approach relies on complex-valued steerable pyra-
mids because they allow us to measure and modify local motions.
To give intuition for our phase-based motion processing, we first
give an example using a global Fourier basis and consider the case
of a 1D image intensity profile f under global translation over time,
f(x + δ(t)), for some displacement function δ(t) (not to be con-
fused with a Dirac function). We wish to synthesize a sequence
with modified motion, f(x+ (1 +α)δ(t)), for some magnification
factor α. We will discuss the general case at the end of this section.

Using the Fourier series decomposition, we can write the displaced
image profile, f(x+ δ(t)), as a sum of complex sinusoids,

f(x+ δ(t)) =

∞∑
ω=−∞

Aωe
iω(x+δ(t)) (2)

in which each band corresponds to a single frequency ω.

From Eq. 2, the band for frequency ω is the complex sinusoid

Sω(x, t) = Aωe
iω(x+δ(t)). (3)

Because Sω is a sinusoid, its phase ω(x + δ(t)) contains motion
information. Like the Fourier shift theorem, we can manipulate the
motion by modifying the phase.

To isolate motion in specific temporal frequencies, we temporally
filter the phase ω(x + δ(t)) (Eq. 3) with a DC balanced filter. To
simplify the derivation, we assume that the temporal filter has no
other effect except to remove the DC component ωx. The result is

Bω(x, t) = ωδ(t). (4)

We then multiply the bandpassed phaseBω(x, t) by α and increase
the phase of sub-band Sω(x, t) by this amount to get the motion
magnified sub-band

Ŝω(x, t) := Sω(x, t)eiαBω = Aωe
iω(x+(1+α)δ(t)). (5)

The result Ŝω(x, y) is a complex sinusoid that has motions exactly
1 + α times the input (Fig. 3). We can reconstruct the motion-
magnified video by collapsing the pyramid. In this analysis, we
would do this by summing all the sub-bands to get the motion mag-
nified sequence f(x+ (1 + α)δ(t)).

In general, motions in a video are local and δ(t) is actually δ(x, t).
We use the complex steerable pyramid to deal with local mo-
tions as its filters have impulse responses with finite spatial sup-
port (Fig. 4(Impulse Response)). Specifically, our method works
as follows (Fig. 2). We compute the local phase over time at ev-
ery spatial scale and orientation of a steerable pyramid. Then, we
temporally bandpass these phases to isolate specific temporal fre-
quencies relevant to a given application and remove any temporal
DC component. These temporally bandpassed phases correspond
to motion in different spatial scales and orientations. To synthesize
magnified motion, we multiply the bandpassed phases by an ampli-
fication factor α. We then use these amplified phase differences to
magnify (or attenuate) the motion in the sequence by modifying the
phases of each coefficient by this amount for each frame.
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Figure 4: A comparison between octave and sub-octave bandwidth
pyramids for motion magnification. Each color in the idealized
frequency response represents a different filter. (a) The original
steerable pyramid of Portilla and Simoncelli [2000]. This pyramid
has octave bandwidth filters and four orientations. The impulse
response of the filters is narrow (rows 2 − 3), which reduces the
maximum magnification possible (rows 4 − 5). (b-c) Pyramid rep-
resentations with two and four filters per octave, respectively. These
representations are more over-complete, but support larger magni-
fication factors.

3.2 Bounds

As we move an image feature by phase-shifting each complex pyra-
mid filter covering that feature, we eventually reach a limit beyond
which we can’t move the feature because of the limited spatial sup-
port of each pyramid filter (Fig. 2(a) and Fig. 4(1D Wavelets)).

As an approximate analytic model of an image feature moved by the
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Figure 5: For general non-periodic structures, we achieve perfor-
mance at least four times that of Wu et al. [2012], and do not suffer
from clipping artifacts (a). For large amplification, the different
frequency bands break up due to the higher bands having a smaller
window (b).

localized filters of the steerable pyramid, we consider the case of a
single Dirac under uniform translation over time, moved by phase
shifting Gabor filters, complex sinusoids modulated by a Gaussian
window function. As the Dirac is phase-shifted, it is attenuated by
the Gaussian window of the Gabor filters. Therefore, we bound the
maximum phase shift such that the Dirac is only attenuated by a
small amount.

A one dimensional Gabor filter has frequency domain transfer func-
tion

e−2π(ωx−ω0)
2σ2

, (6)

where ω0 is the frequency the filter selects for and 1√
2σ

is the width
of Gaussian window in the frequency domain. Typically, σ depends
on the frequency ω0 (self-similar wavelets). The inverse Fourier
transform gives us the following impulse response in the spatial
domain (up to a constant factor):

Sω(x, 0) = e−x
2/(2σ2)e2πiω0x, (7)

a complex sinusoid windowed by a Gaussian envelope. Respec-
tively, the impulse response of a Dirac function shifted by δ(t) pix-
els (not to be confused with the Dirac function) at time t is

Sω(x, t) = e−(x−δ(t))2/(2σ2)e2πiω0(x−δ(t)) (8)

Note that the spatial Gaussian envelope (the left term on the RHS
of Eq. 8) does not affect the phase.

Applying a finite difference bandpass filter ([1 − 1]) to the phase at
time 0 and time t, gives

Bω(x, t) = 2πω0δ(t), (9)

and the synthesized phase difference for modulating the motion by
α is then

2πω0αδ(t). (10)

This phase difference corresponds to a shift of the Dirac by an addi-
tional αδ(t) pixels. We need to bound the shift αδ(t) such that the
amplified shift approximates well the true shifted signal. We use
one standard deviation of the Gaussian window as our bound. This
maintains roughly 61% of the amplitude (Fig. 4 (1D Wavelets)),
and so we have

αδ(t) < σ. (11)

In the octave-bandwidth steerable pyramid of Portilla and Simon-
celli [2000] (Fig. 4(a)), there is approximately one period of the
sinusoid under the Gaussian envelope. That is, 4σ ≈ 1

ω0
, which

gives the bound αδ(t) < σ = 1
4ω0

. By equating the spatial wave-
length λ = 1

ω0
, we get1
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Figure 6: Comparison between linear and phase-based Eulerian
motion magnification in handling noise. (a) A frame in a sequence
of IID noise. In both (b) and (c), the motion is amplified by a fac-
tor of 50, where (b) uses the technique from Wu et al. [2012] and
(c) uses the phase-based approach. (d) shows a plot of the error
as function of noise for each method, using several magnification
factors.

αδ(t) <
λ

4
. (13)

From Eq. 13, we see that the motions of the low spatial frequencies
can be magnified more than those of the high spatial frequencies.
Indeed, from Eq. 9, phase changes between frames will be much
greater for the high frequency components than for the low fre-
quency components. While derived for an impulse image feature
moved by Gabor filters, we find the bound (and its extension below
for sub-octave bandwidth pyramids) to be valid for both synthetic
examples (Fig. 5) and natural videos (Fig. 1, Fig. 4, Sect. 4).

Exceeding the bound in Eq. 14 manifests as artifacts or blur, as not
all image pyramid components are present in their proper ratios to
reconstruct the desired translated feature. In Fig. 5(b), a Gaussian
function magnified using our approach breaks up.

3.3 Sub-octave Bandwidth Pyramids

We see, therefore, that the bound in Eq. 13 is directly related to the
spatial support of the filters. The smaller the filters in the frequency
domain the larger their support is in the spatial domain, which al-
lows us to shift the signals underneath their windows further. In
the limit of a having a filter for every frequency band, the repre-
sentation becomes equivalent to the Fourier transform and motion
magnification is achieved via the shift theorem. However, we then
lose the ability to measure or synthesize any spatial variation in the
amount of motion. We found a good compromise between local-
ization and magnification ability when using pyramid filters about
two times as wide (in the sinusoidally varying spatial direction) as
those described in Portilla and Simoncelli [2000]. They specify
their steerable pyramid filters as being self-similar and having oc-
tave bandwidth (Fig. 4(a)), and we extend their representation to
sub-octave bandwidth pyramids (Fig. 4(b,c)).

A simple way to accomplish this is to scale the filters in log space.
This method works well for a half-octave bandwidth pyramid, while
pyramids with more filters per octave need to be constructed differ-
ently, as discussed in Appendix A.

For the half octave pyramid, there are 2 periods under the Gaussian
envelope of the wavelet. Thus, 4σ ≈ 2

ω0
, and the bound on the

amplification (Eq. 13) becomes

αδ(t) <
λ

2
. (14)

This bound improves over the one derived in Wu et al. [2012] using
a Taylor series approximation by a factor of 4.1

There is a trade-off between the compactness of the representation
and the amount of motion-magnification we can achieve. The 4-
orientation, octave-bandwidth pyramid of Portilla and Simoncelli
(Fig. 4(a)) is over-complete by a factor of 12 (each orientation con-
tributes a real and imaginary part), and can easily support real time
processing, but limits the amount of motion-magnification that can
be applied. On the other hand, an 8-orientation half-octave pyramid
(Fig. 4(b)) supports larger amplification, but is over-complete by a
factor of 33.

3.4 Noise handling

Phase-based motion magnification has excellent noise characteris-
tics. As the amplification factor is increased, noise is translated
rather than amplified. At a particular scale and orientation band,
the response for a noisy image I + σnn might be

Sω = eiω(x+δ(t)) + σnNω(x, t), (15)

where Nω(x, t) is the response of n to the complex steerable pyra-
mid filter indexed by ω. We assume that σn is much lower in mag-
nitude than the noiseless signal, so that temporal filtering of the
phase is approximately ωδ(t) as in Eq. 4. To magnify the motion,
the response in the Eq. 15 is shifted by eiαωδ(t), so that the motion
magnified band is

Ŝω = eiω(x+(1+α)δ(t)) + σne
iαωδ(t)Nω(x, t) (16)

The only change to the noise after processing is a phase shift. When
the pyramid is collapsed, this phase shift corresponds to a transla-
tion of the noise. In contrast, the linear magnification method [Wu
et al. 2012] amplifies the noise linearly in α (Fig. 6).

Still, noise in the input sequence can also cause the phase signal
itself to be noisy, which can result in incorrect motions being am-
plified. We found that we consistently got better results when low-
passing the phase signal spatially as a simple way to increase its
SNR. However, as the phase-signal in regions of low amplitude
is not meaningful, we use an amplitude-weighted spatial Gaussian
blur on the phases. For each band i of the representation and each
frame k, we have a phase signal φi,k and amplitude Ai,k. We com-
pute a weighted Gaussian blur:

(φi,kAi,k) ∗Kρ

Ai,k ∗Kρ
(17)

where Kρ is a Gaussian kernel given by exp(−x2+y2

ρ2
). We chose

ρ to be equal to that of the spatial domain filter widths. This step
incurs a small computational cost that may be avoided for perfor-
mance considerations, as the results without it are usually good.

1Notice that the bound on the phase-based method is expressed in terms
of αδ(t), while in [Wu et al. 2012] it is expressed in terms of (1 + α)δ(t).
This is because in this paper, we express the motion magnified image profile
at at time t is generated by modifying (phase-shifting) the shifted, but unam-
plified image profile at time t, whereas in the analysis in [Wu et al. 2012],
the motion magnified image profile at time t is generated by modifying the
unshifted image profile at time 0.



4 Results

Our algorithm allows users to see small motions without excessive
noise or computational cost, as well as remove motions that may
distract from an underlying phenomena of interest. We show sev-
eral applications of our algorithm in this section. Please refer to the
supplemental video for the full sequences and results.

Unless mentioned otherwise, our processing was done using a com-
plex steerable pyramid with a half-octave bandwidth filters and
eight orientations. We computed the filter responses in the fre-
quency domain. The processing was done in YIQ color space
and processing was done on each channel independently. If run-
ning time is a concern (for a real-time application), amplify-
ing only the luminance channel will give good results. Process-
ing a 512 × 512 video with 300 frames took 56 seconds with
an octave-bandwidth pyramid and two orientations, and 280 sec-
onds with the aforementioned half-octave pyramid, using non-
optimized MATLAB code on a laptop with 4 cores and 16GB of
RAM. With an octave-bandwidth pyramid and 2 orientations, our
method can be efficiently implemented to run in real time simi-
lar to Wu et al. [2012], as computing a compact steerable–rather
than Laplacian–decomposition introduces a relatively minor per-
formance overhead (about 8x slower, but still within the 30 frames
per second range on 512 × 512 videos using an efficient C++ or
GPU implementation). Also similar to Wu et al. [2012], the user
has control over the amplification factor and the temporal bandpass
filter.

A Big World of Small Motions The world is full of subtle and
small motions that are invisible to the naked eye. Our phase-based
approach allows pushing motion magnification further than before,
to reveal imperceptible phenomena, not previously visualized, in
clarity and detail.

In eye (Fig. 7), we were able to magnify subtle, involuntary, low
amplitude (10-400 micron) movements in the human eye and head
such as microsaccades [Rolfs 2009]. This video was taken with a
high speed camera at 500 Hz. A one second (500 frames) sequence
was processed with an ideal bandpass filter with passband between
30 − 50 Hz and the motions were amplified 150x. A spatial mask
was applied to the phase shifts to emphasize the motion around the
iris. Such a detection system may have medical applications, as the
frequency content of ocular microtremor was shown to have clinical
significance [Bojanic et al. 2001].

Structures are design to sway in the wind, but their motion is often
invisible. In crane, we took a video of a construction crane on a
uniform background during a windy day. In the original video, the
superstructure does not appear to move, however when amplifying
low-frequency motions in the video within 0.2 − 0.4 Hz 150x, the
swaying of the crane’s mask and undulation of its hook become
apparent. For this sequence, a half-octave pyramid yields good re-
sults, however, because the crane was a solitary moving object over
a uniform background, we found that we were able to further in-
crease the motion and remove artifacts by using a quarter-octave
pyramid (Fig. 4(c)).

Trees and woman (Fig. 7) demonstrate ordinary videos also contain
changes at different frequencies over time that we cannot normally
perceive. In trees, motions of lower temporal frequency correspond
to larger structures (heavy branches), while motions of higher tem-
poral frequency correspond to smaller structures (leaves). A simple
interface allows the user to sweep through the frequency domain
and examine temporal phenomena in a simple and intuitive man-
ner.

womantrees eye

Figure 7: A big world of small motions. Representative frames
from videos in which we amplify imperceptible motions. The full
sequences and results are available in the supplemental video.

Comparison with Wu et al. [2012] The main differences be-
tween the phase-based approach and Wu et al.’s approach are sum-
marized in Table 1. In particular, the new method supports larger
amplification factors and gives a fundamentally better way of han-
dling noise for Eulerian motion magnification. To demonstrate that,
we compared the results from this work with those from Wu et
al. [2012]. Several comparisons are available in Fig. 1 and the sup-
plemental video. To illustrate that shifting phases is better than di-
rectly modifying pixel intensities, we did not spatially-smooth the
phase signal in these comparisons.

On all the sequences we tested, we found the proposed approach to
perform better. In particular, the magnified motions in the phase-
based results (e.g. the respiratory motions of the baby and the vibra-
tions of the guitar strings) appear crisper, and contain significantly
fewer artifacts and noise.

We also compared the phase-based results with noise removal pro-
cessing not suggested in the Wu et al. paper: preceding and fol-
lowing the linear magnification processing by video denoising. We
tested several denoising algorithms, namely NL-means [Buades
et al. 2008], VBM3D [Dabov et al. 2007], and the recent motion-
based denoising algorithm by Liu and Freeman [2010]. We tuned
the denoising methods so as to produce the best result on each se-
quence. We achieved the overall best performance with VBM3D
applied to the motion-magnified video (comparisons with all the
denoising methods in pre- and post-processing are available in the
supplementary material). We found that in some cases (e.g. gui-
tar) denoising the video before magnification in fact kills the low-
amplitude motion signal we are after. For the low-noise baby and
guitar sequences, the denoised results were visually comparable
to that of the phase-based method, although achieved at a higher
computational cost, 17 times slower. For the higher-noise camera
and eye sequences, the denoised Wu et al. result looks significantly
worse than the phase-based results, as the denoising algorithms can-
not do much with the medium frequency noise (Fig. 8).

Linear
[Wu et al. 2012]

Phase-based
(This paper)

Decomposition Laplacian pyramid Complex steerable pyramid
Over-complete 4/3 2k/(1 − 2−2/n)
Exact for Linear ramps Sinusoids
Bounds (1 + α)δ(t) < λ/8 αδ(t) < λn/4
Noise Magnified Translated

Table 1: The main differences between the linear approximation
of Wu et al. [2012] and our approach for motion magnification.
The representation size is given as a factor of the original frame
size, where k represents the number of orientation bands and n
represents the number of filters per octave for each orientation.



(a) Linear [Wu et al. 2012] (b) (a) denoised by [Dabov et al. 2007]

(c) (a) denoised by [Liu and Freeman
2010]

(d) Phase-based

Figure 8: Comparison of our result on the camera sequence (d)
with the result of Wu et al. [2012] (a), denoised by two state-of-
the-art video denoising algorithms: VBM3D [Dabov et al. 2007]
(b) and motion-based denoising by Liu and Freeman [2010] (c).
The denoising algorithms cannot deal with the medium frequency
noise, and are computationally intensive. The full videos and sim-
ilar comparisons on other sequences are available in the supple-
mentary material.

Controlled Experiments At the miniature scales of motion we
are after, one might ask: are the signals we pick out and amplify
real (the actual motion signals in the scene)? Would our magnified
motions resemble the motions in the scene had they actually been
actually larger? To answer these questions, we conducted two con-
trolled experiments. In the first, we recorded ground truth motion
data along with a (natural) video (structure, Fig. 9). We induced
small motions in a metal structure, and affixed an accelerometer to
it to capture its vibrations. To induce the motion we used an impact
hammer with a sensor at its tip allowing to record the exact amount
of force applied. We then recorded the structure using a standard
DSLR video camera at 60 frames per second, along with the ac-
celerometer and impact hammer data. We applied our transform
to every frame and recorded the phase changes between the N th
frame and the first frame in one level of the pyramid oriented in the
direction of the motion for a salient region of pixels near the ac-
celerometer. These phase changes corresponded to displacement.
To recover acceleration, we took a second derivative of Gaussian
filter. Once scaled and aligned, the resulting signal matched the
data from the accelerometer very closely 9(c). We also took two
different sequences of the structure, one in which the amplitude of
the oscillatory motion was 0.1 pixels and another in which it was
5 pixels (50x larger, from a harder hammer hit). We magnified the
former 50 times and found the result to be visually comparable to
the latter (Fig. 9(b)).

In a second experiment, we mount a sheet of rubber on a section of
PVC pipe using a rubber band to create a tense membrane (Fig. 2).
We use a loudspeaker to vibrate air in specific frequencies that in
turn vibrates the membrane, and capture the result with a high speed
camera. Through experimentation, we found two modes of the
membrane when waveforms at 76Hz and 110Hz were sent through
the loudspeaker. We then took a video of the membrane when a
composite waveform of these two frequencies was sent through the
loudspeaker and used our algorithm to separate and amplify these

Hammer
Accelerometer

Metal structure

Source

Motion-magnified 50x (our result)

Induced force 50x (“ground truth”)

(a) Experimental setup (b) Spatiotemporal slices
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Figure 9: A controlled motion magnification experiment to verify
our framework. (a) A hammer strikes a metal structures which then
moves with a damped oscillatory motion. (b) A sequence with os-
cillatory motion of amplitude 0.1 pixels is magnified 50 times using
our algorithm and compared to a sequence with oscillatory mo-
tion of amplitude 5 pixels (50 times the amplitude). (c) A compari-
son of acceleration extracted from the video with the accelerometer
recording. (d) The error in the motion signal we extract from the
video, measured as in (c), as function of the impact force. Our mo-
tion signal is more accurate as the motions in the scene get larger.
All videos are available in the supplementary material.

two modes. The results of this experiment are in the supplemental
material.

Motion Attenuation Our phase-based formulation also lends it-
self naturally to attenuation of motions in videos, which allows us to
remove low-amplitude, short-term motions while larger amplitude
motions continue to pass through. Motion attenuation is achieved
by setting the amplification factor α to a negative value in the range
[−1, 0), where α = −1 zeros-out all the phase changes over time
within the desired frequency band, effectively canceling out the mo-
tions within that band. The result is not the same as a constant frame
as the coefficient amplitudes are still evolving over time. This is
similar to motion denoising [Rubinstein et al. 2011] and video de-
animation [Bai et al. 2012], but can be done efficiently in our ap-
proach (when the motions in the scene are small enough).

We apply motion attenuation for two applications: turbulence re-
moval and color amplification (Fig. 10). Atmospheric turbulence is
manifested as low-mid frequency jitters in a video of the moon as
it passes through the night sky (see supplemental video). We pass a
temporal window over the video (we used a window of 11 frames),
transformed to our representation, and set the phases in each spa-



Source

Color-amplified [Wu et al. 2012]

Color-amplified [Wu et al. 2012]
After motion cancellation

x
t

Source frame

Figure 10: Motion attenuation stabilizes unwanted head motions
that would otherwise be exaggerated by color amplification. The
full sequence is available in the supplemental video.

tial scale and orientation of the center frame to the corresponding
median phase of the transformed frames within the temporal win-
dow. This effectively shifts pixels in order to compensate for the
turbulent motions.

Since the magnification method of Wu et al. [2012] amplifies color
changes and motions jointly, small motions of the face become
much larger, visible when amplifying the color changes corre-
sponding to the pulse, which may not be desirable. By canceling
the motions as a pre-process to their algorithm, we are able to re-
move those motions from their results (Fig. 10).

A similar color amplification result as that of Wu et al. [2012] can
be achieved entirely with steerable pyramids. We can temporally
bandpass the amplitude Aω (Eq. 2) and the low pass residual and
add a multiple of the resulting amplitude variations to the ampli-
tude signal. This yields similar results because in both cases the
same processing is applied to the low-pass residual band of an im-
age pyramid (Laplacian pyramid in one case, steerable pyramid in
the other).

5 Discussion and Limitations

Lagrangian approaches to motion magnification (e.g. [Liu et al.
2005]) are complementary to the Eulerian approach proposed in
this paper. Such methods can amplify the motion in a video ar-
bitrarily, but rely on accurate optical flow estimates, image seg-
mentation, and inpainting. Such processing is difficult to do well
and requires long computation times. In addition, Wu et al [2012]
showed (Section 5 and Appendix A in their paper) that for moder-
ate magnification and noisy inputs, the Eulerian approach performs
better than Lagrangian. The phase-based method significantly re-
duces the sensitivity to noise of Eulerian video magnification over
that of Wu et al., as well as increases its supported range of ampli-
fication, which further expands the regime where it performs better
than Lagrangian approaches. Since the main contribution of this
paper is in an improved Eulerian approach for motion processing,
comparisons were done with the state-of-the-art Eulerian method.

While the analysis of Wu et al. [2012] is exact in the case of lin-
ear ramps, the phase-based approach is exact for sinusoidal waves
(Fig. 3), since such signals contain only a single spatial frequency.
However, both methods rely on spatial pyramids, where each level
is band limited. We argue that such spatially bandpassed images
are better approximated by sinusoidal waves than linear ramps.

(a) Motion magnified sequence (b) Large motions unmagnifiedx
t

Figure 11: Motion magnification can cause artifacts (cyan insets
and spatiotemporal timeslices) in regions of large motion such as
those in this sequence of a boy jumping on a platform (a). We can
automatically remove such artifacts by identifying regions where
the phase change exceeds our bound or a user-specified threshold
(b). When the boy hits the platform, the time slice (purple high-
lights) shows that the subtle motions due to impact with the plat-
form are magnified in both cases.

Our half-octave bandwidth pyramid representation, in which the
windowing function of the wavelets in the primal domain is larger,
extends the magnification capability of Wu et al. [2012] by a factor
of 4, and pyramids with more filters per octave may improve on
it by even larger factors. While this allows us to magnify motions
further, the wavelets are also more likely to span multiple motions
as their support get larger, which may corrupt the phase signal and
eventually lead to artifacts in the results. Currently, the user can
select the desired representation based on the motions in the scene
and the available computational resources.

If the input video has large motions, than the bandpassed phase
(Eq. 4) will not reflect the true motion in the scene and the motion
magnified video will suffer from artifacts in the regions of large
motion (Fig. 11(a)). To mitigate this, we can automatically detect
regions where phase exceeds our bound (or some user-specified
threshold) and set the amplification to be zero in these regions.
To increase robustness, we spatiotemporally lowpass the absolute
value of the phase and compare the result to a threshold to deter-
mine which regions have large motions. The supplememntal video
shows an example.

Finally, for sequences in which the phase signal is noisy, parts of
the image in the magnified video may appear to move incoherently.
Using an image or motion prior to regularize the processing may
improve the results in such cases, and is a direction for future work.

6 Conclusion

We describe an efficient, Eulerian method for processing and ma-
nipulating small motions in standard videos by analyzing the local
phase over time at different orientations and scales. The local phase
is computed using complex steerable pyramids, which we extend to
work with sub-octave bandwidth filters in order to increase the spa-
tial support of the filters and allow us to push motion magnification
further. Our method then magnifies the temporal phase differences
in the corresponding bands of these pyramids to hallucinate bigger
or smaller motions. We demonstrated that this phase-based tech-
nique improves the state-of-the-art in Eulerian motion processing
both in theory and in practice, provides a fundamentally better way
of handling noise, and produces high quality photo-realistic videos
with amplified or attenuated motions for a variety of applications.
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A Improved Radial Windowing Function for
Sub-octave Bandwidth Pyramids

When generalizing the complex steerable pyramid of Portilla and
Simoncelli [2000] to sub-octave bandwidth pyramids, we found
empirically that their windowing function was well-suited for oc-
tave and half-octave pyramids. However, at a larger number of
filters per octave (≥ 3 in our experiments) this scheme produces
filters which are very sharp in the frequency domain and have no-
ticeable ringing artifacts (shown in the 1D wavelet plot of Fig. 4(b)).

They define their filters in terms of independent radial and angu-
lar windowing functions. For quarter-octave and larger pyramids,
we leave the angular windowing function unchanged and propose a
different radial windowing function, given by

cos6(log2(r))I[−π/2,π/2](log2(r)). (18)

This function has two nice properties: (a) it is smoother, more sim-
ilar to a Gaussian, and does not introduce ringing in the primal do-
main, and (b) squared copies scaled by a power of π

7
sum to a con-

stant factor, so that the transform is invertible and we get perfect
reconstruction (Eq. 1). An example quarter-octave pyramid gen-
erated with this windowing function in shown in Fig. 4(c) and its
results for motion magnification are available in the supplemental
video.


